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Abstract

In this thesis we study the Dicke model outside the rotating wave approximation (RWA),

by employing phase space techniques and the quantum trajectory theory. We present

a review of the basic models of open systems in quantum optics and present an experi-

mental proposition justifying the model to be studied. We use the phase space approach

to study, among other subjects, entanglement, squeezing and fluctuations across a quan-

tum phase transition. Three different phase space representations are used and their

strengths and weaknesses compared. The quantum trajectory theory is applied to visu-

alise the global quantum fluctuations and to learn how different measurement schemes

will affect the creation of entanglement.
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1. Introduction

The main objective of quantum electrodynamics (QED) is to describe the interaction

between light and matter; indeed it is regarded as one of the (if not the) most precise

theories of physics in its agreement with experimental results. Despite its exceptional

explanatory power, QED still has unexplored areas; one of these concerns systems with

many particles – a rich field of research even in classical mechanics. For example, the

subtle limit between microscopic (quantum) and macroscopic (classical) systems is a

fundamental problem in many-body quantum mechanics, yet to be fully understood.

One of the main difficulties in dealing with many-body problems in quantum mechan-

ics is computational. For a number N of two level atoms, 2N states are needed to

fully describe the state of the system, and one must seek approximation methods. In

the quantum optics context the main tool to deal with macroscopic problems is the

quantum-to-classical correspondence, which maps a discrete many-body system onto a

description in terms of a continuous probability distribution, generating partial differ-

ential equations to be solved or simulated. One of the aims of the present work is to

explore the “traditional” quantum optics methods for many body problems, namely: the

Holstein-Primakoff representation, the Haken representation, and the atomic coherent

states representation.

The methods per se have no meaning if there is no relevant physical system being

studied. Quantum optics experimental setups are composed mainly of lasers, cavities,

and atoms. In the archetypical experiment, one or several atoms are held within a

cavity and illuminated by a laser. The objective is, ultimately, to control precisely the

state of the atoms by a suitable choice of the experimental configuration. One of the
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1. Introduction

obstacles faced arises through the coupling between the system and the many degrees of

freedom of the environment surrounding the system; specifically, in quantum optics, this

introduces irreversible losses due to the coupling of the atoms to the many modes of the

electromagnetic field of free space. The purpose of the cavity is to provide a high intensity

electric field, which interacts coherently with the atoms, and a common mode for all

atoms to couple to at once. The cavity is also coupled to the environment and photons

may be lost irreversibly from it. The role of the laser is to coherently drive the atoms

to the excited state. We identify a balance between the atom-cavity field interaction,

i.e. atoms exchanging photons with the cavity mode, and losses – photons being lost

from the atoms and cavity to the environment (spontaneous emission and cavity losses

respectively). In the past, in the optical regime, cavity losses overcame the coherent

interaction between the field and the atoms [2]; in this situation, the system behaves

as an overdamped pendulum – the atoms lose photons to the cavity and the cavity

loses photons to the environment faster than they can be reabsorbed. In recent years,

however, improvements in experimental techniques have made it possible to achieve

cavities with finesse – the number of times photons bounce back and forth before leaving

the cavity – several orders of magnitude higher than what was done in early quantum

optics experiments. In this regime, coherent dynamics dominate the evolution of the

state of the system before dissipation takes place; photons are coherently absorbed,

emitted and reabsorbed by the atoms several times before leaving the cavity.

Having presented the methods and the experimental context we are aiming at, now we

turn our attention to describe the specific configuration treated in this thesis. Our inter-

est is to combine many-body quantum problems and cavity quantum electrodynamics in

the strong coupling regime. We are inspired by the pioneering work of Dicke [3]. In that

work, a collection of atoms, assumed to be sufficiently far apart that the inter-atomic in-

teractions may be neglected, is considered to be coupled to a common single-mode field.

It was thought that without direct interaction (dipole-dipole), the atoms should act in-

dependently of each other, and the maximum intensity of emitted radiation should be

proportional to the number of atoms N . Dicke realized that the field is also a mediator

2



of the inter-atomic interactions. The resulting effect is that the atoms act collectively, in

the same way as a set of coupled harmonic oscillators can swing in or out of phase with

one another. The emission pattern in this case shows a burst of intense radiation with

intensity proportional to N2; this phenomenon is known as Dicke superradiance. Dicke’s

work did not consider cavities and lasers. Instead, its experimental context was that of

a cloud of two level atoms excited by means of a intense source of coherent (microwave)

radiation – a maser. The emitted radiation field of each atom provides the common field

the atoms need to act collectively. Without the cavity, the energy in the atoms is lost

irreversibly to the many modes of the free space electromagnetic field. The common field

will enhance these losses when compared with the single atom (or independent emitters)

case. As noticed by [4], the system is nothing but an open laser, with the common field

playing the role of the cavity field.

The application of the Dicke model to the present background in quantum optics

experiments in the strong coupling regime should be obvious: a cloud of two level atoms

inside a cavity is excited by a laser. As in the original work of Dicke, we have to consider

the atoms well separated so dipole-dipole interactions are negligible. The cavity mode

provides the common field the atoms need to act collectively 1. Within the strong

coupling regime, the full coherent atomic dynamics becomes relevant. The light-atom

interaction is modeled by the Tavis-Cummings Hamiltonian, and an exact solution for

this many atoms case is known [5]. In this way the interesting quantities, like fluorescence

spectra, correlation functions and entanglement can be easily calculated.

We have presented our methods, experimental context and system of interest. The

physical system, as can be seen from the references, is a well established example studied

previously in quantum optics. Our intention is to study the quantum optics version of

the Dicke model adding something new to the existing framework. Up to now, little

attention has been paid to the Dicke model outside the rotating wave approximation

1Actually, as we explain in chapter 4, ring cavities must be used in order to achieve the regime where

all atoms couple to the same field. In a cavity with parallel mirrors, the atoms would need to be at

the anti-nodes of the field, or the atomic cloud have dimensions much smaller than the wavelength.

These setups are experimentally difficult for the optical domain.

3



1. Introduction

(RWA). Consider the Hamiltonian modeling the atom-photon dipole interaction through

the atomic dipole moment (with ~ set to unity),

Ĥ = ωâ†â+
∑

i

1

2
ω0σiz +

∑

i

λ
(

â† + â
)

(σi+ + σi−) , (1.1)

where ω is the frequency of the field, ω0 is the frequency of the atomic transition, λ is the

(dipole) coupling strength between the field and the atoms (depending on the intensity

of the cavity electric field), the operators â† and â are the usual field creation and

annihilation operators, respectively, σiz is the Pauli matrix representing the energy of

atom i, and σi± are the Pauli matrices representing the dipole moment of this atom. The

rotating wave approximation consists in neglecting the terms â†σ+ and âσ−, given the

condition ω, ω0 � λ, which is easily satisfied at optical frequencies (ω ≈ 109 MHz against

λ ≈ 10 MHz [6]). By introducing the RWA into Hamiltonian (1.1) the system becomes

integrable, i.e., its energy eigenstates have a closed solution as a linear combination,

with finite number of terms, of states |n〉|±〉, where |n〉 are eigenstates of â†â, and |±〉
are eigenstates of σz. Also, the Hamiltonian in the RWA conserves the total number of

quanta in the system, hence, if the system experiences any damping, its steady state is

one of no energy left in the field.

The inclusion of the counter rotating terms in a regime where ω, ω0 ≈ λ changes this

situation. The energy eigenstates have no closed solution as in the RWA case described

above. In a situation where the RWA is not valid, the total number of quanta is not

conserved. With the inclusion of damping, in this case the system may or may not,

depending on the strength of the coupling λ, have a steady state with non-zero flux of

output photons. We must observe that this non-zero net photon flux at steady state is

a consequence of the fact that the full non-RWA model we present is an effective model,

derived from what is in fact an open system. As we show in Chapter 4, to realize the

full non-RWA model we must introduce an external source of energy, which accounts for

the non-zero output of photons in the steady state. In the limit where the number of

atoms goes to infinity, the passage from the non-radiating to the radiating regime, as the

coupling reaches a critical value, occurs through a non-analyticity in the equations for

the mean values of operators. This indicates the presence of a quantum phase transition,

4



with which is associated the appearance of entanglement [7, 8]. The study of a phase

transition in the Dicke model is not novel. Hepp and Lieb reported the existence of

such a transition in the early 1970s [9], where the focus was on the interplay between the

common field as an ordering factor for the atomic system and the disordering introduced

by thermal fluctuations of the environment at non-zero temperature. The Hepp and Lieb

phase transition exists whether or not the RWA is made.

To our knowledge, there is no work that considers the non-RWA Dicke model in a

phase space approach, nor any attempt to study this system for a finite number of

atoms under a more complete theory of open quantum systems, like quantum trajectory

theory, which allows us to study the behaviour of the system when subjected to a specific

measurement scheme.

The lack of attention paid to this system in the regime we propose to study is largely

due to the non-existence of a suitable experimental realization which would justify further

interest in a quantum optics approach. The obvious approach – making the coupling

constant λ of Hamiltonian (1.1) large enough – would not work. To start with, there is

the experimental difficulty in achieving this regime, which would require a large cavity

field. Then, even if it is achieved, Hamiltonian (1.1) is no longer a good description for

the system. The electric dipole Hamiltonian presented above has its origin in the atomic

Hamiltonian

Ĥ =
1

2µ
(p− eA)2 ,

where µ is the reduced mass of the nucleus-electron system, p is the momentum operator,

e is the electron charge, and A is the potential vector. In the usual regime, where the

RWA is valid, the self energy term e2A2 is negligible [10, Section III.D.1]. The inclusion

of this term for large cavity fields has been shown to destroy the thermodynamic phase

transition of Hepp and Lieb [11, 12, 13, 14, 15].

We propose in this thesis a system whose effective Hamiltonian is given by equation

(1.1), and where the field-atom coupling can be adjusted so the regime ω, ω0 ' λ can

be explored. Our proposal consists of an atom coupled to a cavity mode through a pair

of Raman transitions, which are driven by external lasers. In contrast to the approach

5



1. Introduction

of Hepp and Lieb, we deal with an open system with external driving lasers and cavity

dissipation. The non-zero photon flux in the dissipative case is a consequence of the

continuous input of energy from the external lasers. The thermal equilibrium phase

transition in the sense of Hepp and Lieb is not relevant to the model we propose.

Once our proposal for an experimental realisation of the Dicke model has been pre-

sented and justified, we focus on the application of quantum optics methods for many-

body systems to the proposed model. The inclusion of the counter-rotating terms makes

the system non-integrable – there is no closed solution for its eigenvalues and eigenvec-

tors. To study this system in the thermodynamic limit (i.e. number of atoms N → ∞)

we adopt three approaches: (i) the Holstein-Primakoff representation [16] (ii) the Haken

representation [17] and (iii) the atomic coherent state representation [18]. All approaches

are developed using the Positive-P representation [19]. Each one of these techniques has

its own advantages and disadvantages. The Holstein-Primakoff approach is used to

study entanglement, squeezing and the fluctuations of the system across the phase tran-

sition. We show how the Haken representation, in its linearized form, fails to conserve

angular momentum, but nevertheless returns correct results for the fluctuations of the

cavity field. The atomic coherent state representation is treated for completeness, since

it yields a Fokker-Planck equation for a finite number of atoms (without the need for

linearisation).

The thermodynamic limit is useful to learn about the global behaviour of the system,

as quantum fluctuations become negligible in this limit. Quantum fluctuations usually

scale with N−1/2, and become important when we are dealing with a small number

of atoms strongly coupled to a cavity mode, which today is a feasible experimental

setup. Computationally, it may be difficult to carry out simulations taking into account

the full state of the system if we are treating hundreds of atoms. We study quantum

fluctuations in the Dicke model for finite numbers of atoms, usually on the order of tens

of atoms, by using the quantum trajectory theory. One advantage of using this theory

is computational: the open system dynamics, with losses included, can be described in

terms of states instead of density matrices – needed when evolving the system using a

6



master equation approach. This reduces the number of equations needed to describe

the dynamical evolution of the system, as we are dealing with state amplitudes instead

of matrix elements. Quantum trajectory theory also provides a way of studying the

backaction of measurements, set in different ways, in the system. There has been recent

interest in how measurement can preserve or destroy entanglement in quantum-optical

systems [20], and in the relationship between measurement and emergence of classical

chaos [21, 22].

In summary, we propose a feasible realization of a many body quantum optical system

which shows many interesting phenomena and presents a good opportunity to explore a

number of quantum optics methods. The outline of the thesis is as follows. Chapter 2

reviews the results of the Dicke model of superradiance applied to the basic systems of

quantum optics, explaining the approximations used and their range of validity. Chapter

3 is a review of the Dicke phase transition at non-zero temperature. In Chapter 4 we

derive the main Hamiltonian used throughout the remainder of the thesis, and give the

corresponding experimental setup. The results of our analysis of the proposed system

are given in the following three chapters. In Chapter 5 we first adopt a phase space

approach using the Holstein-Primakoff representation to study the system in the ther-

modynamic limit – where the number of atoms tends to infinity; there we are concerned

with entanglement, squeezing, and the behaviour of the fluctuations in the vicinity of

the phase transition. In Chapter 6 we introduce the Haken representation for the atoms

and use it to repeat the study of the thermodynamic limit. There we show that the

Haken representation in its linearized form fails to conserve total angular momentum,

but the correct results for field correlation functions are nevertheless obtained. In the

same chapter we use the atomic coherent states representation to derive an exact phase

space equation for the mesoscopic regime. The results of the thermodynamic limit are

compared to the finite number of atoms case in Chapter 7. There we use the quantum

trajectory theory to simulate a specific measurement scheme, which we shall use in order

to study the dynamical creation of entanglement in the quantum phase transition.

7
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2. Dicke model in the rotating wave

approximation

In the theory of quantum radiative emission, the probability that an atom will remain

excited decreases exponentially with time [23, 24]. Considering a large number N of

(excited) atoms acting independently of each other, this would give a continuous radiative

emission with the intensity fading exponentially. The radiation emitted is incoherent and

proportional to the number of atoms N . This picture is generally valid for large inter-

atomic distances (negligible dipole-dipole interactions), and disregards the common field

as a mediator of interactions between the atoms. In this chapter we shall show the

basic result of the Dicke model for superradiance: that a collection of atoms coupled to,

and through, a common field will cooperate to give an intense burst of radiation with

maximum intensity proportional to N2. In doing so, we shall define the Dicke states

and collective atomic operators and show their applications within the rotating wave

approximation (RWA) – to be explained later. Two regimes are studied within this

approximation: weak coupling – where the losses are more important than coupling via

the common field and a master equation is used – and the strong coupling regime, where

Hamiltonian dynamics plays the main role.

2.1. Dicke states and emission from a collection of atoms

2.1.1. Hamiltonian and collective atomic operators

Consider the Hamiltonian modeling a collection of N two level atoms, each one at a site

identified by the index i, interacting with an electromagnetic (EM) field resonant with

9



2. Dicke model in the rotating wave approximation

the atomic transition:

Ĥ

~
=
ω0

2

N
∑

i

σzi +

N
∑

i

E(ri) ·Di. (2.1)

Here, E(ri) is the electric field at the position ri, Di is the electric dipole moment

operator of the atom labeled by the index i, ω0 is the frequency of the atomic transition,

and σzi is a Pauli matrix for atom i, where the Pauli matrices are defined as

σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (2.2)

These matrices have eigenvalues ±1 and obey the commutation rules

[σx, σy] = 2iσz, [σz, σx] = 2iσy , [σy, σz] = 2iσx. (2.3)

The Hamiltonian describing the interaction between atoms and photons can be written

in terms of the potential vector. It usually appears in the literature (for a single atom)

in the form

Ĥ ′ =
1

2µ
(p− eA)2 + V (r), (2.4)

where µ is the reduced mass of the nucleus-electron system, A is the potential vec-

tor, e is the electron charge, p is the momentum of the electron, and V (r) is the central

(Coulomb) potential depending only on the relative distance r between nucleus and elec-

tron. In neglecting the A2 term, the above Hamiltonian can be shown to be equivalent

to (2.1). The term

Ĥ0 =
p2

2µ
+ V (r), (2.5)

gives a discrete set of energy levels as its eigenvalues, from which we choose two, such

that their energy difference is resonant with the EM field. This term corresponds to the

one proportional to the Pauli matrix σz. The atom-field interaction term

Ŵ =
eA · p
µ

, (2.6)

is written in the subspace of the two levels we chose for the transition. We denote the

eigenvectors of the non-interacting Hamiltonian, Ĥ0, by |ωi〉, |ωj〉, with eigenvalues ωi

10



2.1. Dicke states and emission from a collection of atoms

and ωj. These eigenvectors are used as a basis to write the matrix elements of the

atom-field interaction term, Ŵ . With the help of
[

r, Ĥ0

]

= i~p/m we obtain

i〈ωi|eA
[

r, Ĥ0

]

|ωj〉 = i(ωj − ωi)A · 〈ωi|er|ωj〉 = i
E

ω
(ωi − ωj) ·Dij , (2.7)

where we consider a harmonic field – so the vector potential has the form E/ω – and the

transition energy is resonant with the field (ωi − ωj = ω). The dipole moment Dij, to

be defined below, has only non-diagonal matrix elements connecting states |ωi〉 ↔ |ωj〉.
This equivalence can be shown as a gauge transformation in the potential vector [25,

Complement AXIII]. The self energy term is neglected compared with the interaction

term; their ratio can be written as

e2A2/2µ

eAp/µ
=
eAp/2µ

p2/µ
, (2.8)

where we have replaced the operators by their mean-square values. We identify in the

last term the ratio between interaction energy and the kinetic energy. For low intensity

radiation, this ratio is fairly small and can be neglected [10, Section III.D.1]. In this

thesis we opt for writing the interaction Hamiltonian with the term E·D, which is usually

associated with electric dipole energy. The discussion of the potential vector Hamiltonian

is of importance to the relevance of the A2 term to the Dicke phase transition, a topic

we take up in Chapter 3.

The electric field E is to be considered a classical quantity for the moment. The electric

dipole of atom i is given by the operator er̂i. We define the atomic state space basis

as the excited and ground state eigenvectors of the free atomic Hamiltonian denoted,

|+〉 and |−〉 respectively. In this basis the electric dipole operator of atom i is given, in

terms of the Pauli matrices σx and σy, by

Di = Re(d+−)
σxi

2
+ Im(d+−)

σyi

2
, (2.9)

where d+− is the dipole matrix element 2e〈+|ri|−〉. Without loss of generality, we

are able to find two axes x and y in which the matrix elements dx = 〈+|x|−〉 and

dy = 〈+|y|−〉 are real [26, Complement EVI]. By doing this we can write d+− = dx+idy

.
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2. Dicke model in the rotating wave approximation

This dipole Hamiltonian is a very good approximation provided the electric field has

no significant gradient for distances of the order of the atomic size or, equivalently, for an

EM wave whose wavelength is bigger than the atomic diameter. This condition is easily

satisfied for the usual experimental setups at optical frequencies (wavelengths ∼ 10−6m

versus atomic size of the order of Å). The use of the dipole Hamiltonian corresponds to

neglecting the spatial variation of the electric field (i.e. making E(ri) = E(0)), and is

referred to as the dipole approximation.

For the situation we are treating here – a collection of atoms interacting with an EM

wave – we consider that the atoms are confined to a volume smaller than the wavelength,

so all atoms see the same field, and we can replace E(ri) by E(0) in (2.1). This was

justified in the original work of Dicke [3], as the system envisaged was a gas cell excited

by microwave radiation, which has wavelength of the order of 10−1m; for that setup the

approximation is often referred to as the long wavelength approximation. At optical

frequencies, in particular for gases, it is difficult to achieve the configuration envisaged

by Dicke. We show in Chapter 4 that with the use of a ring cavity it is possible to

overcome this difficulty [27]; this is the sense in which we use the term “long wavelength

approximation” in the remainder of this chapter. Under this approximation, the dipole

Hamiltonian (2.1) reads

E(0) ·
(

dx

N
∑

i

σxi

2
+ dy

N
∑

i

σyi

2

)

. (2.10)

To calculate the eigenvectors and eigenvalues of the system we introduce the collective

operators Ĵx, Ĵy and Ĵz ,

Ĵk =
1

2

N
∑

i

σki, (2.11)

where k = {x, y, z}. Using this notation we can write the collective electric dipole

operator for the atomic system as

D̂ = dxĴx + dyĴy. (2.12)

Let us use as our basis the eigenvectors of the operator σz, the states denoted by |+〉
and |−〉, which correspond to eigenvalues +1 and −1, respectively. The state space for

12



2.1. Dicke states and emission from a collection of atoms

the full system is given by the tensor product of the states of N atoms; in particular,

for all atoms excited, the state vector and eigenvector of Ĵz, is

| + + + · · · + ++〉, (2.13)

corresponding to the non-degenerate eigenvalue N/2.

States with one atom in the ground state (e.g. |+ + + · · ·+−+〉) belong to an N-fold

degenerate set, with Ĵz eigenvalue N/2 − 1. Generally, a similar observation holds for

states with n+ atoms in the excited level and n− atoms in the ground state. They

have degeneracy given by N !
n+!n−! and Ĵz eigenvalue m = (n+ − n−)/2. To remove this

degeneracy we note that the problem being considered is equivalent to the summation

of angular momenta. One observes that, with the definitions (2.11), the operators Ĵk

obey the same commutation relations as angular momenta:

[

Ĵx, Ĵy

]

= iĴz. (2.14)

It is also useful to define the raising and lowering operators Ĵ+ = Ĵx + iĴy and Ĵ− =

Ĵx − iĴy, with commutation relations:

[

Ĵ+, Ĵ−
]

= 2Ĵz,
[

Ĵ±, Ĵz

]

= ∓Ĵ±. (2.15)

These relations can be used to derive the effect of the action of the raising and lowering

operators on a state with total angular momentum ` and Ĵz eigenvalue m [26, Chapter

VI]:

Ĵ±|`,m〉 =
√

` (`+ 1) ±m (m− 1)|`,m± 1〉. (2.16)

The degeneracy is removed by following the standard procedure of angular momentum

addition to generate all collective states of the system. We introduce the operator J2

which commutes with the operators Ĵx, Ĵy, Ĵz and Ĵ±, and has eigenvalue `(`+1), where

0 ≤ ` ≤ N/2 [26, Chapter VI]. We then consider the non-degenerate state with highest

Ĵz eigenvalue (m = ` = N/2), which is given by (2.13). We apply the operator Ĵ− and

renormalize the resulting state, whose {J2, Ĵz} eigenvalues are {`(` + 1),m − 1}. We

then repeat the procedure until the state with lowest Ĵz eigenvalue (m = −`) is reached:

|`,−`〉 = | − − − · · · − −−〉. (2.17)
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2. Dicke model in the rotating wave approximation

This operation generates all states with ` = N/2 and −` ≤ m ≤ `, which are denoted

by |`,m〉 = |N/2,M〉.

To generate the states with ` = N/2 − 1 we first note that the state |`,N/2 − 1〉 is a

member of an N–fold degenerate set of states, with only 1 state having ` = N/2. The

remaining N − 1 states have to belong to the subspace ` = N/2 − 1. Requiring that all

N states be orthogonal to one another, we are free to choose a state |N/2 − 1, N/2 − 1〉
orthogonal to |N/2, N/2 − 1〉, and apply the Ĵ− operator to that state to generate all

states with ` = N/2− 1 and −N/2 + 1 ≤ m ≤ N/2− 1. This procedure can be repeated

for ` = N/2 − 2 down to ` = 0. In the case of just two atoms we recover the usual

procedure to add angular momenta as described in many textbooks (e.g. [25, Chapter

X]).

Notice, however, that Dicke states so created, with total angular momentum ` and Ĵz

eigenvalue m, have degeneracy given by [28, Equation 6.67]:

N !(2`+ 1)

(N/2 + `+ 1)!(N/2 − `)!
. (2.18)

We can picture the result as a pyramid shaped graphic as shown in figure 2.1.1. There,

each dot represents a state. The quantum number ` will be called the “cooperation

number” as used by Dicke in his original work [3].

2.1.2. Superradiance

Having defined our state space we turn our attention to the Hamiltonian (2.1). The

interesting quantity is the probability (rate) of transition of the atomic ensemble between

different states. As known for dipole interactions, the selection rules for (2.1) allow

only transitions satisfying ∆m = ±1 [25, Complement AXIII]. Considering only weak

interaction (weak oscillatory field E(0, t) = E(0) sin(ωt)), we are able to use first order

time dependent perturbation theory. The rate or probability of transition from a state

m to m± 1 will be equal to:

Pm→m±1 = |Wm→m±1|2 = E(0)2
∣

∣

∣〈`,m|dxĴx + dyĴy|`,m± 1〉
∣

∣

∣

2
. (2.19)
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2.1. Dicke states and emission from a collection of atoms

Figure 2.1.: State diagram showing the degeneracies of the Dicke states.

Calculating this expression using the definitions of Ĵx and Ĵy in terms of Ĵ± we arrive

at:

|Wm→m±1|2 = E(0)2(d2
x + d2

y) (`+m) (`−m+ 1) . (2.20)

We see that for high cooperation number, ` ' N/2, andm = `, the transition probability,

and by consequence the radiated power, is proportional to the number of atoms in the

system,

|Wm=`
m→m±1|2 ' I0N. (2.21)

The maximum radiated power will occur when ` = N/2 and m = 0, for which the

radiation rate is proportional to the square of the number of atoms,

|Wm=0
m→m±1|2 ' I0

N2 + 2N

4
. (2.22)

In this case we say the atoms are in the superradiant regime.

Because Hamiltonian (2.1) commutes with the operator J2, the state of the system will

remain in the subspace with cooperation number ` during its evolution. For the average
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2. Dicke model in the rotating wave approximation

of the vector J, the Heisenberg equations of motion describe an evolution equivalent

to that of a magnetic dipole subjected to a magnetic field (Ex, Ey, ω0). The resulting

motion is analogous to the precession of 〈J〉 around the “magnetic field”.

The burst of superradiant light appearing when the system starts in a fully excited

configuration is due to the build up of correlations between the dipoles, in close analogy

with a set of classical dipoles oscillating in phase. States with low cooperation number `

also show correlations, but corresponding to a classical picture of out-of-phase oscillating

dipoles. We can calculate the mean correlation between atoms at different sites as

z =

N
∑

i6=j

〈σi+σj−〉 , (2.23)

where σ± is the usual raising or lowering Pauli matrix. In a state |`,m〉 (which is

symmetric with respect to the permutation of atomic labels) the following relations

hold:

〈Ĵ+Ĵ−〉 =

〈

N
∑

i

σi+

N
∑

j

σj−

〉

= z +

N
∑

i

〈σi+σi−〉 = `2 −m2 + `+m, (2.24)

and
N
∑

i

〈σi+σi−〉 =
N

2
+ 〈Ĵz〉 = `+m. (2.25)

From these, it follows that z = (`2−m2). When the system decays from the fully excited

state (2.13) to the superradiant1 state – that with high ` and m = 0 – the correlation

grows from 0 to `2 as m→ 0, and decreases again as all atoms decay to the ground state

(m → −`).

We note also the existence of subradiant states for ` < N/2. In this case the system

decays to the final m = −` state with a non-zero probability of an atom still being in

an excited state (e.g., the singlet state for N = 2, ` = 0). These “dark” states prevent

the system from losing any more energy to the field.

1The situation where this build up of correlations happens from the initial state |`, `〉, as we are

considering here, is often referred to as superfluorescence. Here we use the word superradiant in line

with the original work of Dicke [3].
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2.2. Master equation and coherent spontaneous emission – weak coupling regime

A sample of gas can be excited to its upper state (corresponding to |N/2, N/2〉) by

a strong pulse of radiation in order for superradiance to be observed as the system

decays to its ground state. Such an experiment shows irreversible losses of energy to the

environment. We shall now describe a dynamical model that takes these processes into

account.

2.2. Master equation and coherent spontaneous emission –

weak coupling regime

In the description above, the EM field was considered a classical quantity, and its state

is not altered by the presence of the atoms. In this section we present a more rigorous

approach to treat irreversible losses, starting with a quantized field. Dissipative phe-

nomena, like friction or electrical resistance, can be described by the coupling of the

system to a reservoir with many degrees of freedom. For the Dicke model, the atoms are

coupled to the many modes of the quantized electromagnetic field of free space, which

plays the role of the reservoir. We define the quantized electric field operators as

E+(r) = i
∑

kε

Ekεâkεe
ik·r, E−(r) = −i

∑

kε

Ekεâ
†
kεe

−ik·r. (2.26)

Here Ekε is the electric field per photon in a volume V, given by

Ekε =

√

~c |k|
2ε0V

ε, (2.27)

where k is the wave vector and ε the polarization vector. The photon creation and

annihilation operators, â†
kε and âkε, obey the usual bosonic commutation relations. The

Hamiltonian for the atomic system plus the reservoir can be written as

Ĥ =
∑

kε

~ωkâ
†
kεâkε + ~ω0Ĵz +

∑

i

(

E+(ri) + E−(ri)
)

· Di. (2.28)

As in the previous section, we consider that all atoms lie in a small volume so they

see the same field. We proceed with the replacement E(ri) → E(0). Our aim is to trace

out the reservoir and derive an equation for the motion of the atomic system only. Such
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2. Dicke model in the rotating wave approximation

a procedure, along with suitable approximations, results in a master equation in the

Lindblad form. We shall follow the standard derivation widely know in the literature

[4, 28, Chapter 1]. The first step is to write down the Liouville equation of motion for

the density matrix of the atom plus field in the interaction picture, denoted by Λ̃:

i~
dΛ̃

dt
=
[

ĤInt(t), Λ̃
]

. (2.29)

The reduced atomic density operator (in the interaction picture) is defined by

ρ̃ = TrradΛ̃. (2.30)

The relationship between the Schrödinger and interaction pictures is given by:

Λ̃ = exp

(

iĤ0t

~

)

Λ exp

(

−iĤ0t

~

)

, (2.31)

H̃Int = exp

(

iĤ0t

~

)

E(0) ·D exp

(

−iĤ0t

~

)

, (2.32)

where Ĥ0 is the non-interacting field plus atom Hamiltonian, given by

H0 =
∑

kε

~ωkâ
†
kεâkε + ~ω0Ĵz. (2.33)

We formally integrate equation (2.29) to obtain an expression for Λ̃

Λ̃(t) =
1

i~

∫ t

0

[

ĤInt, Λ̃(t′)
]

dt′. (2.34)

This expression is then inserted on the RHS of the same equation (2.29), and a trace

over the reservoir is taken to obtain the equation of motion for the atomic density matrix

in the interaction picture in integro-differential form:

dρ̃

dt
= − 1

~2
Trrad

∫ t

0
dt′
[

ĤInt(t),
[

ĤInt(t
′), Λ̃(t′)

]]

. (2.35)

We suppose that at t = 0 the system is uncorrelated with the reservoir, which we consider

to be in thermal equilibrium at temperature T :

Λ̃(t = 0) = R(T ) ⊗ ρ0, (2.36)

18



2.2. Master equation and coherent spontaneous emission – weak coupling regime

where the density operator for the reservoir is given by the Bose-Einstein distribution:

R(T ) =
∏

kε

e−~ωkâkεâ
†
kε/kBT

1 − e−~ωk/kBT
. (2.37)

Equation (2.35) is exact. We proceed from here by making approximations. The

first approximation we make is to consider that the interaction with the atoms does not

change the reservoir state. This corresponds to saying that the correlations between

field and atoms are short lived (Born approximation). This is a reasonable assumption

considering the reservoir’s large number of degrees of freedom. As a result of this ap-

proximation we can write Λ̃(t′) = ρ̃(t′) ⊗R(T ). The second approximation regards the

evolution of the system as Markovian (i.e. future evolution does not depend on past

history). This is justified if the reservoir correlation times are much shorter than the

characteristic times of evolution of the system. The reservoir, kept in thermal equilib-

rium, has its past evolution history erased faster than typical atomic evolution times.

Looking at the RHS of equation (2.35) we see that ρ̃(t) depends on all its previous values

(the integral in t′). The approximation is made by setting ρ̃(t′) = ρ̃(t) in equation (2.35).

The upper limit of integration goes to infinity as the evolution time of interest is much

bigger than the correlation time of the reservoir. Finally, we convert the equations from

the interaction picture back to the Schrödinger picture using the relations:

eiωkâ†
kεâkεtâkεe

−iωkâ†
kεâkεt = âkεe

−iωkt,

eiω0Ĵzt
{

dxĴx + dyĴy

}

e−iω0Ĵzt = d+−Ĵ+eiω0t + d∗
+−Ĵ−e−iω0t. (2.38)

On substituting the operators (2.26) into (2.35) the following traces are used:

Tr
(

R(T )â†
kεâ

†
kε

)

= 0,

Tr
(

R(T )âkεâkε

)

= 0,

Tr
(

R(T )â†
kεâkε

)

= n̄(ωk, T ),

Tr
(

R(T )âkεâ
†
kε

)

= n̄(ωk, T ) + 1, (2.39)

where n̄(ωk, T ) is the mean number of thermal photons of frequency ωk, given by the

Planck black body distribution.
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2. Dicke model in the rotating wave approximation

Putting all of these pieces together we have the following equation:

dρ

dt
=

1

i~

[

Ĥ0, ρ
]

− 1

~2

∑

kε

∫ ∞

0
dτ |Ekε · d±|2

{

(

Ĵ2
+e−iω0τ + Ĵ2

−eiω0τ

+ Ĵ+Ĵ−eiω0τ + Ĵ−Ĵ+e−iω0τ
) [

(n̄+ 1)e−iωkτ + n̄eiωkτ
]

ρ

−
(

Ĵ+ + Ĵ−
)

ρ
(

Ĵ+e−iω0τ + Ĵ−eiω0τ
)[

n̄e−iωkτ + (n̄+ 1)eiωkτ
]

+ h.c.

}

, (2.40)

where τ = t− t′, H0 = ~ω0Ĵz, and the phase factors from d+− were absorbed in the Ĵ±

operators (without loss of generality). The variable τ will appear only in exponentials

like e±i(ωk−ω0)τ and e±i(ωk+ω0)τ , which can be integrated using the relation:

∫ ∞

0
dτe−i(ω±ω0)τ = πδ(ω ± ω0) + iP

1

ω ± ω0
, (2.41)

where P is the Cauchy principal value. The delta-function expresses the requirement

for conservation of energy when quanta are exchanged between the system and reservoir

(as in Fermi’s golden rule). The principal part arises from and accounts for off-resonant

interactions; it introduces the Lamb shift and dipole-dipole interactions.

To simplify the right-hand-side of equation (2.40), we transform the sum over k into

an integral over d3k. The element of volume in k space is introduced by taking the limit

V → ∞ and writing

d3k = k2dkdΩ, (2.42)

which must be multiplied by the density of states, i.e. the number of states per unit of

volume d3k, given by [29, Section 4.5]

V
(2π)3

. (2.43)

The integration over the solid angle Ω accounts for all possible propagation directions

(i.e. directions of k). There is still a sum to perform over two polarization directions

for each k direction. We choose one of this polarizations to be perpendicular to the

atomic polarization vector d+−. The master equation for the resonant processes only

(i.e. proportional to δ(ωk −ω0) as the variable ωk is by definition positive) is then given
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2.2. Master equation and coherent spontaneous emission – weak coupling regime

by

dρ

dt

∣

∣

∣

∣

R

=
1

i~

[

Ĥ0, ρ
]

− c |d±|2
16~ε0π2

∫ ∞

0
k3dk

∫

dΩ(ε · εa)2δ(ωk − ω0)

{

n̄
(

Ĵ2
+ρ

+ ρĴ2
− + Ĵ−Ĵ+ρ+ ρĴ−Ĵ+ − 2Ĵ+ρĴ− − Ĵ−ρĴ− − Ĵ+ρĴ+

)

+
(

n̄+ 1
)

×
(

Ĵ2
−ρ+ ρĴ2

+ + Ĵ+Ĵ−ρ+ ρĴ+Ĵ− − 2Ĵ−ρĴ+ − Ĵ−ρĴ− − Ĵ+ρĴ+

)

}

. (2.44)

Here εa is a unit vector parallel to d+−. We carry out the integral in k with the

transformation ωk = ck. Using a coordinate system in which ε · εa = sin θ (the z axis

parallel to the propagation direction k) yields, for the solid angle integral,

∫

dΩ
(

ε · εa
)2

=

∫ 2π

0
dφ

∫ π

0
sin3 θ =

8π

3
. (2.45)

The result is the master equation for spontaneous emission from a collection of atoms

coupled to a common reservoir [30]:

dρ

dt

∣

∣

∣

∣

R

=
1

i~

[

Ĥ0, ρ
]

+
(

n̄+ 1
)Γ

2

(

Ĵ−ρĴ+ + Ĵ−ρĴ− − Ĵ2
−ρ− Ĵ+Ĵ−ρ+ h.c

)

+
n̄Γ

2

(

Ĵ+ρĴ− + Ĵ+ρĴ+ − Ĵ−Ĵ+ρ− Ĵ2
+ρ+ h.c

)

, (2.46)

where

Γ =
ω3

0 |d±|2
3~ε0πc3

, (2.47)

is the Einstein A coefficient for spontaneous emission, as obtained from Fermi’s golden

rule in standard time-dependent perturbation theory.

Using data for the hydrogen atom we get a value of Γ ≈ 2 × 108s−1 for the Lyman

series (ω0 ≈ 1015s−1). A search in the appropriate database [31] shows that the ratio

Γ/ω0 ∼ 10−7 for most atomic transitions in the optical regime (100-1000 nm). In this

case a simple calculation shows that the counter rotating terms, like Ĵ2
±ρ, will make a

first order contribution of Γ/ω0, so they can be neglected in equation (2.46). For regimes

where Γ/ω0 ∼ 1, like microwave radiation [32], the Markov approximation does not hold,

and the dynamics shall be described by the strong coupling model we introduce below.

At room temperature and optical frequencies, the mean number of thermal photons n̄

is negligible, whereas for infra-red and microwave radiation n̄ may be significant.
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2. Dicke model in the rotating wave approximation

We can use equation (2.46) to derive the equations of motion for the quantum means

of the operators: 〈Ĵz〉 = Tr(Ĵzρ) and 〈Ĵ±〉 = Tr(Ĵ±ρ). The density matrix representing

the mixed state of the system is written as the linear combination

ρ =
∑̀

i=−`

∑̀

j=−`

cij |`, i〉〈`, j|. (2.48)

The evolution of the state of the system is obtained by solving the equations of motion

for each coefficient cij . This will give N equations to be solved, which can be simulated

in a computer. In figure 2.2 we show 〈Ĵ+Ĵ−〉, which is proportional to the rate of photon

emission [4], and the mean atomic inversion 〈Ĵz〉 versus time. The system starts with

all atoms in the excited state |N/2, N/2〉 and loses all its energy to the field to reach the

state |N/2,−N/2〉. For one atom the system relaxes exponentially, for five atoms the

system shows a superradiant peak, which becomes more prominent for nine atoms.

0

2
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Figure 2.2.: Radiated power and atomic inversion for different numbers of atoms.

The imaginary part of (2.41), containing the Cauchy principal value, is neglected
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2.2. Master equation and coherent spontaneous emission – weak coupling regime

when applied to equation (2.40). The off-resonant interactions arising from the principal

value of (2.40) depend upon wavelengths different from those resonant with the atomic

transition. With their inclusion, the approximation that all atoms see the same field

is not valid. On relaxing this approximation, they give rise to diffraction and Van der

Waals dephasing terms, which depend on the inter-atomic distances.

By placing the atoms in a cavity with resonance frequency ω0 we are able to neglect

diffraction terms by considering that all atoms see the same field, as well as providing

a common mode coupling to all atoms. Such a cavity creates a spectral profile with

a peak at ω = ω0, which must be taken into account when deriving equation (2.40).

For sufficiently large cavity linewidth, the decay term Γ will be enhanced by a factor

proportional to the cavity finesse, while the principal part of the product of the spectrum

and 1/(ω ± ω0), representing off-resonant interactions, will be depleted [32, Section G].

The cavity also creates high intensity electric fields, allowing low density atomic clouds

to couple strongly with the light field. This is required to rule out Van der Waals dephas-

ing interactions2, included by adding the terms
∑

i>j Ωij

[

σ±i, σ±j

]

to the Hamiltonian

part of the master equation, where Ωij is the dipole-dipole interaction strength, which

depends on the atomic separation rij. Interactions depending on inter-atomic distances

are non-symmetrical and do not conserve the total angular momentum `. Using the

dipole moment for the Lyman series shown above (Γ ≈ 108 Hz) as an example, we have

a dipole-dipole energy interaction (according [4]) on the order of 2 × 106 Hz for atomic

separation just the size of the wavelength of the radiation (≈ 100 nm). A complete

picture of Van der Waals interaction in large gas samples is given in [4].

The same rationale applies to the Lamb shift, which comes from considering terms

like σ±iσ±i in (2.40). The complete Lamb shift is due to both vacuum fluctuations

(terms not proportional to n̄) and the ac Stark shift (terms proportional to n̄). Both

contributions may be incorporated as small shifts of the energy levels in H̄0.

2This process bears the name of Van der Waals as Ωij ∝ r−3

ij − r−5

ij , but this description does not give

an account of electrostatic inter-atomic interactions as they have to be added in Ĥ.
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2. Dicke model in the rotating wave approximation

2.3. Dicke model in a cavity – strong coupling regime

In the previous section we considered the atoms radiating spontaneously, as their collec-

tive state decays from |`, `〉 to |`,−`〉, and ignored the dynamical mechanism pumping

the system to its excited state. We mentioned that an optical resonator will enhance

the interaction of the atoms with the EM field, of frequency ω0, allowing low density

ensembles to be strongly coupled to a single light mode, thus enabling Van der Waals

interactions to be neglected.

The corresponding experimental setup is that of an atomic cloud placed in a cavity

interacting with a laser pulse, which pumps all atoms to the excited state. One may

observe directly the intensity of the light emitted by the cavity, which shows a peak as

in Figure 2.2. Such an experiment has been done in the past for both microwave [33]

and visible light [34]3. It is implicit in the account given in the previous section that

the cavity decay rate, κ, has to satisfy κ > Γ, so that the cavity field is not significantly

modified when the system emits a quantum of radiation; the photons are expelled from

the cavity before interacting again with the atoms.

Improvements in the experimental art has lead to high finesse cavities, widely available

today. These cavities can generate strong electric fields, making the interaction between

the cavity mode and the atoms more important than spontaneous emission and cavity

losses. Going back to equation (2.28), we must have ~κ� E·D (for a good account see [2,

p. 208]). We have to consider the field dynamics of this mode. This scenario corresponds

to the strong coupling regime. High quality optical cavities provide a necessary (but not

sufficient) condition to reach this regime.

We start with equation (2.28), but consider only the cavity mode with wave vector

kcav. We shall be concerned with how the atoms change the field. We assumed in past

3 The microwave experiments make use of Rydberg atoms; atoms are pumped by the laser to a highly

excited state, while the cavity is tuned to transitions between two such highly excited levels (with

transition frequency ω0). In the experiment for optical frequencies, the intensity of the emission is

measured for different vapor pressures, thus changing the gas density and enabling one to verify that

the intensity ∝ N2.
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2.3. Dicke model in a cavity – strong coupling regime

sections the field to be classical – a c-number in Section 2.1 – or a multi mode quantized

field which was eliminated in the Born-Markov approximation. In the master equation

approach, the important quantum effect of the light field comes from the +1 in the

term n̄ + 1, giving rise to spontaneous emission (due to vacuum fluctuations) and from

the Lamb shift which was incorporated into Ĥ0. Now we are interested to learn about

how the state of the field is changed by the presence of the atoms. We introduce, in

Hamiltonian (2.1), quantized field operators (here ~ = 1) such that

Ĥ = ωâ†â+ ω0Ĵz + Eω |d+−|
(

â+ â†
)(

Ĵ+ + Ĵ−
)

. (2.49)

The Hamiltonian above is considered to be in the long wavelength approximation, in

the sense defined in Section 2.1.1 (i.e., all atoms couple to a single field mode). Usually,

experiments with atoms in a cavity are carried out with coupling constants on the order

of a few MHz [6], to be compared with optical frequencies on the order of PHz (1015

Hz) for ω and ω0. Under this condition we can make the rotating wave approximation

as follows. We write Hamiltonian (2.49) in the interaction picture as

ĤInt = |d+−| Eω

(

âĴ+ + â†Ĵ− + ei(ω+ω0)tâ†Ĵ+ + e−i(ω+ω0)tâĴ−
)

. (2.50)

The Schrödinger equation determining the evolution of the state |ψ̃(t)〉 in the interaction

picture is integrated to give

|ψ̃(t)〉 = |ψ̃(0)〉 +
|d+−| Eω

i

∫ t

0
dt′
(

âĴ+ + â†Ĵ− + ei(ω+ω0)tâ†Ĵ+ + e−i(ω+ω0)tâĴ−
)

|ψ̃(t′)〉.
(2.51)

This expression can be substituted on the right-hand side of the Schrödinger equation

and the procedure iterated to give the Dyson series [35, Section 5.6]. The integration of

the time dependent terms e±i(ω+ω0)t results in terms proportional to

±|d+−| Eω

(ω + ω0)
. (2.52)

In the regime we mentioned (Eω |d+−| � ω, ω0), these terms, which are proportional to

â†Ĵ+ and âĴ−, can be neglected. We finally have the Hamiltonian (normalized to ~):

Ĥ = ωâ†â+ ω0Ĵz +
λ√
N

(

âĴ+ + â†Ĵ−
)

, (2.53)
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2. Dicke model in the rotating wave approximation

where the coupling constant λ is defined in terms of the density ℵ = N/V as

λ =

√
ωℵ |d|±√

2~ε0
. (2.54)

In table 1 we summarize typical experimental values for λ and the related parameters

described in Section 2.2. These values are based on a cavity with mirror separation of

50 µm:

parameter value

ω 2 × 1015 Hz

Γ 108 ∼ 107 Hz

|d+−| 10−28 Cm

Dipole-dipole (Max) 2 × 106 Hz

λ 1.3 × 1011 Hz

λ/
√
N 3 × 108 Hz

n̄(T = 273K) 10−25 photons

Table 2.1.: Typical experimental parameters for cavity QED

The operator corresponding to the total number of energy quanta, â†â+ Ĵz + `, com-

mutes with Ĥ, therefore it is a conserved quantity and can be simultaneously diago-

nalized with the Ĵ2 operator. The state space will be denoted by |`,m, n〉, where n is

the eigenvalue of the â†â operator, and m, −` < m < `, is the eigenvalue of Ĵz. An

exact solution [5] can be obtained as a linear combination of states |`,m, n〉 such that

m + n is constant. The eigenvalues of Hamiltonian (2.53), at zero coupling (λ = 0)

and at resonance (ω = ω0), are given by (m + n)ω. These eigenvalues have degener-

acy of order 2` + 1 if m + n > 2` + 1, and m + ` + 1 otherwise. As the interaction

is turned on, the degeneracy is lifted, as can be seen in Figure 2.3, which displays the

eigenvalues calculated numerically from the matrix expression of Hamiltonian (2.53) in

a (truncated) Fock space. In the figure, the eigenvalues of Ĥ are plotted with respect

the number of energy quanta m+ n for different λ. The system is at resonance and the
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2.3. Dicke model in a cavity – strong coupling regime
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Figure 2.3.: Eigenvalues of the N -atom generalization of the Jaynes Cummings Hamil-

tonian for N = 5 atoms and ω = ω0 = 1.

solutions are shown for the interaction picture (thus the value of zero for the energy in

the non-interacting case). The degenerate states, which are eigenvectors of ω(â†â+ Ĵz),

are indicated by the blue circles. As the interaction strengthens, the splitting between

the eigenvalues with a determined number of quanta increases. This is the N -atom gen-

eralization of the Jaynes-Cummings model, whose eigenvalue asymptotic behaviour is

given by λ
√
n+ 1. Here the eigenvalues are proportional to `

√
n+m in the limit of a

large number of quanta [5, Table I], with a different branch for each m.

The evolution of the system shows Rabi oscillations: energy quanta are emitted and

reabsorbed by the atoms into and from the cavity. Generalizing the dressed states

formalism, the system shows many frequencies of oscillation that depend also on
√
m.

The evolution of the probabilities can show beats and revivals as in the one atom case

[36, Section 10.4].

Finally, we can take cavity losses into consideration for this model by using the master
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2. Dicke model in the rotating wave approximation

equation [28, Chapter 1]

dρ

dt
=

1

i

[

Ĥ, ρ
]

+ κ
(

2âρâ† − ρâ†â− â†âρ
)

. (2.55)

In this case the system is damped and eventually loses all its energy, ending up in the

state |`,−`, 0〉.
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3. Dicke model in the thermodynamic

limit I

In this chapter, once we have established the model and justified the choice of the pa-

rameters, we show how a phase transition arises in the model for non-zero temperatures.

The approach here is different from what will be done further on, where we treat a

quantum phase transition at zero temperature. In this chapter we consider the inter-

play between the common electric field, which introduces order in the system, and the

thermal fluctuations of the environment, which tends to disorganize the system. The

result is similar to a phase transition in a magnetic system as described by the Ising

model (see [37] for example): for low temperatures the system of radiating atoms is able

to self-organize, and shows a superradiant phase, while above a critical temperature the

thermal fluctuations destroy the order in the system. We also discuss the role played by

the A2 term in the Dicke phase transition.

3.1. Phase transition at finite T

We present here the results of Hepp and Lieb [9], as developed by Wang and Hioe [38],

whose work is more familiar to the quantum optics audience. In the following chapters

we show how the phase transition also occurs at zero temperature, by making a semi-

classical analysis. For the moment we are concerned with thermal fluctuations and how

they introduce disorder into the system. We will not restrict our attention to the Dicke

states with ` = N/2, or deal with damping in the system, as we do in the chapters to

come. We include the counter rotating terms â†σ+ and âσ− [39, 40, 41], and use the full
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3. Dicke model in the thermodynamic limit I

Dicke Hamiltonian

Ĥ = ωâ†â+
ω0

2

∑

i

σzi +
∑

i

λ√
N

(

â† + â
)

(σ+i + σ−i) . (3.1)

The thermodynamic analysis is carried out by considering the partition function for this

Hamiltonian [42] (where β = (kbT )−1),

Z = Tr
[

e−βĤ
]

. (3.2)

We carry out the trace using the coherent states of the radiation field |α〉 [43] and the

atomic state space
N
∏

i

|εi〉, (3.3)

where |εi〉 is an eigenvector of the Pauli matrix σz for atom i (eigenvalues εi = ±1). The

partition function is written as

Z =
∑

{εi=±1}

∫

d2α

π

N
∏

i

〈εi|〈α|e−βĤ |α〉
N
∏

i

|εi〉. (3.4)

For the noninteracting case Ĥ = ωâ†â +
∑

i ω0σzi/2, and we can easily calculate the

partition function knowing that â|α〉 = α|α〉. It is given by

Zλ=0 =
1

ωβ

(

2 cosh(
1

2
ω0β)

)N

. (3.5)

Using this result, the free energy per particle can be calculated to be

f = −β ln (Z ) = −kbT ln cosh

(

1

2
ω0β

)

. (3.6)

Turning now to the interacting case, we rewrite the exponential e−βĤ in normal order,

with all â† operators to the left. The expansion of the exponential (3.2) will have terms

Ĥn of all powers n. If we introduce the operators

â†N =
â†√
N
, âN =

â√
N
, (3.7)

the commutator of the renormalized operators is equal to 1/N , and we can safely argue

that for large N the operators â†N and âN commute. The Hamiltonian can be rewritten

as

Ĥ =

N
∑

i

[

ωâ†N âN + ω0
σzi

2
+ λ

(

â†N + âN

)

(σi+ + σi−)
]

. (3.8)
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3.1. Phase transition at finite T

This expression is substituted into (3.2). We arrange the power expansion of the expo-

nential in normal order using the commutation relations. In general, the expansion has

terms like

· · · âN âN â
†
N · · · . (3.9)

Each â†N operator is passed to the left of the â operators using the commutation relations;

the general result of this operation is

· · · âN â
†
N âN · · · + 1

N
âN · · · . (3.10)

Each such operation introduces a N−1 term in the expansion, which vanishes in the

limit N → ∞. Provided that â†/
√
N exists in this limit, it can be shown that only

normally ordered terms will survive in the expansion of e−βĤ . We can therefore make

the replacement â→ α and â† → α∗ in (3.8). The resulting integral reads

Z =

N
∏

i

∑

εi=±1

∫

d2α

π
e−βω|α|2〈εi| exp

[

−β

(

ω0

2
σzi +

2λχ√
N

(σi+ + σi−)

)]

|εi〉, (3.11)

where χ = Reα. To evaluate the trace of the exponential operator, we need to find the

eigenvalues of the operator in the square brackets. This operator is represented by the

transfer matrix in the Ising model,





ω0/2 2λχ/
√
N

2λχ/
√
N −ω0/2



 , (3.12)

with eigenvalues

G± = ±1

2

√

ω2
0 + 16λ2χ2/N. (3.13)

The product of expectation values in expression (3.11) becomes

(2 cosh [βG+])N . (3.14)

We may then perform the integral over the complex plane with respect to d2α =

dχdIm(α), where the integral over the imaginary part of α can be performed imme-

diately. Defining

ϑ = −βωu2 + ln [2 cosh βG+] , (3.15)
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3. Dicke model in the thermodynamic limit I

where u2 = χ2/N , the expression for the partition function (3.11) becomes

Z = 2

√

N

πωβ

∫

du exp[Nϑ(u)]. (3.16)

We now use the method of steepest descent (also known as Laplace’s method) [44,

Section 7.4] to carry out the remaining integration. If the function ϑ has a maximum

and N → ∞, the integral is approximated by the exponential of ϑ(u0),

Z = 2

√

N

πωβ
exp[Nϑ(u0)], (3.17)

where u0 is the point that maximizes ϑ. The equation to be solved for u is

ϑ′ = −2ωβu+
8βλ2u

2G+
tanh [βG+] = 0, (3.18)

which has two possible solutions, a trivial one, u = 0, and a second solution satisfying

ωω0

4λ2

(

1 +
16λ2u2

ω2
0

)1/2

= tanh

[

β

2
G+

]

. (3.19)

Note now that the function tanh(x) is smaller than one, so, for 4λ2 < ωω0, there is

only the trivial solution. In this case the free energy per particle, f , is the same as that

calculated for the noninteracting case, (3.6). For 4λ2 > ωω0, the solution depends on

the parameter β. We define the critical temperature for a given coupling λ, βc, as the

solution of the equation

ωω0

4λ2
= tanh(βc

ω0

2
); (3.20)

if β < βc, the solution is u = 0, and the free energy is still given by Eq. (3.6) while for

β > βc, we must solve Eq. (3.19) for u, and the free energy per particle is given by

−βf = ln
[

2 cosh(βλ2u0)
]

− β
(

4λ2u2
0 +

ω0

16ωλ2

)

. (3.21)

Now, for a fixed temperature such that β > βc, the system changes its behaviour as

the coupling λ becomes bigger than a critical value, λc, given by

λc =

√

ωω0

4 tanh(βω0

2 )
. (3.22)
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3.1. Phase transition at finite T

The free energy has a point of non-analyticity at λ =
√
ωω0/2, which characterizes a

phase transition.

Having now identified the existence of the critical values β and λc, we calculate the

mean photon number of the atom plus field system in order to show that the system

enters a superradiant regime for β > βc and λ > λc. The calculation proceeds as follows:

first we define the mean number of photons per number of atoms,

〈â†â〉
N

=
1

N

Tr
[

â†âeβĤ
]

Tr
[

eβĤ
] . (3.23)

We then follow the same procedure as for the calculation of the free energy. We evaluate

the trace as an integral over the coherent state amplitude α and use the eigenvalues of

matrix (3.12) to obtain

〈â†â〉
N

=
1

NZ

∫ ∞

−∞
d2α |α|2 e−ωβ (2 cosh [G+]). (3.24)

Performing the integration over the imaginary part of α, we get

〈â†â〉
N

=

∫∞
0 duu2 exp [Nϑ(u)]
∫∞
0 du exp [Nϑ(u)]

+
1

N

kBT

ω
, (3.25)

and the method of steepest descent yields

〈â†â〉
N

=











kBT
2ω if β < βc or λ < λc

u2
0 + kbT

2ω if β > βc and λ > λc.

(3.26)

For the Dicke model in the RWA, with Hamiltonian

Ĥ = ωâ†â+
1

2

∑

i

σzi +
∑

i

λ√
N

(

â†σ−i + âσ+i

)

, (3.27)

a similar calculation gives

〈â†â〉
N

=











0 if β < βc

u2
0

4 if β > βc

. (3.28)

The zero mean photon number below threshold in this case arises from the lack of any

term in Hamiltonian 3.27 with a net transfer of energy from atoms to the field. Both
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3. Dicke model in the thermodynamic limit I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.4

0.8

1.2

1.6

2

λ
λc

k
B
T

c

Normal phase

Superradiant phase

Figure 3.1.: Phase diagram at finite temperature

cases, with and without the RWA, however, show a phase transition analogous to the

ordering in a magnetic system: in the uncoupled regime (λ = 0) the system shows no

net magnetic alignment; the ordered state | + + + · · · 〉 has low statistical weight; once

the coupling is turned on the system does not organize itself until the coupling constant

reaches a temperature-dependent critical value, at which the system undergoes a phase

transition. We show in Figure 3.1 the corresponding phase diagram for the Dicke system

without the RWA given by Eq. (3.20). It must be stressed that, in contrast of what

was discussed in Chapter 1 (and will be seen in more detail in Chapter 4), here we

are dealing with a closed system. Thus, in contrast to what 3.28 might imply, we do

not have a source of field drawn from a thermal bath at temperature T . This equation

simply describes the statistics of a field-atom system in equilibrium. In order to perform

useful work (e.g. extract a net output flux of photons) this system should be coupled to

another system at a lower temperature.
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3.2. Dicke phase transition and A2 term

3.2. Dicke phase transition and A
2 term

It was noted by Rzazewski et. al. [14] that the phase transition, as presented in the

previous section, arises because of the absence of the A2 term. This term appears when

the field-atom interaction Hamiltonian is written as

Ĥ =

N
∑

i

[

1

2µ
(pi − eA(ri))

2 + V (ri)

]

+ ~ωâ†â, (3.29)

where pi is the momentum operator of the electron indexed by i, µ is the reduced mass

of the nucleus plus electron system, and the vector potential at the position of an atom

ri, A(ri), is given in terms of the quantized field operators â and â† by [36, Section 2.1]

(for interaction with a single light mode)

A(ri, t) =
Ekε

ωk

(

âei(k·ri−ωt) + â†e−i(k·ri−ωt)
)

, (3.30)

where the relation c |k| = ωk holds, and Ekε is the electric field per photon given by

(2.27), i.e.,

Ekε =

√

~c |k|
2ε0V

ε. (3.31)

The atom-field coupling λ of Hamiltonian (3.1) is given in this picture, according to

(2.7), by

λ = ω0
Ekε ·D
ωk

√
N, (3.32)

where D is the electric dipole moment given by D = 〈+|r|−〉. All atoms are considered

to couple to the same field, as justified in Section 2.1.1 for microwave radiation (long

wavelength approximation), and at optical frequencies as shown in Section 4.2; thus

we replace A(ri) by A(0) = A. It was shown in Section 2.1.1 that the usual dipole

Hamiltonian is obtained by neglecting the terms proportional to A2. We write them

explicitly as
N
∑

i

e2A2

2µ
=
Ne2E2

kε

2µω2
k

(â†2 + â2 + 2â†â+ 1). (3.33)

Using the data for experimental cavity volumes [6] we get, for the constant multiplying

the operator, a number of the order 10−6 MHz per atom (normalized to ~), which is to
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3. Dicke model in the thermodynamic limit I

be compared with an atom-field coupling per atom of the order 10 MHz, making this

term negligible in the context of current cavity QED experiments.

However, we include the A2 term above in the Hamiltonian (3.1) and follow the same

procedure used to calculate the partition function. The method of steepest descent will

modify equation (3.19), which becomes [14]

ωω0

4λ2

(

1 +
2Ne2E2

kε

µω3
k

)(

1 +
16λ2u2

ω2
0

)1/2

= tanh

[

β

2
G+

]

. (3.34)

The difference from equation (3.19) is the extra term multiplying the LHS in equation

(3.34). The existence of a phase transition depends upon the requirement that the term

ωω0

4λ2

(

1 +
2Ne2E2

kε

µω3
k

)

=
ω2

k
ε0

2ω0~ |D|2N/V

(

1 +
e2~

µω2
k
ε0

N

V

)

(3.35)

be smaller than unity, which yields the condition

|D|2 ω0 >
e2

2µ
. (3.36)

The values of ω0 and |D|2 are not arbitrary. They are restricted by the Thomas-Reiche-

Kuhn sum rule (as argued in [14] and references therein), and in fact, from this rule, we

may deduce that

|D|2 ω0 <
e2

2µ
. (3.37)

We conclude from this calculation that the phase transition, as presented by Hepp and

Lieb [9], does not exist for a system of atoms interacting with a cavity mode. In the

following chapter we show how this difficulty is overcome by writing an effective Hamil-

tonian where the frequency ω0 and the atomic dipole D are effective couplings which

can be, in principle, experimentally controlled. Such a situation is possible for an open

system where the system has an external source of energy and the equilibrium analysis,

based upon the partition function, is no longer appropriate.
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Dicke model

In the previous chapter we presented the Dicke model of superradiance for a collection of

atoms. All the situations shown have assumed the coupling between the field and atoms,

through a dipole interaction, to be small compared with the field frequency. This leads to

the rotating-wave approximation typically made in the Jaynes-Cummings Hamiltonian.

In this chapter we present a proposed realization of the Dicke model where the RWA

is not valid, enabling new phenomena, in particular, a quantum phase transition, to be

studied.

4.1. Introduction

We discussed the Jaynes-Cummings model using Hamiltonian (2.49), a regime where

Eω |d±| /~ � {ω, ω0} and the rotating wave approximation (RWA) applies, as seen in

Eq. (2.53). Under this condition we also neglect the self energy terms of the dipole

interaction, as we noted in Section 2.1, or equivalently, we neglect the vector potential

term A2 in a (P − qA)2-type Hamiltonian [10]. The counter rotating terms, â†Ĵ+ and

âĴ−, neglected in the RWA, do not conserve energy, and account for virtual processes

happening at a frequency ω + ω0.

The RWA makes the system integrable. Remembering the discussion in Section 2.3,

and looking into the references for the analytical solutions [5], we see that each eigen-

vector remains in a finite subspace of vectors |`,m, n〉 with constant m+ n. This is not

the case if we consider a Hamiltonian retaining the counter rotating terms, for which
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4. Proposed realisation of the non-RWA Dicke model

the eigenvectors have to be expressed as a combination of an infinite number of states

and for which the corresponding semi-classical equations of motion can show chaotic

behaviour [45].

As seen in Chapter 3, the Dicke model is associated with a phase transition, whose

existence depends on the self energy term A2 being neglected. We are particularly

interested in the quantum phase transition appearing at zero temperature. This phase

transition only occurs if the counter rotating terms are present, i.e. in a regime where

the Hamiltonian

Ĥ = ω0Ĵz + ωâ†â+
λ√
N

(

â+ â†
)(

Ĵ+ + Ĵ−
)

(4.1)

has parameters ω, ω0 ≈ λ. For such a regime to be reached at optical frequencies, the

system must have a high electric field per photon. In reference [6], the usual coupling per

atom, λ, is given to be of the order of MHz, while optical frequencies commonly used are

of the order of 107MHz. In order to reach such an intense electric field (see Eq. (2.27))

the volume of the cavity has to be reduced by a factor of 10−14, i.e., a length reduction

of 10−4. Cavity mirror separation would have to drop from µm to Å (the order of the

atomic diameter!).

Even if such an apparatus were possible with actual technology, the intense electric

field would make the self energy term A2 important and it could not be neglected as seen

in Section 2.1.1. As a result this would destroy the phase transition we are interested in

(Section 3.2).

We present in this Chapter an effective Hamiltonian which is equivalent to (4.1)

with ω, ω0 ≈ λ, and where the self energy term A2 can be consistently neglected. To

achieve this goal we propose an experimental scheme yielding a Hamiltonian in which

the coupling λ and the frequencies ω and ω0 do not have the same meaning as in the

Jaynes-Cummings model, but are effective parameters, which can, in principle, be easily

changed in an experimental setup. The inclusion of the counter rotating terms and the

apparent lack of energy conservation is justified in our model as we are dealing with a

non-equilibrium system, with a continuous flow of energy through it.
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4.2. Proposed realization of the full Dicke model

4.2. Proposed realization of the full Dicke model

One possible experimental realization of Dicke superradiance makes use of Rydberg

atoms [32] and microwave cavities with superconducting mirrors. In these experiments

the atom is raised to a high excited state, and the superradiant emission occurs between

two levels tuned to a cavity.

A simpler realization uses a three level structure to induce a Raman transition by a

cavity ([4] and references therein). In this situation the Hamiltonian has terms â†Ĵ−

and âĴ+, responsible for the creation of a photon in the cavity and the destruction of

an excitation in the atomic system, and vice-versa.

The counter rotating terms â†Ĵ+ and âĴ− account for adding a photon in the cavity

and raising an atom to its excited state and vice-versa. These processes do not conserve

energy, and are usually neglected as they happen on a very fast timescale. To make them

relevant in our system we use a four level atom and stimulate two Raman transitions

through different paths to produce the rotating and counter rotating terms.

|r〉
|s〉

|1〉
|0〉

ω1

∆s

∆r

ΩrΩs

χr

χs

Figure 4.1.: Transition scheme

Figure 4.1 shows two Raman transitions mediated by the cavity field, with dipole
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4. Proposed realisation of the non-RWA Dicke model

coupling constants to the cavity mode χr and χs, and two lasers with Rabi frequencies

Ωr and Ωs. The target states are |0〉 and |1〉, separated by an energy ω1. The path

taking the atom from state |0〉 to state |1〉, following the red arrow, will deliver one

photon to the cavity while promoting the atom to its upper level, thus realising the

counter rotating term â†Ĵ+; the inverse path represents the absorption of a photon from

the cavity as the atom returns to its lower energy level, corresponding to the term âĴ−.

The usual Jaynes-Cummings terms correspond to transitions |0〉 → |1〉 and |1〉 → |0〉
through the orange and green arrows (âĴ+ and â†Ĵ− respectively). The lasers are far

detuned from the atomic transition frequencies, so that the dynamics of the transitions

|0〉 → |s〉 and |1〉 → |r〉 occur on a fast time scale and the states |r〉 and |s〉 can be

adiabatically eliminated.

We develop the detailed description of the single atom system as follows. First we

introduce the Hamiltonian of the cavity mode, with frequency ωc,

Ĥc = ωcâ
†â, (4.2)

and of the atom, with zero of energy set at the energy of state |0〉,

ĤA = ωr|r〉〈r| + ωs|s〉〈s| + ω1|1〉〈1|. (4.3)

The interaction between the atom and the lasers is modeled, in the Schrödinger picture,

by the Hamiltonian

ĤAL(t) = Ωs

[

|s〉〈0|e−iωlsteiks·xi + h.c.
]

+ Ωr

[

|r〉〈1|e−iωlrteikr ·xi + h.c.
]

, (4.4)

where ωls and ωlr are the frequencies of the laser fields represented by the red and blue

arrows in Figure 4.1, respectively, kr and ks are the wave vectors of the laser fields, and

xi is the position of the atom indexed by i. We finally include the interaction between

the atoms and the cavity,

ĤAc = [χs|s〉〈1|â+ χr|r〉〈0|â] eik·xi + h.c.. (4.5)

Note that the rotating wave approximation was made in (4.4) and (4.5).
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4.2. Proposed realization of the full Dicke model

We shall consider all fields to be copropagating, in order that the phases introduced

by the terms eik·x are the same (kr ' ks ' k). With this configuration the effective

Hamiltonian we shall derive will be independent of the location of atom in the cavity.

Also, the recoil the atom gains by absorbing a photon from the laser field is essentially

canceled by emitting a photon in the same direction. The choice of mode function eik·xi

for the cavity field means that the corresponding experimental setup is that of a ring

cavity (see Sec. 4.3).

We follow the derivation of the effective Dicke Hamiltonian by transforming the system

Hamiltonian,

Ĥ = Ĥc + ĤA + ĤAL + ĤAc, (4.6)

to a rotating frame in order to eliminate the time dependent exponentials in ĤAL. Using

the transformation eiĤ0tĤe−iĤ0t, with

Ĥ0 =
1

2
(ωlr + ωls)

(

â†â+ |r〉〈r|
)

+
1

2
(ωls − ωlr) |1〉〈1| + ωls|s〉〈s|, (4.7)

the evolution of the system is given by the Hamiltonian

˜̂
H = ∆câ

†â+ ∆r|r〉〈r| + ∆s|s〉〈s| + ∆1|1〉〈1| + ĤAL(0) + ĤAc. (4.8)

Noting that ωls − ωlr ≈ 2ω1, we can defined the detunings, according to Figure 4.1:

∆s = ωs − ωls, (4.9)

∆c = ωc −
ωlr + ωls

2
, (4.10)

∆r = ωr −
ωlr + ωls

2
, (4.11)

∆1 = ω1 −
ωlr − ωls

2
. (4.12)

We then use the Schrödinger equation to determine the evolution of the state written as

|Ψ(t)〉 =
∞
∑

m=0

[(cmr |r〉 + cms |s〉 + cm1 |1〉 + cm0 |0〉) ⊗ |m〉] , (4.13)

where the coefficients ci are time dependent, and |m〉 is the state of the cavity mode

with number of photons m. We then calculate the equations governing the evolution of
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4. Proposed realisation of the non-RWA Dicke model

the coefficients in the atomic space using the Schrödinger equation

i
d|Ψ(t)〉

dt
= Ĥ|Ψ〉. (4.14)

The term ∆câ
†â in Hamiltonian (4.8) is neglected when deriving the equations of motion

for the coefficients ci:

iċmr = ∆rc
m
r + eik·x (Ωrc

m
1 + χrc

m+1
0

√
m+ 1

)

, (4.15)

iċms = ∆sc
m
s + eik·x (Ωsc

m
0 + χsc

m+1
1

√
m+ 1

)

, (4.16)

iċm1 = ∆1c
m
1 + e−ik·x (Ωrc

m
r + χsc

m−1
s

√
m
)

, (4.17)

iċm0 = e−ik·x (Ωsc
m
s + χrc

m−1
r

√
m
)

. (4.18)

If the detunings ∆r and ∆s are much bigger than the couplings Ω{r,s} and χ{r,s}, the

states |r〉 and |s〉 will follow adiabatically states |1〉 and |0〉. On long timescales, the

time derivatives of cmr and cms are effectively zero. This yields, for these coefficients,

cms = −eik·xi

∆s

(

Ωsc
m
0 + χsc

m+1
1

√
m+ 1

)

, (4.19)

cmr = −eik·xi

∆r

(

Ωrc
m
1 + χrc

m+1
0

√
m+ 1

)

. (4.20)

The coefficients cmr and cms so calculated are replaced in Eqs. (4.17) and (4.18) to obtain

the equations governing the evolution of cm1 and cm0

iċm1 =

(

∆1 −
Ω2

r

∆r

)

cm1 − Ωrχr

∆r

√
m+ 1cm+1

0 − χsΩs

∆s

√
mcm−1

0 − χ2
s

∆s
cm1 m (4.21)

iċm0 = −Ω2
s

∆s
cm0 − Ωsχs

∆s

√
m+ 1cm+1

1 − χrΩr

∆r

√
mcm−1

1 − χ2
r

∆r
cm0 m. (4.22)

The above equations can be obtained from an effective Hamiltonian involving only the

states |0〉 and |1〉 given by

Ĥeff =

(

∆1 −
Ω2

r

∆r

)

|1〉〈1| − Ωrχr

∆r

(

σ+â+ σ−â
†
)

− Ωsχs

∆s

(

σ−â+ σ+â
†
)

− Ω2
s

∆s
|0〉〈0| − χ2

s

∆s
â†â|1〉〈1| − χ2

r

∆r
â†â|0〉〈0| (4.23)

where we defined

σ+ = |1〉〈0|, (4.24)

σ− = |0〉〈1|. (4.25)
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4.2. Proposed realization of the full Dicke model

We can also rewrite the diagonal terms |0〉〈0| and |1〉〈1| with the help of the definitions

for σz and 1,

|1〉〈1| =
1 + σz

2
, (4.26)

|0〉〈0| =
1− σz

2
. (4.27)

We ignore the constant terms, which arrive from the multiplications by 1, to write the

effective Hamiltonian. From (4.8) we have

Ĥeff = ωâ†â+ ω0
σz

2
+ kâ†â

σz

2
+ λr

(

â†σ− + âσ+

)

+ λs

(

â†σ+ + âσ−
)

, (4.28)

where the constants are defined as follows:

λr = −χrΩr

∆r
, (4.29)

λs = −χsΩs

∆s
, (4.30)

k =
χ2

r

∆r
− χ2

s

∆s
, (4.31)

ω0 =
Ω2

s

∆s
− Ω2

r

∆s
+ ∆1, (4.32)

ω = ∆c −
(

χ2
r

∆r
+
χ2

s

∆s

)

. (4.33)

As the constants Ω and ∆ can be varied experimentally, we assume (for simplicity) that

we may set

χ2
r

∆r
=

χ2
s

∆s
, (4.34)

Ω2
r

∆r
=

Ω2
s

∆s
. (4.35)

in order that k = 0 and λr = λs = λ. We arrive at an effective Hamiltonian having

counter rotating terms, and where the constants ω, ω0, and λ can be changed by a

convenient choice of the detunings ∆s and ∆r, and the laser intensities Ωr and Ωs.

For an ensemble of atoms, the extension of this derivation is straightforward. We

consider the inter-atomic distance to be big enough to neglect dipole-dipole interactions

and Van der Waals dephasing. By doing this we just have to add an index to each σ±i
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4. Proposed realisation of the non-RWA Dicke model

and perform the sum. We also have to take care that, in adding the 1’s from each atomic

subspace, the number of particles N will appear in the definition of ω. Redefining λ in

terms of the density (the cavity coupling has a V−1/2 term) we arrive at the Hamiltonian

for the Dicke model:

Ĥ = ωâ†â+ ω0Ĵz +
λ√
N

(

â† + â
)(

Ĵ+ + Ĵ−
)

, (4.36)

where the constants ω and λ are redefined as

λ =

√
NΩsχs

∆s
, (4.37)

ω = ∆c −N

(

χ2
r

∆r
+
χ2

s

∆s

)

. (4.38)

A final observation must be made before following on. We notice that even when the

counter rotating terms are added to the Jaynes-Cummings Hamiltonian, the resulting

equation, shown in (4.36), is Hermitian and, obviously, commutes with itself; as a con-

sequence energy is conserved, since any Hamiltonian eigenstate is a stationary state of

the system. In what sense then do we claim that the counter rotating terms âĴ− and

â†Ĵ+ do not conserve energy? These counter rotating terms represent processes where

the net number of quanta in the system is increased or decreased — increased when the

field gains a photon and the atoms receive an energy quantum via the term â†Ĵ+, or

decreased when the atoms loose an energy quantum and a photon is lost from the field

through âĴ−). Thus, when using the eigenvectors of the non-interacting Hamiltonian

(λ = 0) to write the probability amplitudes of transition in first order perturbation the-

ory these terms are energy non-conserving. On the other hand, for the usual rotating

terms, the probabilities of transition are proportional to 〈nimi|Ĵ+â|nfmf 〉; the states

to which transitions are allowed are such that the total number of energy quanta is

conserved—i.e., ni +mi = nf +mf .

4.2.1. Phase transition and the effective model

This effective Hamiltonian (4.36) has the counter-rotating terms and negligible self en-

ergy, A2. We note that there is a continuous flux of energy into the system through the

44



4.3. Experimental Realization

lasers inducing the transitions |0〉 → |s〉 and |1〉 → |s〉 in Figure 4.1. As a consequence

the steady state of such a system, when including cavity dissipation, may show a non-

zero output flux of photons. In a closed system in thermal equilibrium, as discussed in

Chapter 3, such output of energy is not allowed. In our model, it accounts for the fact

we are dealing with a non-equilibrium system.

The existence of a non-zero output flux of photons will depend on the strenght of the

couplings λr and λs – considering we are in the regime λ ≈ ω so the counter rotating

terms are not negligible. For a system in thermal equilibrium, where the Hamiltonian

may express a “true” interaction energy, the regime where the RWA does not hold may

be achieved by applying a strong electric field. In such a situation, as seen in Section

2.1.1, the self energy term proportional to A2 must be taken into account, and we have

a situation where the phase transition does not exist, as described in Section 3.2. The

couplings λr and λs in our system depend on the laser intensities, and can be varied.

4.3. Experimental Realization

The system described above can be experimentally realised by an atomic cloud inside

an optical cavity. In order that the cavity field seen by the atoms has a eik·x profile –

instead of cos(2k · x) – a ring cavity can be used. This can be achieved with the pump

lasers co-propagating with the cavity mode through the atomic cloud [27] as shown in

Figure 4.2. The transition scheme shown in Figure 4.1 can be obtained for the transition

F = 1 ↔ F ′ = 1, as present in Rubidium atoms. In this case a static magnetic field,

perpendicular to the lasers’ polarization, is applied to achieve a Zeeman splitting of the

ground levels mF = {+1,−1} of F = 1. The cavity mode needs to be linearly polarized

along an axis perpendicular to the magnetic field direction. In this case ω1 will depend

on the strength of the magnetic field. Typical values for the coupling constants found in

the literature [46, 47], are χr ≈ 50 KHz, N = 106 atoms. For large detunings, we have

an effective coupling Ωs/∆s ≈ 10−3. With these parameters the coupling λ can be on

the order of a few hundreds of kHz, while, with suitable detunings, it is possible to make

ω ∼ ω0 ∼ λ. It can also be shown that, in this regime, the losses due to spontaneous
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Ωr,Ωs â

âout

âin

N

Figure 4.2.: Experimental setup

emission are of the order of a few Hz, while the cavity losses are around 10 kHz. With

these values we can assume that our system is in the strong coupling regime.

For the remaining of this work, unless otherwise stated, we shall assume the normalized

frequencies ω = 1 and ω0 = 1.

46



5. Dicke model in the thermodynamic

limit II

In Chapter 3 we showed how the phase transition occurs in the Dicke model for finite

temperatures. There we considered how mixed states self-organize when the interaction

becomes sufficiently strong, and the system enters the superradiant phase. Now we look

at the phase transition occurring at zero temperature. However, as the model has no

closed solution, we have to use an approximation method, and in this chapter we employ

the Holstein-Primakoff representation.

5.1. Holstein-Primakoff representation – Non-dissipative case

Hamiltonian (4.36) has no analytical expression for its eigenvalues. As we noticed in

Section 2.3, in the RWA the total number of quanta is a conserved quantity. The eigen-

vectors, in that case, have an expansion with a finite number of terms, all with constant

total number of quanta m+n. The inclusion of the counter rotating terms, however, in-

troduces non-integrability into the system: the solution is now an infinite sum of states.

We are interested in the limit N → ∞, with N/V constant. In this situation we can

use an approximation method, a linearization, assuming the ratio between mean values

and fluctuations scales like
√
N . There is a whole plethora of methods one can explore.

Here we make the linearization using the Holstein-Primakoff (HP) representation. It

has the advantage, as we shall see later in Section 6.2, of giving rise to equations that

intrinsically conserve the total angular momenta, which fails in the linearized Haken

representation.
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5. Dicke model in the thermodynamic limit II

The HP representation utilizes a relationship between the angular momentum opera-

tors Ĵ± and the bosonic operators [16]; in particular, the angular momentum operators

can be expressed in terms of bosonic operators b̂† and b̂ (with [b̂, b̂†] = 1) as

Ĵz = b̂†b̂− N

2
, (5.1a)

Ĵ+ = b̂†
√
N

√

1 − b̂†b̂
N
, (5.1b)

Ĵ− =
√
N

√

1 − b̂†b̂
N

b̂. (5.1c)

(Note that the operators so defined obey the usual commutation relations for angular

momentum operators (2.15)). We substitute these expressions in (4.36) to give

Ĥ = ωâ†â+ ω0b̂
†b̂+ λ

(

â† + â
)

(

b̂†
√

1 − b̂†b̂/N +

√

1 − b̂†b̂/Nb̂

)

− Nω0

2
. (5.2)

We then linearize the bosonic operators around their mean values using

b̂† = N1/2〈b̄†〉 + β̂†, (5.3a)

â† = N1/2〈ā†〉 + α̂†, (5.3b)

where the Greek symbols represent fluctuation operators, and the bar denotes that the

operators are normalized by N−1/2.

Based on the behaviour of the semiclassical equations, to be seen later, we can set,

for λ < λc,

〈â〉 =〈â†〉 = 0, (5.4)

〈b̂〉 =〈b̂†〉 = 0, (5.5)

where λc is a critical coupling constant to be determined. By making these substitutions

into (5.3) and (5.2), and taking the limit N → ∞, we end up with the Hamiltonian for

the normal phase of the Dicke model, ĤN ,

ĤN = ωα̂†α̂+ ω0β̂
†β̂ + λ

(

α̂† + α̂
)(

β̂† + β̂
)

− Nω0

2
. (5.6)
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5.1. Holstein-Primakoff representation – Non-dissipative case

This is the Hamiltonian for two coupled harmonic oscillators, which can be diagonalized

with a suitable basis transformation [26]. We present the derivation of the full result in

Appendix A [48]:

ĤN = ε−ĉ
†
1ĉ1 + ε+ĉ

†
2ĉ2 −

1

2
(ω + ω0 − ε+ − ε−) − Nω0

2
, (5.7)

where ĉ1 and ĉ2 are the operators for the two independent modes of excitation. At zero

coupling, λ = 0, the operator ĉ1 depends only on α̂ and ĉ2 only on β̂; for this reason

we call ε− the photonic eigenvalue, and ε+ the atomic eigenvalue; more generally (i.e.,

for λ > 0), each one of these normal mode operators depends on both â and b̂. The

fundamental energies of the normal modes are given by

ε± =

√

1

2

(

ω2 + ω2
0 ±

√

(

ω2
0 − ω2

)2
+ 16λ2ωω0

)

. (5.8)

We note that, for ε− to be real, the condition

λ <

√
ωω0

2
= λc

must be satisfied.

For the superradiant phase, we assume the means 〈b̂〉 and 〈â〉 have non-zero values.

We make the substitution (5.3) into (5.2), and do a series expansion of the fluctuation

operators around 0, retaining only terms of order O(N) in α̂ and β̂. For consistency, we

have 〈α̂〉 = 0 and 〈β̂〉 = 0, implying a Hamiltonian without linear terms in α̂ and β̂; we

use this condition to determine 〈b̄〉 and 〈ā〉:

〈ā〉 = 〈ā†〉 = ±2λ

ω

√

1 − µ2

2
, (5.9a)

〈b̄〉 = 〈b̄†〉 = ∓
√

1 − µ

2
, (5.9b)

where µ = λ2
c/λ

2. The Hamiltonian for this superradiant phase reads,

ĤN = ωα̂†α̂+ ω′
0β̂

†β̂ + ω′′
0

(

β̂† + β̂
)2

+ λ′
(

α̂† + α̂
)(

β̂† + β̂
)

− N

2

{

2λ2

ω
+
ω2

0ω

8λ2

}

− λ2

ω
(1 − µ) (5.10)
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with constants defined as

ω′
0 =

ω0

2µ
(1 + µ) , (5.11a)

ω′′
0 =

ω0 (1 − µ) (3 + µ)

8µ (1 + µ)
, (5.11b)

λ′ = λµ

√

2

1 + µ
. (5.11c)

This Hamiltonian can be diagonalized in the same way as ĤN . The diagonalized

operators, however, are different from ĉ1 and ĉ2:

ĤS = ε′−ê
†
1ê1 + ε′+ê

†
2ê2 −

N

2

{

2λ2

ω
+
ω2

0ω

8λ2

}

+

(

ε′+ + ε′−−

ω0

2µ
(1 + µ) − ω − 2λ2

ω
(1 − µ)

)

(5.12)

where the eigenvalues are

ε′± =

√

√

√

√
ω2

0

µ2
+ ω2 ±

√

(

ω0

µ2
− ω2

)2

+ 4ω2ω2
0. (5.13)

The condition for the eigenvalue ε− to be real is

λ > λc.

As seen above, the macroscopic means of the operators â and b̂ have two possible values;

therefore, the corresponding set of eigenvalues is doubly degenerate for λ > λc. The

change in the symmetry undergone by the normal mode operators of the system, from

ĉ1 and ĉ2 to ê1 and ê2, at λc, corresponds to the phase transition. We explain the role

played by the symmetry in Appendix A.

5.2. Dissipative Dicke model in phase space

5.2.1. Spectra and variance

We turn now to the study of the quantum fluctuations of the Dicke model across the

phase transition. As seen above, with the Holstein-Primakoff representation we are able
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5.2. Dissipative Dicke model in phase space

to calculate the means of the operators 〈â〉 and 〈b̂〉 in the thermodynamic limit. By using

(5.3a) and (5.9b) in (5.1), we have, for the means of the angular momentum operators,

〈Ĵz〉
N

= 〈J̄z〉 = −µ
2
, (5.14)

〈Ĵ+〉
N

= 〈J̄+〉 = 〈J̄−〉 = ∓1

2

√

1 − µ2. (5.15)

We are also interested in the fluctuations and correlations of the field and atomic vari-

ables, for example

〈J̄±, ā〉 = 〈J̄±ā〉 − 〈J̄±〉〈ā〉, (5.16)

〈ā†, ā〉 = 〈ā†ā〉 − 〈ā†〉〈ā〉, (5.17)

〈J̄±, J̄±〉 = 〈J̄±J̄±〉 − 〈J̄±〉〈J̄±〉. (5.18)

These quantities depend on the dispersion in the Holstein Primakoff variables and can

be calculated using (5.3); knowing that 〈β̂〉 = 0 we have, for example,

〈b̂, b̂〉 = 〈β̂2〉.

We are also interested in the power spectrum of the light emitted by the cavity mode,

given by the Fourier transform of the field correlation function,

S(ν) =
1

π

∫ ∞

−∞
dτ〈â†(τ)â〉eiντ , (5.19)

where the operator â†(τ) is given, in the Heisenberg picture, by â†(τ) = eiĤτ â†e−iĤτ .

Neglecting dissipation for the moment, we can interpret the spectrum straightforwardly

by writing the operators â and â† in a basis of eigenvectors of the Hamiltonian Ĥ,

denoted by {|ωi〉}; that is, writing

â =
∑

i,j

Cij |ωi〉〈ωj |.

We assume the eigenvectors are non-degenerate for the moment. The correlation func-

tion, in this basis, is given by

〈â†(τ)â〉 =
∑

j,k

|Ckj|2ei(ωj−ωk)τ , (5.20)
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5. Dicke model in the thermodynamic limit II

where, using an expansion of â in terms of the number states,

Cij =
∑

n

√
n〈ωi|n− 1〉〈n|ωj〉. (5.21)

Hence, the spectrum possesses δ-functions at the frequencies ν = ωj − ωk for which

single-photon transitions between eigenstates of the system are allowed.

In a more realistic description that includes dissipation, we must use the master equa-

tion to describe the evolution of the density matrix,

dρ

dt
= Lρ. (5.22)

Here L is the Liouvillian superoperator, defined as

Lρ =
1

i

[

Ĥ, ρ
]

+ κ
(

2âρâ† − ρâ†â− â†âρ
)

. (5.23)

By expanding any operator, say â†, in a basis of eigenvectors of L, we end up with

a similar result for the spectrum, but the eigenvalues of L may also have a real part,

responsible for damping; as a consequence, the peaks at ωj−ωk broaden and their (finite)

heights are proportional to the mean number of photons emitted with frequency ωj −ωk.

5.2.2. Phase space representation

To calculate the variances and the spectra for this system, in the damped case, we

use a phase space formalism. In particular, we derive a Fokker-Planck equation in the

Glauber-Sudarshan P-representation [49, 50] to express the quantum state of the system

in terms of coherent states |α〉 and |β〉. Treatments of quantum systems in phase space

were first done by [51]. For the properties of coherent states see, for example, [29, 52].

For a general description of phase space methods and coherent states in quantum optics,

see, for example, [36] or [28].

The inclusion of damping in the system changes the displacements 〈b̄〉 and 〈ā〉 as given

by (5.9). In the next chapter, we show how they are calculated from the mean of the

angular momenta operators in the steady state. We could, however, calculate the new

values of 〈b̄〉 and 〈ā〉 from their equations of motion derived from the master equation.
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5.2. Dissipative Dicke model in phase space

A similar procedure will be presented with the atomic coherent state representation in

Chapter 6. Such calculations give results of the same form as in Section 5.1, but with a

new critical λ given by:

λc =
1

2

√

ω0 (ω2 + κ2)

ω
. (5.24)

In this approach we introduce classical analogues, α and β, of the fluctuation operators.

First we define the characteristic function

χ(x, y) = Tr
[

eix∗α̂†

eixα̂eiy∗β̂†

eiyβ̂ρ
]

, (5.25)

where x and y are complex variables. The function so defined allows the calculation of

any mean in normal order through the relation

〈α̂† mα̂nβ̂† pβ̂q〉 = i−(m+n+p+q) ∂
m+n+p+qχ(x, y)

∂x∗m∂xn∂y∗p∂yq

∣

∣

∣

∣

{x,y}=0

. (5.26)

Under the Fourier transformation, χ(x, y) → P(α, β), the derivative becomes a multipli-

cation and the averages read

〈α̂† mα̂nβ̂† pβ̂q〉 =

∫

P(α, β)α∗mαnβ∗pβqd2αd2β,

where d2α = dRe(α)dIm(α). The function P has the properties of a probability distri-

bution, with the variables α and β corresponding to their operator counterparts α̂ and

β̂. We calculate the equation of motion for the characteristic function by using (5.22):

dχ

dt
= Tr

[

eix∗â†

eixâeiy∗b̂†eiyb̂Lρ
]

. (5.27)

Using the Dicke Hamiltonian for each phase, (5.10) and (5.6), we encounter terms like

eixââ†, which can be placed in normal order using the relation

eix∗â†

â = (ix∗ + â) eix∗â†

. (5.28)

The multiplication by an â operator on the right side of the characteristic function

can be achieved by applying the operator i∂x on the characteristic function. A Fourier

transform and integration by parts follow in order to the obtain an equation in the

distribution P. We show in Section 6.1.2 the detailed procedure of such a derivation;
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5. Dicke model in the thermodynamic limit II

here we present the result, which is a linear Fokker-Planck equation of motion for the

pseudo-probability distribution P,

∂P
∂t

=
∂

∂ζᵀ
AζP +

1

2

∂

∂ζᵀ
D
∂

∂ζ
P, (5.29)

where ζ = (α,α∗, β, β∗)ᵀ, and ∂ζ = (∂α, ∂α∗ , ∂β , ∂β∗)ᵀ; A is a 4 × 4 matrix giving

the deterministic motion of the means of ζ, and D is the diffusion matrix, giving the

evolution of the broadening of P. This equation has the corresponding Ito stochastic

differential equation,

dζ = −Aζdt+ BᵀdW(t), (5.30)

where BBᵀ = D and dW(t) = (dw1(t), dw2(t), dw3(t), dw4(t))
ᵀ – wi is a Wiener process,

with properties: 〈wi(t)wj(t
′)〉 = dtδ(t − t′)δij , and 〈wi〉 = 0. Matrices A and D are

constants, so this equation describes an Ornstein-Uhlenbeck process [53]. The drift

matrix, A, can also be derived from the equations of motion obtained from (5.22); for

example,

d〈α̂〉
dt

= Tr [α̂Lρ] =
∑

j

A1j〈ζj〉. (5.31)

The eigenvalues of A give the frequencies and linewidths of the normal modes of the

Dicke model. The drift matrix we obtain is:

A =





























































































































κ+ iω 0 iλ iλ

0 κ− iω −iλ −iλ

iλ iλ iω0 0

−iλ −iλ 0 −iω0























if λ < λc























κ+ iω 0 iλ′ iλ′

0 κ− iω −iλ′ −iλ′

iλ′ iλ′ i (ω′
0 + 2ω′′

0) 2iω′′
0

−iλ′ −iλ′ −2iω′′
0 −i (ω0 + 2ω′′

0 )























if λ > λc.

(5.32)

The constants ω′, ω′′ and λ′ are defined in (5.11), with λc given by (5.24).

54



5.2. Dissipative Dicke model in phase space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.8

−0.4

0

0.4

0.8

1

 

 

x1

x3

x2

x4

λ
λc

A
m

p
li
tu

d
es

Figure 5.1.: Real part of an eigenvector of A associated with the atomic eigenvalue ε+

(ω = ω0 = 1 and κ = 0.1)

The eigenvectors, following the analysis of [48], show how the normal mode operators,

ĉ1(2) or ê1(2), are composed in terms of the atomic and photonic operators, â and b̂. We

write the eigenvectors as (x1, x2, x3, x4), where x1, x2 are the amplitudes of the photonic

operators â and â†, and x3, x4 the amplitudes for the atomic operators b̂ and b̂†. Figure

5.1 shows these amplitudes for one eigenvector, associated with the ε+ eigenvalue as λ is

varied. At zero coupling the eigenvector is composed exclusively of atomic operators; the

normal mode operator becomes a linear combination of operators â†, â, b̂ and b̂† as the

coupling grows. At critical coupling (λ = λc), the nature of the fundamental excitation

changes and its symmetry is broken. This can be seen as x1 and x3 in Figure 5.1 follow

independent curves above λc.

The imaginary parts of the eigenvalues of A, for the normal and superradiant phases,

are given, when κ = 0, by equations (5.8) and (5.13) respectively. With dissipation,

the eigenvalues acquire a real part corresponding to the damping; the eigenvalues are

plotted in Figures 5.2 and 5.3. The imaginary parts of the eigenvalues of A give the
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Figure 5.2.: Imaginary parts of the eigenvalues of -A for ω = ω0 = 1 and κ = 0.1. The

inset shows a magnified view of the region around λ/λc = 1

energy of excitation of the normal modes of the system. The atomic branch has a non

analyticity at λ = λc, corresponding to the break in the symmetry.

The real parts of the eigenvalues correspond to the damping of the normal modes of

the system. At λc, the real part of one of the photonic eigenvalues vanishes, and the

fluctuations of this mode diverge, a characteristic signature of the phase transition.

We define the covariance matrix, C = 〈ζζᵀ〉. The steady state covariance matrix can

be calculated using

AC + CAᵀ = −D. (5.33)

This equation can also be obtained from the equations of motion for second order mo-

ments of the noise operators, 〈â†â〉, 〈â†b̂〉, · · · , derived from master equation (5.22). Ma-

trix D is, by definition, the stationary value of 〈Ċ〉 [53]. This set of linear equations can

be solved; as matrix C is symmetric we have to solve for 10 variables instead of 16. The
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Figure 5.3.: Real part of the eigenvalues of A. The inset shows a magnified view of the

region around λ/λc = 1

diffusion matrix for the Fokker-Planck equation of motion for P is given by

D =







































































































iλ























0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0























if λ < λc























0 0 −iλ′ 0

0 0 0 iλ′

−iλ′ 0 −2iω′′
0 0

0 iλ′ 0 2iω′′
0























if λ > λc.

(5.34)
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5.2.3. Results – entanglement, spectra, and squeezing

We present here the solutions for some of the covariances:

〈α2〉 =



















(iκ+ω)2

8(µ−1)ω2 if λ < λc

µ2(κ−iω)2

8(µ2−1)ω2 if λ > λc

(5.35)

〈αα∗〉 =



















κ2+ω2

8(µ−1)ω2 if λ < λc

µ2(κ2+ω2)
8(1−µ2)ω2 if λ > λc

(5.36)

〈ββ∗〉 =



















1
8

(

(2µ−1)(κ2+ω2)
(µ−1)ωω0

+ 2ω0

ω

)

if λ < λc

1
16

(

µ(3µ−5)(κ2+ω2)
(µ2−1)ωω0

+
(5+2µ+µ2)ω0

(µ+µ2)ω
− 8

)

if λ > λc

(5.37)

〈βα〉 =























√
κ2+ω2

(iκµ4+ω0−µ4(ω+ω0))
8µ2(−1 + µ4)ω0ω

3/2 if λ < λc

√

(

κ2+ω2

)

ω0

(

iκ−ω+2
(

µ2−1
)

ω0

)

8
√

2
(

µ2−1
)(

µ2+1
)1/2

ω3/2

if λ > λc

(5.38)

In Figure 5.4, we plot the covariance matrix. The peaks show clearly how the fluc-

tuations diverge at the critical point, related to the vanishing real part of one of the

eigenvalues of the drift matrix.

Entanglement

We can use these moments to obtain information about the entanglement between atoms

and field. We define the quadrature operators by

X̂θ
â =

1

2

(

âeiθ + â†e−iθ
)

, (5.39)

X̂φ

b̂
=

1

2

(

b̂eiφ + b̂†e−iφ
)

, (5.40)

and the EPR operators by

û = X̂θ
â + X̂φ

b̂
,

v̂ = X̂
θ+ π

2

â + X̂
φ+ π

2

b̂
.
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With these definitions a sufficient condition for entanglement between atoms and field

is given by [54, 55]

〈(∆û)2〉 + 〈(∆v̂)2〉 < 1.

These variances can be calculated from the normally ordered means of the operators â

and b̂. We use the commutation relations to rearrange the product of the operators ââ†

and b̂b̂† to normal order; this makes the criterion

〈: (∆û)2 :〉 + 〈: (∆v̂)2 :〉 < 0,

where the colon denotes normal ordering. The required means are given by the elements

of the covariance matrix: 〈â2〉 = C11, 〈â†b̂†〉 = C24, and so on. For the normal phase,

with ω0 = ω and φ = 0, we have

〈(∆û)2〉 + 〈(∆v̂)2〉 =
µ2(κ2µ4 + ω2) +

√
κ2 + ω2(ω(1 − 2µ4) cos[θ] − κµ4 sin[θ])

4µ2(µ4 − 1)ω2
. (5.41)

The singularities at λ = λc are removed by choosing cos[θ] = ω/
√
ω2 + κ2 – this is the

angle which maximizes the squeezing as seen below. We can see in Figure 5.5 that the

entanglement between atoms and photons has its maximum at λc.

Power spectrum

We calculate the power spectrum as defined in (5.19). In particular, we can use the

solution of (5.30) [53] to derive that

S(ν) =
1

2π
(A + νi1)−1

D (A− νi1)−1 . (5.42)

This generates a 4 × 4 matrix giving the Fourier transform of all possible correlations

〈α̂(τ)α̂〉, 〈α̂(τ)α̂†〉, 〈α̂(τ)β̂〉 and so on. The power spectrum is given by the element

S12 = S(ν). At resonance, ω = ω0, it is given by

S(ν) =
1

2π

∣

∣

∣

∣

∣

2
√

2κωλ2µ̃

(κ− i(ν − ω))(κ− i(ν + ω))
(

ν2 − ω2

µ̃2

)

+ 4ω2λ2µ̃

∣

∣

∣

∣

∣

2

, (5.43)

where µ̃ = 1 if λ < λc, and µ̃ = λ2
c/λ

2 otherwise.
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Figure 5.4.: Graphical representation of the covariance matrix vs. λ/λc (ω = ω0 = 1, κ =

0.1). All elements are plotted on the same vertical scale

Spectra are shown in Figure 5.6 for different values of λ. The locations of the peaks

are given by the eigenvalues of A; the outer and inner peaks give the field intensities

of the atomic and photonic modes in the steady state, respectively. The singularity at

λ = λc comes from the amplification of fluctuations associated with the phase transition.

Probe transmission spectrum

We can study the effect of a probe field using linear response theory; we introduce a

weak field of frequency ν, and, by treating it as a small perturbation, we are able to

calculate the intensity of the transmitted probe field as a function of the frequency (see

for example [10]), given by

T (ν) =

∣

∣

∣

∣

∫ ∞

0
dτeiντ

〈[

â(τ), â†
]〉

∣

∣

∣

∣

2

. (5.44)

In order to calculate this quantity we would have to compute the moments in anti-

normal order; we can not simply use the commutation relations to make the required

rearrangements from the normal order expressions, as we are dealing with operators at

different times. We derive a Fokker-Planck equation using a Q phase space representation
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Figure 5.5.: Entanglement vs. λ/λc for κ = 0.1 and ω = ω0 = 1.

[29]. This corresponds to perform the same calculations of Section 5.2.2 but using the

following (antinormally ordered) characteristic function

χAN = Tr

(

eixα̂eix∗α̂†

eix∗α̂†

eixα̂ρ

)

. (5.45)

Following the same steps of Section 5.2.2 we obtain the following drift and diffusion

matrices for the antinormally ordered Fokker-Planck equation

DAN =







































































































iλ























0 2κ
iλ 0 −1

2κ
iλ 0 1 0

0 1 0 0

−1 0 0 0























if λ < λc























0 2κ 0 −iλ′

2κ 0 iλ′ 0

0 −iλ′ −2iω′′
0 0

−iλ′ 0 0 2iω′′
0























if λ > λc.

(5.46)
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Figure 5.6.: Power spectra

This is consistent with the fact that antinormally-ordered detection schemes introduce

vacuum fluctuations – represented by the 2κ terms. Once this is done we can use equa-

tions (5.33) and (5.42), and by combining antinormally-ordered and normally-ordered

spectra, we can calculate T (ν). In Figure 5.7 we plot transmission spectra for different λ.

At zero interaction the spectrum simply exhibits the cavity resonance (photonic mode)

at ν = 1 (not shown in the Figure). For λ < λc, this peak splits as the probe excitation

is distributed between the atomic and photonic modes; this last one is favoured, and

diverges at λc, where the damping of this mode vanishes. Above the critical point the

atomic mode is favoured; this is due to the change in the symmetry of the normal modes

occurring at λc. The small peaks for negative frequencies represent photo absorption oc-

curring in both modes, which is more significant above the critical, favouring the atomic

mode at higher coupling.
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5.2. Dissipative Dicke model in phase space
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Figure 5.7.: Probe transmission spectra (ω = ω0 = 1 and κ = 0.1)

.

Squeezing spectrum

We can also show that the light emitted by cavity is squeezed by using the definition

for the quadrature of the light field, given by (5.39), to define the squeezing spectrum

as the Fourier transform of the quadrature correlation function [56],

Sθ(ν) =

∫ ∞

−∞
dτeiντ 〈: X̂θ

â(τ)X̂θ
â :〉.

We can compute this directly from the spectrum matrix S by adding the appropriate

elements. The normal ordering places the quantum vacuum level at Sθ(ν) = 0; negative

values indicate squeezing, and −1/2 corresponds to perfect squeezing. We can see in the

spectra in Figure 5.8 that squeezing appears in the atomic mode in the X quadrature

(θ = 0), while it appears in the photonic mode in the Y quadrature (θ = π/2). In Figure

5.9 we consider the variance around ν = 0 and plot the smallest value of the squeezing

parameter and the angle at which it occurs. We see that close to λc the optimal angle
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Figure 5.8.: Quadrature noise spectra for ω = ω0 = 1 and κ = 0.1.

becomes close to θopt = arctan[κ/ω] + π/2 (for the parameters chosen, κ = 0.1 and

ω = 1, θopt/π ≈ 5.3 degrees). As we shall see later, this is the angle of rotation of the

macroscopic field amplitudes above the phase transition, as seen in the Wigner function,

and is related to the maximum entanglement angle derived above.

5.3. Input/output formalism

5.3.1. Introduction

The phase space techniques used here are equivalent to the input/output formalism [57],

as used in [58] to obtain most of the results presented here. In this approach the effect

of the reservoir is included in the equations of motion as sources of noise: we obtain

quantum Langevin equations. This contrasts with the approach of Section 2.2, where

the reservoir is traced out and there is no direct reference to the reservoir variables.
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5. Dicke model in the thermodynamic limit II

We write the system plus reservoir Hamiltonian of Section 2.2, with the interaction

part shown explicitly, as

Ĥ = Ĥsys + Ĥres + 2π

∫ ∞

−∞
dνK(ν)

(

âB̂†(ν) − â†B̂(ν)
)

, (5.47)

where Ĥsys is the system Hamiltonian, in our case the Dicke Hamiltonian, Ĥres is the free

Hamiltonian for the reservoir, B̂ is the reservoir bosonic annihilation operator, and κ(ν)

is the coupling between reservoir and the system, which we consider to be constant over

a range around the characteristic system frequency. This corresponds to K =
√

κ/π,

in a derivation similar to what was done in section 2.2 with the cavity cutoff, so the

integration limits are extended from −∞ to ∞. The Heisenberg equation of motion for

B̂ reads

dB̂(ν)

dt
= −iνB̂(ν) +Kâ. (5.48)

This equation can be formally integrated as follows

B̂ =



















e−iν(t−t0)B̂0 +K
∫ t
t0

e−iν(t−t′)â(t′)dt′ if t0 < t

e−iν(t−t1)B̂1 −K
∫ t1
t e−iν(t−t′)â(t′)dt′ if t1 < t,

(5.49)

where B̂1(0) is the value of B̂(ν) at t = t1(0). These equations should be used whether we

have the initial (B̂0) or final (B̂1) condition. The equations of motion for the intracavity

field can be obtained in a similar way

dâ

dt
= −i

[

â, Ĥsys

]

−K

∫ ∞

−∞
dνB̂(ν). (5.50)

We use equations (5.49) to write the external field operator B̂ in terms of its initial value

B̂0,

dâ

dt
= −i

[

â, Ĥsys

]

−K

∫ ∞

−∞
dνeiν(t−t0)B̂0(ν) −K2

∫ ∞

−∞
dν

∫ t

t0

eiν(t−t′)â(t′)dt. (5.51)

The second term is the Fourier transform of the reservoir field operator; they are the

source of noise in the Langevin equations, we can define

âin = − 1√
2π

∫ ∞

−∞
dνeiν(t−t0)B̂0(ν). (5.52)
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5.3. Input/output formalism

The term proportional to K2 can be integrated using

∫ ∞

−∞
dνeiν(t−t′) = 2πδ(t− t′) (5.53a)

and

∫ t

t0

â(t′)δ(t− t′)dt′ =
â(t)

2
(t0 < t < t1). (5.53b)

The equation of motion for the field operators become

dâ

dt
= −i

[

â, Ĥsys

]

+
√

2κâin − κâ(t′)â. (5.54)

We can derive a similar equation in terms of the final conditions of the external field

operators B̂1. We define the output field

âout =
1√
2π

∫ ∞

−∞
dνeiν(t−t1)B̂1(ν). (5.55)

The procedure shown above will give the following equation for the intracavity field

dâ

dt
= −i

[

â, Ĥsys

]

−
√

2κâin + κâ(t′)â. (5.56)

We subtract (5.56) from (5.54) to obtain the relationship between the input and output

fields

âin + âout =
√

2κâ (5.57)

The noises âin and âout are Markovian:
[

âin(t), â†in(t′)
]

= δ(t− t′).

5.3.2. Application to the Dicke Hamiltonian

We can apply this formalism to the Dicke Hamiltonian with the Holstein-Primakoff

approach. The Heisenberg equations of motion are linear and we recover all results

of Section 5.2. We define the vector â = (â, â†, b̂, b̂†)ᵀ, and the input noise âin =

(âin, â
†
in, 0, 0)

ᵀ. We write the equation of motion by noticing the drift matrix of Section

5.2 can be obtained from the Heisenberg equations of motion (minus the damping terms

proportional to κ):

dâ

dt
= Aâ(t) +

√
2κâin(t). (5.58)
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5. Dicke model in the thermodynamic limit II

In the equation in terms of âout we have to account the change in sign of κ, so in this

case we have to replace κ→ −κ and denote the “drift” matrix by Aout.

We can calculate the power spectrum by solving this equation in the frequency space.

We perform a Fourier transform

â(t) =

∫ ∞

−∞
eiν(t−t0)â(ν). (5.59)

The equation in frequency space becomes

iνâ(ν) = Aâ(ν) +
√

2κâin(ν). (5.60)

We use relation (5.57) to eliminate the intracavity field, obtaining

âout(ν) = −{Aout + iν1} {A + iν1}−1
âin (5.61)

The input field satisfies 〈âin(ν)â†in(ν ′)〉 = δ(ν−ν ′), with all other input correlation zero.

Using this, we are able to derive all results presented so far, e.g., the power spectrum is

given by

δ(ν − ν ′)Sθ(ν) = 〈â†out(ν)âout(ν
′)〉. (5.62)
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6. Dicke model in the thermodynamic

limit III

In this chapter we extend the treatment of chapter 5 by exploring different representa-

tions in phase space. First we introduce an extended version of the Haken representation

for two level atoms. The equations in this representation describe the evolution of the

fluctuations of the atomic operators without further transformations, as in the Holstein-

Primakoff model. Both representations, Haken and Holstein-Primakoff, should return

the same results, but it is shown that the former, in its linearized version, fails to con-

serve the total angular momentum J2. Despite this disagreement, we find out that the

optical spectrum still agrees with those derived with the Holstein-Primakoff formalism,

while the spectra involving the atomic variables do not agree. We present also the

atomic coherent state representation, which intrinsically conserves angular momentum,

so we do expect it to give different results from the ones obtained in Chapter 5. It has

the additional advantage, however, of yielding an exact Fokker-Planck equation (in the

Positive-P interpretation) for finite number of atoms, albeit with non-linear drift and

diffusion coefficients, which we shall use to generate stochastic differential equations.

6.1. Haken representation

Before introducing the Haken representation, we analyse the motion of the mean values

of the operators. We assume that the means of operator products can be factorized in

the equations of motion for the means, following a similar treatment given by [59]. We

obtain the steady states, which are to be used for the linearization, and show that the
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6. Dicke model in the thermodynamic limit III

semiclassical equations give rise to chaos, as mentioned in Section 4.1, and as discussed

by [60].

6.1.1. Semi-classical analysis

We consider, at zero temperature, that the light field is damped through cavity losses

κ and the atomic state space (or angular momentum state space) is one with ` = N/2.

We use the master equation

dρ

dt
=

1

i

[

Ĥ, ρ
]

+ κ
(

2âρâ† − ρâ†â− â†âρ
)

, (6.1)

where the Hamiltonian is given by Eq. (4.36),

Ĥ = ωâ†â+ ω0Ĵz +
λ√
N

(

â† + â
)(

Ĵ+ + Ĵ−
)

. (6.2)

Further we consider the thermodynamic limit by taking the limit N → ∞. The reasoning

is similar to that in Section 2.3, where we consider that, for large system size, the

quantum fluctuations will be of the order of the interaction energy of a single quantum.

We can write the operators as a mean plus a fluctuation, which, in the limit N → ∞, will

be negligible compared to the mean; we follow the standard procedure of Van Kampen,

[61], writing for the operators:

â = N1/2〈ā〉 + α̂, (6.3a)

â† = N1/2〈ā†〉 + α̂∗, (6.3b)

Ĵ− = N〈J̄−〉 +N1/2ν̂, (6.3c)

Ĵ+ = N〈J̄+〉 +N1/2ν̂∗, (6.3d)

Ĵz = N〈J̄z〉 +N1/2ς̂ , (6.3e)

where the bar over the operators indicates J̄z = Ĵz/N , etc, and the Greek letters repre-

sent noise operators, with 〈α̂〉 = 0; note that the mean-values-to-noise ratio vanishes as

N → ∞. We derive equations for the operator means from (6.1) and substitute equa-

tions (6.3) into them. Retaining only terms of order N gives the following factorized

70



6.1. Haken representation

equations of motion:

d〈¯̂a〉
dt

= − (iω + κ) 〈ā〉 − iλ
(

〈J̄+〉 + 〈J̄−〉
)

, (6.4a)

d〈J̄+〉
dt

= −iω0〈J̄+〉 + 2iλ (〈ā〉 + 〈ā〉∗) 〈J̄z〉, (6.4b)

d〈J̄z〉
dt

= iλ (〈ā〉 + 〈ā〉∗)
(

〈J̄+〉 − 〈J̄−〉
)

. (6.4c)

In Fig. 6.1 we present the numerical integration of these equations to illustrate the

dynamics of the system without damping (κ = 0), as studied by Milonni et. al. [45]. In

Figure 6.1 we show the trajectory of the vector 〈Ĵ〉. Note that its motion is constrained to

lie on a sphere – a consequence of the conservation of the total angular momentum. Below
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Figure 6.1.: Chaos in the Dicke model: λ = 0.4λc (left), λ = 1.2λc (right)

the critical point the system shows quasi-periodic behaviour, while above it becomes

chaotic.

We can use the damped equations of motion to determine the mean values of the

operators in the steady state. We define quadratures variables,

X =
〈ā〉 + 〈ā〉∗

2
, (6.5)

Y =
〈ā〉 − 〈ā〉∗

2i
, (6.6)

V =
〈J̄+〉 + 〈J̄−〉

2
, (6.7)

W =
〈J̄+〉 − 〈J̄−〉

2i
, (6.8)
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6. Dicke model in the thermodynamic limit III

and setting

Z = 〈J̄z〉 (6.9)

we have,

Ẋ = ωY − κX, (6.10a)

Ẏ = −ωX − κY − 2λV, (6.10b)

V̇ = ω0W, (6.10c)

Ẇ = −ω0V + 4λXZ, (6.10d)

Ż = −4λXW. (6.10e)

Then, on setting the time derivatives to zero, the resulting equations are not fully

determined; we must also note that

d

dt

(

V 2 +W 2 + Z2
)

= 0, (6.11)

where the conserved quantity is the total angular momentum. This conservation law is

a consequence of the commutation of the Hamiltonian with the operator J2. In terms

of the normalized quantities, V , W , and Z, we have:

V 2 +W 2 + Z2 =
` (`+ 1)

N2
=

1

4
+

1

2N

N→∞≈ 1

4
.

From equations (6.10) and the conservation law, there are two sets of steady state solu-

tions: a trivial solution, with Z = 1/2 and {V,W,X, Y } = 0, and a non-trivial one,

Xss = ∓ω0

4λ

√

λ4

λ4
c

− 1, (6.12)

Yss = ∓κω0

4λω

√

λ4

λ4
c

− 1, (6.13)

Vss = ±1

2

√

1 − λ4
c

λ4
, (6.14)

Wss = 0, (6.15)

Zss = −1

2

λ2
c

λ2
, (6.16)
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6.1. Haken representation

valid only when λ > λc, with

λc =
1

2

√

ω0

ω
(ω2 + κ2).

The trivial solution becomes unstable for λ > λc, so the full stable solution is

{Xss, Yss, Vss,Wss} =











0 if λ < λc,

Eq. (6.12) – (6.15) if λ > λc,

(6.17a)

Zss =











−1
2 if λ < λc,

Eq. (6.16) if λ > λc

(6.17b)
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Figure 6.2.: Steady state solutions for 〈Ĵx〉/N , Xss and 〈Ĵz〉/N plotted as function of

λ/λc for ω = ω0 = 1 and κ = 0.1.

The solutions for Xss and Vss from (6.17) are plotted in figure 6.2. The bifurcation is

a consequence of the degeneracy of the eigenstates of the Hamiltonian at λ = λc.
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6. Dicke model in the thermodynamic limit III

6.1.2. Phase space representation

Our aim in this section is to derive an equation of motion for the quasiprobability density,

P(α, ξ,µ), which yields the correct mean values of atomic operator moments written in

normal order, such as,

〈â†mânĴp
+Ĵ

q
z Ĵ

r
−〉 =

∫

P(α, ξ,µ)α∗mαnξ∗pµqξrd2αd2ξdµ. (6.18)

We follow the work of Haken [17] by defining, as we did in Section 5.2.2, the characteristic

function

χ(x, v,w) = Tr
[

eix∗â†

eixâeiv∗Ĵ+eiwĴzeivĴ−ρ
]

. (6.19)

This characteristic function has the same property given by equation (5.26), i.e.,

〈â†mânĴp
+Ĵ

q
z Ĵ

r
−〉 = i−(m+n+p+q+r)∂

m+n+p+q+rχ(x, v,w)

∂x∗m∂xn∂v∗p∂wq∂vr

∣

∣

∣

∣

{x,v,w}=0

. (6.20)

From now on we omit the operators â† and â, as they commute with the angular momen-

tum operators and we can add them later. We must find a way of making the connection

between Eq. (6.20) and (6.18) to be able to write an equation of motion for P. This is

done as follows: we write the equation of motion for χ as

dχ

dt
= Tr

[

eiv∗Ĵ+eiwĴzeivĴ−Lρ
]

, (6.21)

where the Liouvillian superoperator is given by (6.1), i.e.,

Lρ =
1

i

[

Ĥ, ρ
]

+ κ
(

2âρâ† − ρâ†â− â†âρ
)

.

By writing out the equations of motion in full, we find the following terms, which are

not yet in the prescribed order:

eiv∗Ĵ+eiwĴzeivĴ− Ĵ+ρ,

eiv∗Ĵ+eiwĴzeivĴ− Ĵzρ,

eiv∗Ĵ+eiwĴzeivĴ−ρĴ−,

eiv∗Ĵ+eiwĴzeivĴ−ρĴz.
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6.1. Haken representation

We rearrange them using the relations

eivĴ− Ĵ+ =
{

Ĵ+ − 2ivĴz − (iv)2Ĵ−
}

eivĴ− , (6.22)

eivĴ− Ĵz =
{

Ĵz + ivĴ−
}

eivĴ− , (6.23)

eiwĴz Ĵ+ = Ĵ+eiw. (6.24)

Using the above equations plus the property given by (6.19), on expanding the right

hand side of (6.21), we find

Ĵ+ρ ↔
{

eiw ∂

∂(iv∗)
− 2(iv)

∂

∂(iw)
− (iv)2

∂

∂(iv)

}

χ,

Ĵzρ ↔
{

∂

∂(iw)
+ (iv)

∂

∂(iv)

}

χ,

Ĵ−ρ ↔ ∂

∂(iv)
χ,

ρĴ+ ↔ ∂

∂(iv∗)
χ,

ρĴz ↔
{

∂

∂(iw)
+ (iv∗)

∂

∂(iv∗)

}

χ,

ρĴ− ↔
{

eiw ∂

∂(iv)
− 2(iv∗)

∂

∂(iw)
− (iv∗)2

∂

∂(iv∗)

}

χ.

We then use similar reasoning to write the following relations for the photonic operators:

â†ρ ↔
{

ix+
∂

∂(ix∗)

}

χ, (6.25a)

âρ ↔
{

∂

∂ix

}

χ, (6.25b)

ρâ† ↔
{

∂

∂ix∗

}

χ, (6.25c)

ρâ ↔
{

ix∗ +
∂

∂(ix)

}

χ. (6.25d)

We now assume that χ has the following expansion on P

χ(x, v,w) =

∫

eixαeix∗α∗

eivξeiv∗ξ∗eiwµP(α, ξ,µ)d2xd2vdw, (6.26)
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6. Dicke model in the thermodynamic limit III

and by performing an integration by parts transfer the effects of the operators to P, as

for example

ixχ ↔− ∂

∂α
P,

∂

∂ix
χ ↔αP,

...

When carrying out the integration by parts we assume that the surface terms of the

integral vanish. We also have to assume the existence of (6.26); if starred variables are

complex conjugates of each other this means we assume the existence of the Fourier

transform of χ. We shall see that these equations give non-positive definite diffusion

matrices, a problem we overcome by interpreting this representation as a positive-P

representation [19], where the variables α and α∗, for example, are independent complex

variables instead of conjugates. Using these assumptions we can write the final relations

between the Haken representation and the operators as:

Ĵ+ρ ↔
{

e−
∂

∂µ ξ∗ + 2µ
∂

∂ξ
− ∂2

∂ξ2
ξ

}

P, (6.27a)

Ĵzρ ↔
{

µ − ∂

∂ξ
ξ

}

P, (6.27b)

Ĵ−ρ ↔ ξP, (6.27c)

ρĴ+ ↔ ξ∗P, (6.27d)

ρĴz ↔
{

µ − ∂

∂ξ∗
ξ∗
}

P, (6.27e)

ρĴ− ↔
{

e−
∂

∂µ ξ + 2µ
∂

∂ξ∗
− ∂2

∂ξ∗2
ξ∗
}

P, (6.27f)

while for the photonic operators we have that

â†ρ ↔
{

α∗ − ∂

∂α

}

P, (6.28a)

âρ ↔ αP, (6.28b)

ρâ† ↔ α∗P, (6.28c)

ρâ ↔
{

α− ∂

∂α∗

}

P. (6.28d)
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6.1. Haken representation

With these correspondence relations we can readily arrive at the equation of motion for

P,

∂P
∂t

= − iω

(

∂

∂α∗α
∗ − ∂

∂α
α

)

P − iω0

(

∂

∂ξ∗
ξ∗ − ∂

∂ξ
ξ

)

P

− i
λ√
N

{

[α+ α∗]

[

(ξ − ξ∗)
(

1 − e−
∂

∂µ

)

+ 2µ

(

∂

∂ξ
− ∂

∂ξ∗

)

−
(

∂2

∂ξ2
ξ − ∂2

∂ξ∗2
ξ∗
)]

+
∂

∂α∗

(

ξ∗ + e−
∂

∂µ ξ + 2µ
∂

∂ξ∗
− ∂2

∂ξ∗2
ξ∗
)

− ∂

∂α

(

ξ + e−
∂

∂µ ξ∗ + 2µ
∂

∂ξ
− ∂2

∂ξ2
ξ

)

}

P.

(6.29)

Note that the terms e
∂

∂µ are displacement operators, i.e., e−
∂

∂µP(µ) = P(µ + 1).

Therefore, for a finite number of atoms, ` = N/2, Eq. (6.29) corresponds to a set of

N +1 coupled partial differential equations, indexed as P(µ = −N/2), · · · ,P(µ = N/2).

We also note the existence of third order derivatives, ∂3

∂α∂ξ2 , and non-linearities, so we

cannot expect to solve this system of equations without some approximation method.

Our choice is to linearize the variables α, ξ and µ about the steady state, in order to

obtain a Fokker-Planck equation that is valid in the thermodynamic limit (see Chapter

5). First, we expand the operator e
∂

∂µ to second order:

e−
∂

∂µ = 1 − ∂

∂µ
+

1

2

∂2

∂µ2
.

This approximation corresponds to assuming µ very large, so a Taylor expansion can

be made. The linearization also makes third order derivatives of order N−1, so we omit

these from now on and write the Fokker-Planck equation in the Haken representation as

∂P
∂t

=
∂

∂ζᵀ
AP +

1

2

∂

∂ζᵀ
D
∂

∂ζ
P,

where

ζ = (α,α∗, ξ, ξ∗,µ)ᵀ,

and

∂

∂ζ
= (∂α, ∂α∗ ,

1√
N

∂

∂ξ
,

1√
N

∂

∂ξ∗
,

1√
N

∂

∂µ
)ᵀ,
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6. Dicke model in the thermodynamic limit III

but A, in this case, is a column vector given by

A(ζ) =























(iω + κ)α + iλN−1/2 (ξ + ξ∗)

(−iω + κ)α∗ − iλN−1/2 (ξ + ξ∗)

iω0ξ − 2iλN−1/2 (α+ α∗) µ

−iω0ξ
∗ + 2iλN−1/2 (α+ α∗) µ

iλN−1/2 (ξ∗ − ξ) (α+ α∗)























, (6.30)

and D is a 5 × 5 matrix given by

D(ζ) =
i√
N























0 0 2µ 0 −ξ∗

0 0 0 −2µ ξ

2µ 0 2ξ(α + α∗) 0 0

0 −2µ 0 −2ξ∗(α+ α∗) 0

−ξ∗ ξ 0 0 2(ξ − ξ∗)(α+ α∗)























. (6.31)

We linearize this equation around the mean values:

ζ0 = (N1/2〈ā〉, N1/2〈ā†〉, N〈J̄+〉, N〈J̄−〉, N〈J̄z〉)ᵀ.

Thus, expanding the matrices A and D in a Taylor series, and keeping only terms of

order N1/2 and N0,

∂P
∂ζᵀ

dζ0

dt
+
∂P
∂t

=
∂

∂ζᵀ
(A(ζ0) + A) ζP +

1

2

∂

∂ζ
D(ζ0)

∂

∂ζᵀ
P (6.32)

where A is the constant drift matrix given by the derivative of A evaluated at ζ0 as

A =
∂

∂ζᵀ
Aᵀ(ζ0). (6.33)

Clearly we have terms of order N1/2, which give the evolution of the means, and of order

N0 which define fluctuations around the means. In order to identify the role played by

each term, we redefine the vectors ζ, ζ0 and ∂ζ:

ζ →(α,α∗, ξ, ξ∗,µ)ᵀ, (6.34)

ζ0 →(〈ā〉, 〈ā†〉, 〈J̄+〉, 〈J̄−〉, 〈J̄z〉)ᵀ, (6.35)

∂

∂ζ
→(∂α, ∂α∗ ,

∂

∂ξ
,
∂

∂ξ∗
,
∂

∂µ
)ᵀ. (6.36)
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6.2. Haken vs. Holstein-Primakoff representation

The equations of motion become

∂P
∂t

= N1/2

(

∂

∂ζᵀ
A(ζ0)P − ∂P

∂ζᵀ

dζ0

dt

)

+
∂

∂ζᵀ

(

∂A
∂ζᵀ

)

ζ=ζ0

ζP +
1

2

∂2D(ζ0)P
∂ζᵀ∂ζ

. (6.37)

We set the terms multiplied by N1/2 to zero, this gives equations of motion for the

means, corresponding to equation (6.4), with solutions given by (6.16). The terms of

order N0 give the linear Fokker-Planck equation for the fluctuations about the means,

with drift and diffusion matrices:

(

∂A
∂ζᵀ

)

ζ=ζ0

= A =























iω + κ 0 iλ iλ 0

0 −iω + κ −iλ −iλ 0

−2iλ〈J̄z〉 −2iλ〈J̄z〉 iω0 0 −2iλ〈ā+ ā†〉
2iλ〈Jz〉 2iλ〈J̄z〉 0 −iω0 2iλ〈ā+ ā†〉

0 0 −iλ〈ā+ ā†〉 iλ〈ā+ ā†〉 0























,

(6.38)

D(ζ0) = iλ























0 0 2〈J̄z〉 0 −〈J̄+〉
0 0 0 −2〈J̄z〉 〈J̄−〉

2〈J̄z〉 0 2〈ā+ ā†〉〈J̄−〉 0 0

0 −2〈J̄z〉 0 −2〈ā+ ā†〉〈J̄+〉 0

−〈J+〉 〈J̄−〉 0 0 0























. (6.39)

6.2. Haken vs. Holstein-Primakoff representation

6.2.1. Drift Matrix

With the drift and diffusion matrices one might follow the procedure taken in section

5.2.3 and calculate spectra, entanglement and covariances. Such a procedure would re-

produce the results of that section up to the limitations of the Haken representation, as

we discuss now. In this section we concentrate on the differences between the Holstein-

Primakoff and Haken representation, and show where and how they disagree. We make

the distinction between the drift and diffusion matrices in each representation by includ-

ing the superscript HP , for Holstein-Primakoff, and Ha, for the Haken representation.
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6. Dicke model in the thermodynamic limit III

The drift matrix in the Haken representation has one eigenvalue equal to zero; this

accounts for a conserved quantity of motion. It can be said, alternatively, that the Haken

representation has two linearly dependent eigenvectors that can can be used to express

one of the Haken phase-space variables in terms of the remaining four; in short, all the

information conveyed in the (5-dimensional) Haken representation is expressed in four

variables, corresponding to the Holstein-Primakoff representation. To demonstrate this

result we write the linearised expansion of the angular momentum operators in both

representations and write down the expressions that map Haken phase-space variables

into Holstein-Primakoff phase-space variables, and use such expressions to transform the

Haken representation drift matrix. Assuming that 〈b̄〉 is real we have (from (5.1):

Ĵ+ → ξ∗ = N〈b̄〉
√

1 − 〈b̄〉2 +
N1/2

2
√

1 − 〈b̄〉2
((

2 − 3〈b̄〉2
)

β∗ − 〈b̄〉2β
)

, (6.40a)

Ĵ− → ξ = N〈b̄〉
√

1 − 〈b̄〉2 +
N1/2

2
√

1 − 〈b̄〉2
((

2 − 3〈b̄〉2
)

β − 〈b̄〉2β∗
)

, (6.40b)

Ĵz → µ = N

(

〈b̄〉2 − 1

2

)

+N1/2〈b̄〉 (β + β∗) , (6.40c)

where the operators are expanded as b̂ = N1/2〈b̄〉 + β, which supposes we are writing

the equations in a P-representation. We compare Eqs. (6.40) with the expansions of the

Haken phase-space variables (6.3). By equating mean values, setting the fluctuations

to zero, 〈β〉 = 0, and using the solutions for 〈Ĵ+〉 and 〈Ĵz〉 in the steady state of the

superradiant phase, we have that

〈b〉 =
1√
2

√

1 − 〈µ〉. (6.41)

The expression for the noise becomes

µ =
1√
2

√

1 − 〈µ〉 (β + β∗) , (6.42a)

ξ =

√
2

4
√

1 + 〈µ〉
((1 + 3〈µ〉)β + (〈µ〉 − 1)β∗) . (6.42b)

We check that these transformations lead AK to AH by writing the deterministic part
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6.2. Haken vs. Holstein-Primakoff representation

of the equations of motion for the fluctuations in the Haken representation:

α̇ = −(iω + κ)α+ iλ (ξ + ξ∗) (6.43a)

ξ̇ = −iω0ξ + 2iλ〈Ĵz〉(α + α∗) + 2iλµ〈ā+ ā†〉 (6.43b)

µ̇ = iλ(ξ − ξ∗)〈ā+ ā†〉 (6.43c)

The means in the steady state are given by (from Eqs. (6.12) and (6.16))

〈ā+ ā†〉 =
ω0

2λµ

√

1 − µ2, (6.44)

〈J̄z〉 = −µ
2
. (6.45)

The transformations given by (6.42) are easily summarized in the matrix

S =







































1 0 0 0 0

0 1 0 0 0

0 0
√

2(1+3µ)
4
√

1+µ

√
2(µ−1)

4
√

1+µ
0

0 0
√

2(µ−1)
4
√

1+µ

√
2(1+3µ)
4
√

1+µ
0

0 0
√

1−µ
2

√

1−µ
2 0







































. (6.46)

Such that SζHP = ζHa. We note the transformations between the variables cannot be

inverted as they are overdetermined – S has no inverse, but we can define the inverse

within the subspaces {ξ, ξ∗} ↔ {β, β∗}, which we denote by s:

s =







































1 0 0 0 0

0 1 0 0 0

0 0
√

2(1+3µ)
4µ

√
1+µ

√
2(1−µ)

4µ
√

1+µ
0

0 0
√

2(1−µ)
4µ

√
1+µ

√
2(1+3µ)

4µ
√

1+µ
0

0 0 0 0 0







































. (6.47)
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6. Dicke model in the thermodynamic limit III

The 5th column and row are zero, as the equations for µ̇ are of no use; relation (6.42a)

is already built-into the Holstein-Primakoff representation. The drift matrix, in the

transformed variables, is given by

sAHaS =























0

0

AHP 0

0

0 0 0 0 0























, (6.48)

where AHP is the Holstein-Primakoff drift matrix given by (5.32). This shows the

equivalence between drift matrices within the 4×4 subspace in the Haken representation.

6.2.2. Covariance matrix and spectra

With the drift and diffusion matrices we are able to use formula (5.42) to derive the

spectra of the fluctuations, and also to use (5.33) to calculate the covariance matrix.

To compare the results between the two representations we need to translate the HP

variables into Haken variables. We use the expressions (6.42) and the fact that the

spectrum matrix

S(ν) =
1

2π
(A + iν1)D (A− iν1) , (6.49)

is the Fourier transform of the correlations 〈ξ(τ)ξ〉 etc. We calculate the correlations in

one representation and apply the transformation rules, as for example, noticing that

ξ + ξ∗ =
µ
√

2√
1 + µ

(β + β∗), (6.50)

we have

(ξ + ξ∗)(ξ(τ) + ξ∗(τ)) =
2µ2

1 + µ
(β + β∗)(β(τ) + β∗(τ)); (6.51)

by performing a Fourier transform in the correlation function defined above we have that

the spectra

S33 + S44 + 2S34, (6.52)
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6.2. Haken vs. Holstein-Primakoff representation

in each representation, are proportional to one another. This quantity is plotted in

Figure 6.3, where we clearly see that they fail to agree for λ > λc. This problem does

not occur, however, in the field subspace {S11,S22,S12}, as we will show explicitly below.
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Figure 6.3.: Holstein Primakoff compared with Haken spectra for ω = ω0 and κ = 0.1.

To demonstrate the origin of this problem, we must calculate the second order cor-

relations. We calculate 〈J2〉 in normal order as 〈Ĵ+Ĵ− + Ĵ2
z − Ĵz〉, using the stochastic

differential equations of motion for the linearized set of variables in the Haken represen-

tation. We need the matrix B, such that BBᵀ = D, where D is the diffusion matrix

(6.38). We can derive such a matrix by writing the quadractic form xᵀDx, where
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6. Dicke model in the thermodynamic limit III

x = (x1, x2, x3, x4, x5)
ᵀ, as sum of squares. With this procedure we obtain

Bᵀ =







































i
√

2〈J̄z〉√
〈J̄+〉〈2ā〉

0 0 0 i

√
〈J̄+〉〈2ā〉√
2〈J̄z〉

〈J̄+〉

0
√

2〈J̄z〉√
〈J̄+〉〈2ā〉

0 0

√
〈J̄+〉〈2ā〉√
2〈J̄z〉

〈J̄+〉

0 i2〈J̄z〉√
2〈J̄+〉〈2ā〉

0 i
√

2〈J̄+〉〈2ā〉 0

2〈J̄z〉√
2〈J̄+〉〈2ā〉

0
√

2〈J̄+〉〈2ā〉 0 0

0 0 0 0 0







































,

(6.53)

and the stochastic differential equations are

dζ =
∂

∂ζᵀ
Aζdt+ BᵀdW, (6.54)

where dW is a vector of Wiener increments. We write the equations of motion for second

order momenta such as ξ∗ξ and µ2. Using the properties of the Wiener process, namely

that dWidWj = δij and matrix (6.53), we have, for the motion of the total angular

momenta

d〈J2〉
dt

− O(N2) = N
d

dt
(〈ξξ∗〉 + 〈µ2〉 + 〈µ〉) = 2iλ〈J̄z〉〈(ξ∗ − ξ)(α + α∗)〉. (6.55)

In solving the equations of motion for the means in the steady state, we encountered

equations which conserve the mean total angular momentum – 〈J2〉 = N2/2 for O(N2).

We conclude from this equation that, in the Haken representation, the total angular

momentum 〈J2〉 is conserved only to order O(N2), but not to order O(N), corresponding

to the noise terms.

On the other hand, in the Holstein-Primakoff representation this conservation law in

intrinsic, as we can see by writing J2, which, in normal order becomes

J2 HP = 〈Ĵ+Ĵ− − Ĵz+ : Ĵ2
z : +b̂†b̂〉 (6.56)

With the expansion b̂ = N1/2〈b̂〉+β, using the definitions of Ĵ+ and Ĵz in equation (5.1),
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6.2. Haken vs. Holstein-Primakoff representation

we have:

〈J2〉 =〈
∣

∣

∣
N1/2〈J̄+〉 + β

∣

∣

∣

2
(

N −
∣

∣

∣
N1/2〈J̄+〉 + β

∣

∣

∣

2
)

− N

2
+

(

∣

∣

∣
N1/2〈J̄+〉 + β

∣

∣

∣

2
− N

2

)

〉

=
N

2

(

N

2
+ 1

)

. (6.57)

This result is independent of linearization, and shows that the Holstein-Primakoff rep-

resentation is more accurate in describing the linearized system than the Haken repre-

sentation.

We still have to explain why, despite the lack of total angular momenta conservation

in the linearised Haken representation, there is perfect agreement between both repre-

sentations in the cavity spectra. We can write the equation for the covariance matrix,

C, in the Haken representation as

AC + CAᵀ = −D, (6.58)

where A and D are the drift and diffusion matrices given by (6.38) and (6.39) respec-

tively. As A has a null eigenvalue, the equations for the covariances and correlations

are overdetermined, in the same way as we had to use the conservation of total angular

momentum to obtain the means in the steady state. Our strategy is to change these

equations to a basis where this eigenvalue appears explicitly. We can define the new co-

ordinate system, knowing that (0, 0,
√

(1 − µ2)/2µ,
√

(1 − µ2)/2µ, 1) is the eigenvector

of A with zero eigenvalue. The similarity transformation is given by the matrix:

S =







































1 0 0 0 0

0 1 0 0 0

0 0
√

2(1+3µ)
4µ

√
1+µ

√
2(µ−1)

4µ
√

1+µ
0

0 0
√

2(µ−1)
4µ

√
1+µ

√
2(1+3µ)

4µ
√

1+µ
0

0 0

√
1−µ2

2µ

√
1−µ2

2µ 1







































, (6.59)

85



6. Dicke model in the thermodynamic limit III

and its inverse

S−1 =







































1 0 0 0 0

0 1 0 0 0

0 0
√

2(1+3µ)
4
√

1+µ

√
2(µ−1)

4µ
√

1+µ
0

0 0
√

2(µ−1)
4
√

1+µ

√
2(1+3µ)
4
√

1+µ
0

0 0 −
√

1−µ√
2

−
√

1−µ√
2

1







































. (6.60)

The transformed matrix Ã is given by

Ã = SAHaS−1; (6.61)

while the diffusion and covariance matrices transform according to

D̃ = SDSᵀ, (6.62)

C̃ = SCSᵀ. (6.63)

The new matrix Ã is written explicitly as:

Ã =





































0

0

AHP −iω0

√
2(1−µ)

µ

iω0

√
2(1−µ)

µ

0 0 0 0 0





































(6.64)

Before calculating D̃, we note that the correlation function, c(τ), obeys the equation

dc̃(τ)

dτ
= −Ãc̃(τ). (6.65)
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6.2. Haken vs. Holstein-Primakoff representation

The matrix c̃(τ) will give the correlations directly in the Holstein-Primakoff representa-

tion. We use this to study the correlations of the field variables:

d

dt

















αα(τ)

αα∗(τ)

αβ(τ)

αβ∗(τ)

















= AHP

















αα(τ)

αα∗(τ)

αβ(τ)

αβ∗(τ)

















+
iω0

√
2 − 2µ

µ

















0

0

−ασ(τ)

ασ(τ)

















, (6.66)

where σ is the constant of motion of the matrix AHa; therefore the coupling between the

extra dimension of the Haken representation is embedded only in the atomic variables

when transformed to the Holstein-Primakoff formalism. The spectrum matrix in the

Haken variables is shown in Figure 6.4 for λ = 1.2λc, so the singularities in the extra

dimension, representing the conserved quantity, can be seen clearly. The transformed
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Figure 6.4.: Graphical representation of the spectrum matrix in the Haken representation

for λ = 1.2λc
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diffusion matrix is given by

D̃ = i







































0 0 −λ
√

2(1+3µ)
4
√

1+µ
λ
√

2(µ−1)
4
√

1+µ
0

0 0 λ
√

2(1−µ)
4
√

1+µ
λ
√

2(1+3µ)
4
√

1+µ
0

−λ
√

2(1+3µ)
4
√

1+µ
λ
√

2(1−µ)
4
√

1+µ
(µ2−1)ω0

2µ2 0
√

2−2µ(µ2−1)ω0

4µ2

λ
√

2(µ−1)
4
√

1+µ
λ
√

2(1+3µ)
4
√

1+µ
0 − (µ2−1)ω0

2µ2

(1−µ)3/2(1+µ)ω0

2
√

2µ2

0 0
√

2−2µ(µ2−1)ω0

4µ2

(1−µ)3/2(1+µ)ω0

2
√

2µ2
0







































,

(6.67)

which is not the same matrix as the Holstein-Primakoff representation in the 4 × 4

subspace, but we see that the extra dimension has no correlation with the field (elements

D̃15 and D̃25 are 0). We notice that below λc , where µ = 1, the extra dimension vanishes,

and the both matrices, Ã and D̃, become identical to the drift and diffusion matrices in

the Holstein-Primakoff representation.

6.3. Coherent atomic state representation

In the previous section we dealt with the linearized Haken representation for collective

atomic operators and found that it is not a completely accurate description, failing to

conserve the total angular momentum in its linearised version; as a consequence the

atomic spectra are different from those computed in the Holstein-Primakoff representa-

tion. We might consider also an exact treatment of these representations, but, as we

mentioned, this would introduce derivatives of all orders in both representations. Ide-

ally, we seek a treatment without transformations in the Hamiltonian, as in the Haken

approach, that does not introduce singularities or over-determinacy and intrinsically

conserves angular momentum. Such a representation is introduced in this chapter: the

atomic coherent states representation. These states are an extension of the field coherent

states [62], and have been used in many situations in quantum optics [18, 63].

The atomic coherent states are defined in a similar way to the coherent states. There
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6.3. Coherent atomic state representation

are many definitions; we shall use one of the simplest here, defining

||`,γ〉 = exp
[

γĴ+

]

|`,−`〉, (6.68)

where γ is a complex number and ` = N/2 is the total angular momentum. The

resulting state is unnormalized. The normalization factor can be calculated easily by

writing |`,mz〉 = |`, p〉, where p − ` = mz, with 0 ≤ p ≤ 2`, and with this definition

noting that

(

Ĵ−
)p

|`, 0〉 =

(

p!(2`)!

(2`− p)!

)1/2

|`, p〉. (6.69)

Then the unnormalized state can be written explicitly as

||`,γ〉 = eγĴ+ |`, 0〉 =

2
∑̀

p=0

(

(2`)!

p!(2`− p)!

)1/2

γp|`, p〉, (6.70)

and the normalization constant is given by

2
∑̀

p=0

p!(2`)!

(2`− p)!
|γ|2p = (1 + |γ|2)2`. (6.71)

We define the normalized atomic coherent state by

|γ〉 = (1 + γγ∗)−`eγĴ− |0〉, (6.72)

where we omit the index `. This definition highlights the similarities with the coherent

states. Indeed, the defined atomic coherent state representation represents the rotation

of the state | −m〉 through an angle θ about the vector (sin[φ],− cos[φ], 0) on a “Bloch

sphere”, as depicted in Figure 6.5. The parameter γ is the coordinate of the stereographic

projection of the state. With this parametrization, the state can be written as

|γ〉 = eiθ(Ĵx sin[φ]−Ĵy cos[φ])| − `〉

= eγĴ−e−Ĵz ln[1+γγ∗]e−γĴ+ | − `〉, (6.73)

where γ = eiφ tan[θ/2]. We can also see that |γ〉 is an eigenstate of the angular mo-

mentum in the direction given by the spherical coordinate angles θ and φ, Ĵ(θ, φ). The
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6. Dicke model in the thermodynamic limit III

relations leading to these equations are given in [64]. From the parametrization it can

be easily shown that the following completeness relation is satisfied:

1

4π

∫

dφdθ|γ〉〈γ| = 1. (6.74)

With this property we are able to write any state ρ, of the field plus atoms, as a diagonal
Im

γ

Reγ

γ

φ

θ
Jx

J y

Jz

Figure 6.5.: Stereographic projection of the Bloch sphere in the plane γ

expansion of the states |γ, α〉, namely

ρ =

∫

P(γ, α)|γ, α〉〈γ, α|d2γd2α, (6.75)

where P(γ, α) is a pseudo-probability distribution over the variable γ and field amplitude
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6.3. Coherent atomic state representation

α and d2γ = dRe(γ)dIm(γ)d. The following properties are useful:

Ĵ−||γ〉〈γ|| =
∂

∂γ
||γ〉〈γ||, (6.76)

Ĵ+||γ〉〈γ|| =γ

(

2`− γ
∂

∂γ

)

||γ〉〈γ||, (6.77)

Ĵz||γ〉〈γ|| =

(

`− γ
∂

∂γ

)

||γ〉〈γ||. (6.78)

The first of these equations is readily proved from Equation (6.70), while for the other

two we use, with the help of (6.24),

Ĵ+eγĴ− |`〉 = eγĴ−

(

Ĵ+ + 2γĴz − γ2Ĵ−
)

|`〉 =
(

2`γ − γ2Ĵ−
)

eγĴ− |`〉, (6.79)

and

Ĵze
γĴ− |`〉 = eγĴ−

(

Ĵz − γĴ−
)

|`〉. (6.80)

Noting then that the unnormalized states can be written in terms of the normalized

states as (1 + γγ∗)2`|γ〉〈γ|, we use these results to write (writing 2` = N)

Ĵ−|γ〉〈γ| =

(

Nγ∗

1 + γγ∗
− ∂

∂γ

)

|γ〉〈γ|, (6.81a)

Ĵ+|γ〉〈γ| =γ

(

N

1 + γγ∗ − γ
∂

∂γ

)

|γ〉〈γ|, (6.81b)

Ĵz|γ〉〈γ| =

(

N

2

1 − γγ∗

1 + γγ∗ − γ
∂

∂γ

)

|γ〉〈γ|. (6.81c)

The means of the operators will be some function of γ; for the operators in the same

order as the Haken representation, using Equation (6.81), we have

〈γ|Ĵq
+Ĵ

r
z Ĵ

s
−|γ〉 = (1 + γγ∗)−N ∂q+s

∂γ∗q∂γs

(

N

2
− γ∗ ∂

∂γ∗

)r

(1 + γγ∗)N (6.82)

We now use these expressions and the master equation for the Dicke model (6.1) to

derive an equation of motion for the distribution P . We replace the density operator

by its expansion in terms of atomic coherent states, given by Equation (6.75), in the

equation of motion for ρ (6.1), namely

∂P
∂t

=

∫

P(γ, α)L|γ, α〉〈γ, α|dγ2dα2, (6.83)
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6. Dicke model in the thermodynamic limit III

where the Liouvillian operator is defined in (5.23). We then apply the operators as

defined in (6.81), and proceed with integration by parts to order the terms such that the

differential operators act on P; in summary we have the substitutions:

Ĵ−ρ→
(

Nγ∗

1 + γγ∗
+

∂

∂γ

)

P (6.84)

Ĵ+ρ→
(

Nγ

1 + γγ∗ +
∂

∂γ
γ2

)

P, (6.85)

Ĵzρ→
(

N

2

1 − γγ∗

1 + γγ∗ +
∂

∂γ
γ

)

P (6.86)

ρĴ− →
(

Nγ∗

1 + γγ∗ +
∂

∂γ∗γ∗2
)

P (6.87)

ρĴ+ →
(

Nγ

1 + γγ∗ +
∂

∂γ∗

)

P, (6.88)

ρĴz →
(

N

2

1 − γγ∗

1 + γγ∗ +
∂

∂γ∗γ∗
)

P (6.89)

Thus, also using (6.28) for the photonic operators, we derive the equation of motion for

P, which takes the form of a Fokker-Planck, with the non-linear drift matrix

A =





























(κ+ iω)α+ iλ γ+γ∗

1+γγ∗

(κ− iω)α∗ + iλ γ+γ∗

1+γγ∗

−iω0γ + iλ(1 − γ2)(α + α∗)

iω0γ − iλ(1 − γ2)(α+ α∗)





























, (6.90)

and diffusion matrix,

D = iλ
1

N





























0 0 −(1 − γ2) 0

0 0 0 (1 − γ∗2)

−(1 − γ2) 0 0 0

0 (1 − γ∗2) 0 0





























, (6.91)

where we use the scaled variable α→ N1/2α. This equation gives an exact phase space

representation for a finite number of atoms. The equation has to be interpreted in the

92



6.3. Coherent atomic state representation

positive-P sense in order for the equation to be called a Fokker-Planck equation, as D

has eigenvalues ±N−1λ
√

−(γ2 − 1)2. Thus the diffusion matrix is not positive definite

as required by a legitimate Fokker-Planck equation (see [53]). It follows that the stars

on the variables do not represent complex conjugates, but independent variables; hence,

the phase space becomes 8-dimensional.

This partial differential equation, if interpreted in the positive-P representation sense,

thus as a Fokker-Planck equation, has a set of stochastic differential equations given by

dΓ = Aᵀdt+ BdW (6.92)

where Γ = (α,α∗,γ,γ∗)ᵀ, dW is a vector of Wiener increments, and the matrix B is

defined such that BBᵀ = D. Matrix B is found by completing squares as in Section

6.2.2, Equation (6.53), and is given by

B =

(

iλ

2N

)1/2





























1 + γ i (1 + γ) 0 0

0 0 (1 + γ∗) i(1 + γ∗)

−(1 − γ) i(1 − γ) 0 0

0 0 (1 − γ∗) −i(1 − γ∗)





























. (6.93)

We notice that the fluctuations in these equations scale with N−1/2. The equations

are highly non-linear, and the difficulties arising in the Positive-P representation are

present. For example, the fact that the product γγ∗ is not necessarily a positive number

makes possible the appearance of diverging trajectories during the numerical integration.

We used the technique described in [65] to improve numerical stability. In this method,

the vector Γ at a time t is calculated implicitly from Γ in a intermediate position

parametrized by 0 < θ < 1. The numerical integration has the form

∆Γ
n = A(Γn+θ)∆t+ B(Γn)∆W, (6.94)

where ∆Γ
n = Γ

n+1 − Γ
n, and ∆t and ∆W are finite differences of time and the Wiener

increment respectively; n is the n-th time step of the integration. The method only
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6. Dicke model in the thermodynamic limit III

takes into account the deterministic part of the stochastic differential equation, so to

find Γ
n+θ we linearize A as follows

A(Γn+θ) = A(Γn) + Jn
Aθ∆Γ

n, (6.95)

where Jn
A is the Jacobian of A evaluated at Γ

n:

(Jn
A)ij =

∂Ai

∂Γj

∣

∣

∣

∣

Γ=Γn

. (6.96)

The value of A(Γn+θ) is obtained by inverting (6.95). Substituting the result into (6.94),

we obtain.

∆Γ
n = (1− θJn

A∆t)−1 (A(Γn)∆t+ B(Γn)∆W) (6.97)

We see that the inverse of a 4×4 matrix has to be obtained at each step of the numerical

integration.

In figure 6.6 we plot samples of trajectories for the variable α using N = 103, N = 104

and N = 105 atoms (clockwise). We notice the integration becomes more stable as the

number of atoms increases (bottom in Figure 6.6, notice the change in time scale). The

coupling λ is varied across the phase transition λ = 0.9λc, λ = λc and λ = 1.1λc (top

to botton in each Figure respectively). This variable shows a small non zero mean, but

is teeming with large excursions from the mean, in the small N case, although, above

λc, instabilities tend to appear after some time of stable integration. Even for N = 105

these large fluctuations eventually appear for a long time of integration, necessary to

calculate the means. Nevertheless, the simulations can show the large scale chaotic

oscillation, as is shown in the semiclassical equations (Figure 6.1), although on a much

shorter time scale as they should, and as we see in Figure 6.7 in a sample trajectory

for γ. Simulations with N = 105 atoms were carried out to calculate the means of the

angular momentum operators Ĵx and Ĵz; the result is shown in Figure 6.8. There we

can see that the simulation agrees with the linearized treatment away from λc.

Around the critical point the equations succeed, partially, in describing how the fluc-

tuations grow around the phase transition (compare Figure 6.8 with figures 6.2 and 7.1).

The number of trajectories needed for convergence becomes of the order of 106.
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Figure 6.6.: Sample trajectories of α. In clockwise order the number of atoms is increased

from N = 103, N = 104 and N = 105. In each plot λ is varied λ = 0.9λc,

λ = λc and λ = 1.1λc from top to bottom (ω = ω0 = 1 and κ = 0.1).

Similarly to what was done in chapter 5, we linearize these equations around the

mean values. Here the linearization is carried out to demonstrate how the means trans-

form from the Holstein-Primakoff representation to the atomic coherent representation.

Define the vector of operator mean values Θ = (N1/2〈ā〉, N1/2〈ā†〉, 〈γ〉, 〈γ〉)ᵀ, with the

fluctuations scaled as ξ = (z, z∗, N−1/2v,N−1/2v∗)ᵀ. We calculate the linearized drift

matrix as

AL =
∂A

∂Γ

∣

∣

∣

∣

Γ=Θ

, (6.98)

The diffusion matrix is simply DL = DΓ=Θ. The steady state solutions for the vector Θ

are calculated setting nonlinear drift matrix A to zero. The mean of the field variable
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Figure 6.7.: Sample γ for λ = 1.1λc, N = 103 atoms (ω = ω0 = 1) and κ = 0.1.

〈ā〉 is obviously the same as that calculated in the previous section, while for the atomic

variables we have:

〈γ〉 =











0 if λ < λc

±
√

1−µ√
1+µ

if λ > λc,

(6.99)

where µ = λ2
c/λ

2 as usual. We are able to rederive all results of Chapter 5, and the use of

formulae (5.33) and (5.42) return the same spectra and covariance for field variables as

the Holstein-Primakoff approach. Instead, we shall use this representation to compute

the values of variances for the atomic variables, ∆J2
+ and ∆J2

z . This is done by expanding

the phase-space expressions corresponding to the operators Ĵz and Ĵ+ to first order:

Ĵz →− N

2

1 − γγ∗

1 + γγ∗ = −N
2

1 − 〈γ〉2
1 + 〈γ〉2 +N1/2 〈γ〉(v + v∗)

(1 + 〈γ〉2)2 + O(N0), (6.100a)

Ĵ+ →N
γ∗

1 + γγ∗ +
N1/2

1 + 〈γ〉2 (v − 〈γ〉2v∗) + O(N0). (6.100b)

The variances are obtained by taking the squares of equations (6.100) and taking the

stochastic average, taking into consideration that 〈v〉 = 〈v∗〉 = 0. We replace 〈v2〉 →
C33, 〈v∗2〉 → C44, and 〈vv∗〉 → C34, where Cij are solutions of the covariance matrix for
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Figure 6.8.: Means of Ĵz and Ĵx for ω = ω0 = 1, κ = 1, N = 105 atoms. Averaged over

106 trajectories.

the atomic coherent state representation. We also have to take into consideration the

terms of order N in the expansions of the second order moments in the atomic coherent

state representation derived from equations (6.82):

〈Ĵ2
z 〉 =

N2

4

(1 − γγ∗)2

(1 + γγ∗)2
+N

γγ∗

(1 + γγ∗)2
(6.101)

〈Ĵ2
+〉 =N(N − 1)

γ2

(1 + γγ)2
. (6.102)

This procedure adds the following terms to the variances

〈Ĵ2
z 〉

O(N)−→ 〈γ〉2
(1 + 〈γ〉2)2 , (6.103)

〈Ĵ2
+〉

O(N)−→ − 〈γ〉2
(1 + 〈γ〉2)2 (6.104)

We use the solutions for the covariance matrix in the atomic coherent state representation

to write the variances above λc as

〈∆Ĵ2
z 〉

N
=

〈γ〉2
(1 + 〈γ〉2)4 (C33 + C44 + 2C34) +

〈γ〉2
(1 + 〈γ〉2)

=
(κ2 + ω2 − ω2

0)µ
2 + ω2

0

8µωω0
, (6.105)
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and for Ĵ+,

〈∆Ĵ2
+〉

N
=

1

(1 + 〈γ〉2)4
(

C33 + 〈γ〉4C44 − 〈γ〉22C34

)

=
µ
(

1 − 2µ2
) (

κ2 + ω2
)

8 (µ− 1)ωω0
+

(

µ2 − 1
)

ω0

8µω
(6.106)

These are the same results we get with the equivalent equations for the Holstein-

Primakoff representation,

〈∆Ĵ2
zHP 〉
N

=
1 − µ

2

(

CHP
33 + CHP

44 + 2CHP
34 + 1

)

(6.107)

〈∆Ĵ2
+HP 〉 =

(µ− 1)2CHP
33 + (1 + 3µ)(µ− 1 + 2(µ− 1)CHP

34 + (1 + 3µ)CHP
44 )

8(1 + µ)
, (6.108)

where CHP
ij are the Holstein-Primakoff covariances obtained in Section 5.2.3. For λ < λc

the equations have to be expanded up to second order, and the noise in Ĵz is given to

order N0 only. In doing this we have:

〈∆Ĵ2
z 〉

N
=C34

=
1

8

(

− 4 +
(µ2 − 2)(κ2 + ω2)

(µ2 − 1)ωω0
+

2ω0

ω

)

. (6.109)

The noise in Ĵ+ is given by (6.106) for 〈γ〉 = 0,

〈∆Ĵ2
+〉

N
=C33

=
κ2 + ω2

8ωω0(µ− 1)
. (6.110)

These are the same results as given by the Holstein-Primakoff representation and are

shown in Figure 6.9, and as the solid line in Figure 7.1.
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Figure 6.9.: Variance of Ĵ+ for ω = ω0 = 1 and κ = 0.1
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7. Dicke model with finite number of atoms

This chapter is devoted to the study of the Dicke model for a small number of atoms.

Experimental techniques allow the precise control of even a single atom in a cavity (see

[66] and references therein for a comprehensive review). In experiments with few atoms,

quantum fluctuations become of the same order of magnitude as mean values, ruling out

linearisation as a valid approximation technique. Using a master equation approach in

order to obtain the quantum states of the system is feasible only for a small number

of atoms. Alternatively one can use a quantum trajectory approach, which allows the

calculation of averages of operators through the simulation of a stochastic Schrödinger

equation – i.e. requiring less computational resources as we deal with vectors rather

than with matrices. Within the quantum trajectory approach we are able to model the

backaction of measurements on the quantum state of the system, as well as providing a

measurement of entanglement from the simulated measurement record [67]. With these

abilities we can explore the effects of measurements on the entanglement between atoms

and photons in the Dicke model; in particular, study how the angle in a homodyne

detection scheme alters the degree of entanglement.

More important in this chapter is the study of the dynamics associated with the switch-

ing between two possible states of the radiation field. The results in the thermodynamic

limit show two possible mean values for the field amplitude and atomic polarization

Ĵx. After the linearization is made around one of them, this large scale dynamics is

lost, whereas, solving the exact (non-linear) equations of motion for the mean values

produced the chaotic features shown in Figures 6.1 and 6.7. In a analogous way, the

full quantum mechanical treatment gives a more detailed view of the dynamics of the
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7. Dicke model with finite number of atoms

system.

7.1. Stationary solutions of the master equation for finite N

In Section 5.1, phase space methods were used to describe the statistical properties of

the system in the thermodynamic limit with the Holstein-Primakoff representation. The

mesoscopic limit of the Dicke model can also be described by the use of the non-linear

atomic coherent state representation – which, due to instabilities, failed to describe the

means of operators correctly near λc for 103 atoms.

In treating the quantum system for a low number of atoms – tens of atoms – we expect

to recover all features of the phase transition shown in figures 5.4 and 6.2, smoothed out

as shown in Figure 7.1; thus the singularities appearing in the covariances will disappear.
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7.1. Stationary solutions of the master equation for finite N

These simulations consider a system using the ring cavity we describe in Section 4.3,

where dipole coupling strengths (χ/2π) and cavity losses (κ/2π) are considered to be on

the order of 50 KHz and 20 KHz respectively. In the situation of Section 4.3, where the

number of atoms is 106, the laser intensity (Ωs) and detuning (∆s) are chosen so that

Ω/∆s ≈ 10−3, giving a coupling λ above 102 KHz. In this Section we treat a situation

where the number of atoms is on the order of 102. In order to maintain the atom-field

coupling λ at the same order of magnitude one should have, according to Eq. 4.37, a

ratio Ωs/∆s ≈ 10−1. This can be achieved by an increase in the intensity of the driving

lasers and/or a reduction in the detuning ∆s. For these parameters, the off-resonant

spontaneous emission, given approximately by Γ (Ωs/∆s)
2, is increased from a few tens of

Hz to hundreds of KHz. Under these conditions spontaneous emission would have to be

taken into account in the model, or one must use a suitable atom or cavity configuration

in order to increase the ratio χ/Γ. For the remainder of this chapter we assume the later

and do not consider spontaneous emission, using ω = ω0 = 1 and κ = 0.1.

7.1.1. Wigner function

The equations derived in the (positive) P representation in the previous chapters were

useful for calculating the spectra and covariances. We were not interested, directly,

in the pseudo distribution P, however. In this section the use of a phase space rep-

resentation has the purpose of giving a simple picture of the state of the system. The

Wigner function [51, 68], W(α), gives rise to well behaved functions, not necessarily true

probability distributions, with which we are able to calculate the means of operators in

symmetric order. As seen in previous chapters, the phase transition is characterized by

a non-analiticity of the mean values 〈Ĵz〉 and 〈â†â〉 around λc. The Wigner function

provides a clearer way of characterizing the phase transition, allowing us to extend this

concept to the finite number of atoms case. The characteristic function giving rise to

this representation is

W (z) = Tr
[

ρeizâ+iz∗â†
]

. (7.1)

103



7. Dicke model with finite number of atoms

The Wigner function W(α) is the Fourier transform of this expression:

W(α) =

∫

d2zW (z)e−iα∗z∗−iαz. (7.2)

With these definitions the quantity 〈αnα∗m〉 =
∫

d2αα∗W(α) gives the mean of the

operator product ânâ†m arranged in symmetric order, e.g.

〈αα∗〉 =
1

2

〈

â†â+ ââ†
〉

, (7.3)

〈α2α∗〉 =
1

3

〈

â2â† + â†â2 + ââ†â
〉

. (7.4)

In particular, the Wigner function gives the probability distributions for the quadrature

amplitudes X and Y as marginal distributions, i.e.

∫

dXW(X,Y ) = P (Y ). (7.5)

The Wigner function can be calculated numerically from the expansion of the Fock

states in terms of the X coordinate, which are the energy eigenstates of the harmonic

oscillator in position representation, i.e., expressed in terms of Hermite polynomials.

The calculation proceeds by doing the Fourier transform [68]

W (X,Y ) =

∫

dx′〈X − x′|ρ|X + x′〉e2iY x′

. (7.6)

A fast Fourier Transform can be used to implement this algorithm [69]. We use the

function provided in the Quantum Optics Toolbox [70]. The density operator, ρ, for the

steady state of the system is used to calculate the Wigner functions shown in Figure

7.2. There we can see how the Wigner function behaves as λ increases across the phase

transition. The two peaks represent the macroscopic means of the X quadrature am-

plitude, obtained (approximately) by solving the semi-classical equations. The non-zero

macroscopic mean for the Y quadrature amplitude causes the axis joining the two peaks

to be tilted in relation to the X axis by an angle arctan[〈Y 〉/〈X〉] ' arctan[κ/ω]. This

is the same angle which maximizes the squeezing and entanglement as seen in section

5.2.3.
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Figure 7.2.: Wigner function for the Dicke model across the phase transition

7.1.2. Spectra

The power spectra can be calculated from the correlation function, as given by equation

(5.19). In this case the correlation function can be calculated from the evolution for the

density matrix, formally written as

〈â†(τ)â〉ss = TrP

[

âeLτ
(

ρssâ
†
)]

, (7.7)

where ρss is the steady state density operator for the system, and L is the Liouvillian

super-operator given by (5.23). Numerically, it can be calculated by diagonalizing the

Liouvillian and expressing the operator ρâ† as a linear combination of its eigenoperators

ρ1, ρ2, · · · :

〈â†(τ)â〉 = Tr[âeLτρâ†] = Tr[â
∑

i

esiτCiρi], (7.8)

where si are the eigenvalues of L. This will return the solution of 〈â†(τ)â〉 as an ex-

ponential series
∑

i c̃ie
siτ . The spectrum is then given by the Fourier transform of this
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Figure 7.3.: Power and probe spectrum 2 atoms λ = 0.5
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Figure 7.4.: Power and probe λ = 0.7

function

S(ν) =
∑

i

c̃i
iν − si

. (7.9)

By using this method we have to calculate the eigenvectors and eigenvalues of the Liou-

villian, which is a square matrix of dimension (M(N+1))2, with M the dimension of the

truncated Fock space for the field. Alternatively, for larger problems, we can propagate

the master equation

d
(

ρâ†
)

dt
= L

(

ρâ†
)

, (7.10)
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with the initial condition ρ(0) = ρss, and calculate the mean value

〈â(t)â†〉 = Tr
(

â
(

ρâ†
)

(t)
)

at each time step, avoiding the calculation of eigenvalues of a big matrix. We used

the quantum optics toolbox [70] to calculate the power and probe spectra for the Dicke

model across the phase transition. The probe spectrum is calculated by propagating (or

calculating the exponential expansion of)

d

dt

(

ρâ† − â†ρ
)

= L
(

ρâ† − â†ρ
)

. (7.11)

In Figure 7.3 we show the spectrum for two atoms below the critical λ. The structure

is the same as that seen for the thermodynamic limit λ < λc; we can define a critical

value of the coupling, λc, for a finite number of atoms at which the Wigner function

develops two maxima. We have no analytical expression for λc, however. For coupling

sufficiently large the spectra show a peak at zero frequency, signaling the large scale

dynamics as the state of the system switches between the two peaks. The dynamical

behaviour associated with this switching will be explored in the quantum trajectory

theory. The spectrum shows the switches as a peak at ν = 0, corresponding to the

degeneracy of the corresponding eigenvalue – zero imaginary part of the eigenvalue of

L. The real part of the Liouvillian eigenvalue, which gives the mean time between the

switches, determines the broadness of the peak. Well above the critical λ the mean
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7. Dicke model with finite number of atoms

switching time becomes longer. In the linearized treatment these features do not appear

as we are studying the fluctuations around one of the mean values. For a large number of

atoms the switching time becomes longer and the system loses this large scale dynamics

for N → ∞.

7.2. Quantum trajectory simulations

In this section we present the results obtained from simulations using the quantum tra-

jectory theory. In Appendix B we present the basic ideas of quantum trajectory theory

and show the derivation of the equations used to simulate the Dicke model subjected to

homodyne and heterodyne measurement schemes. A short description of these measure-

ment schemes is presented below.

7.2.1. Homodyne and heterodyne measurements

The core idea of quantum trajectory theory is to generate a record of possible measure-

ment outcome. To do so we use the information from the system – the probabilities

calculated from the state – and introduce measurement feedback into the state of the

system, e.g., through the jump operators Ĵ for the case of photodetection. We obtain

the state of the system, but we gain also an extra piece of information: the detection

record. The record determines how the measurement affects the state of the system, and

the choice of the particular measurement scheme depends on the quantity of interest.

The photo-detection measurement scheme described in Appendix B can give infor-

mation about photon statistics. For example, to obtain the waiting time distribution,

a simulation is carried out and the time interval between photo-detections is recorded.

The waiting time distribution obtained this way can be calculated also directly from

the master equation [71, Chapter 12], but such approach, however, may not be easily

extended for other measurement schemes. Other treatments giving stochastic stochastic

Schrödinger equation can be seen for example in [22].

A homodyne measurement allows the experimenter to learn about the quadrature
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7.2. Quantum trajectory simulations

amplitudes of the field [72]. It is done by introducing a local oscillator field, as shown in

Figure 7.6. There, a classical field with complex amplitude eiθE is mixed with the signal

Local Oscillator

Signal

BS

Figure 7.6.: Scheme for homodyne/heterodyne detection

field â we intend to measure. The frequency of the local oscilator is the same as that

of the mode being detected (homos from the Greek – “the same”). For the two arms of

the beam splitter we have, in a rotating frame (and up to a constant factor),

E+ = eiθE + â, (7.12)

E− = eiθE − â. (7.13)

Each photo-detector measures the quantity |E±|2, and the photo-currents are subtracted,

leaving only the cross terms,

X̂θ = 2E
(

eiθâ+ e−iθâ†
)

. (7.14)

This is the quantity being measured for the case of homodyne detection. The angle

θ, which is the phase of the local oscillator, can be adjusted in order to measure any

quadrature. Experimentally, the local oscillator field is typically taken from the lasers

feeding the experiment by the use of a beam splitter.

For the heterodyne detection scheme the local oscillator field is far-detuned from the

signal light. In this case the input signal is added to a high frequency signal (in a rotating
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7. Dicke model with finite number of atoms

frame of mode frequency ω)

E′
± = â+ Ee−iωLOt (7.15)

The same process will give the measured quantity

Î = E
(

â†e−iωLOt + âeiωLOt
)

, (7.16)

where ωLO is the local oscillator frequency relative to the mode. In this case, detection

at frequency ωLO returns the field amplitude â, i.e., the intra-cavity field amplitude.

The current appears as a carrier signal with amplitude and phase modulated given by

〈â〉 = 〈X〉 + i〈Y 〉.
We show the derivation of the quantum trajectory evolution equations for homo-

dyne/heterodyne detection in Appendix B. We obtain a stochastic Schrödinger equation,

for the homodyne case, of the form

d|Ψ〉 =

[

1

i~
ĤCdt+ e−iθĴ

(

〈X̂θ〉(t)dt+ dW (t)
)

]

|Ψ〉, (7.17)

where dW is a Wiener increment with the property dW (t)dW (t′) = δ(t− t′)dt, Ĵ is the

photo-detection operator (see Appendix B) given by

Ĵ =
√

2κâ (7.18)

and 〈X̂θ〉 is the conditional (on state |Ψ〉) expectation value of the quadrature operator

X̂θ. The term dQHET = 〈X̂θ〉(t)dt + dW is proportional to the detected homodyne

current, which also depends on the intensity of the local oscillator field. The term dW

comes from the shot noise introduced by the local oscillator.

The equation for the heterodyne detection scheme is similar, with

d|Ψ〉 =

[

1

i~
ĤCdt+ e−iθĴ

(

〈Ĵ 〉(t)dt+ dZ(t)
)

]

|Ψ〉, (7.19)

but in this case the noise is complex, dZ(t) =
√

1/2(dWx + idWy), and the charge de-

posited in the detector is dQHET = 〈Ĵ 〉(t)dt+dZ(t). We are interested in recording the

corresponding photo-current. We can model the detected photo-current by the equation

di(t) = − 1

τD
(i(t)dt− dQ), (7.20)
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7.2. Quantum trajectory simulations

where dQ is the infinitesimal charge, whose explicit form depends on the measurement

scheme. There are also other measurement schemes we could consider, such as, for exam-

ple, a conditional detection scheme [73], which mixes photo-counts and homo/heterodyne

detection. In that case the photo-current is related to the third order correlation function

〈â†âX̂θ〉.

7.2.2. Results

Wigner Function

For the homodyne detection scheme the photo-current is proportional to the conditional

expectation of the quadrature amplitude 〈Xθ〉. We can calculate the stationary density
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Figure 7.7.: Wigner function calculated in the quantum trajectory theory (ω = ω0 =

1, κ = 0.1), (from the top: λ = 0.8, 1, 1.2).

matrix by averaging over the record of conditional states,

ρ̄SS =
∑

REC

|Ψ〉〈Ψ|, (7.21)
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7. Dicke model with finite number of atoms

where the bar denotes that the density matrix is unnormalized. The results are not

different from those calculated using the Liouvillian operator formalism, but now we

can observe the dynamics. In Figure 7.7 we show the Wigner function calculated from

the record average, and the a sample of the homodyne current for θ = 0. At this

angle, the distribution of the sampled homodyne current represents the projection of

the Wigner function along the X axis. Below λc, when the Wigner function has only

one peak, the homodyne current, for this angle, shows noise centered at i(t) = 0 with

dispersion proportional to the width of the Wigner function and the bandwidth of the

filter. Once the peak splits, for λ well above λc, the current becomes a noisy square wave

of amplitude proportional to the separation of the peaks in the Wigner function. We

characterize the mean lifetime of each state later, but we see already that each of these

states corresponds to a solution of the semi-classical equations, i.e., to the conditional

expectation 〈X〉 having two possible values in the steady state.

Entanglement

The quantum trajectory theory provides a way of quantifying the entanglement between

atoms and photons depending on the measurement scheme. Instead of following the anal-

ysis of section 5.2.3, we pay attention to the entanglement variation with the homodyne

detection angle. To do so, we apply the method given in [67]. We aim at measuring the

entanglement of a mixed state. As noted by [67] and references therein, the definition

of a measure of entanglement for mixed states is based on the decomposition of a mixed

state in an ensemble of pure states |ψi〉,

ρ =
∑

i

pi|ψi〉〈ψi|. (7.22)

The choice of the basis |ψi〉 is arbitrary and leads to different definitions for the measure

of entanglement. The measure of entanglement for pure states, however, is unambigu-

ously defined by the von Neumann entropy, to the advantage of quantum trajectory

theory, which expresses mixed states as ensembles of pure states. The entanglement in

the quantum trajectory theory is defined as and average over records of the von Neumann
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7.2. Quantum trajectory simulations

entropy of particular records,

EU = −TrB

[

ρB
REC log2(ρ

B
REC)

]

, (7.23)

where ρB
REC = TrA(ρREC), is the density matrix for one part of the system, calculated

for a given realization of the stochastic Schrödinger equation. Such a definition limits

the possible decompositions of the density operator to those which are relevant to the

chosen measurement scheme.

Entanglement was calculated varying the homodyne detection angle θ. Figures 7.8

and 7.9 show examples of the homodyne current, the entanglement, given by Eq. (7.23),

calculated at each time step, and the conditional expectation of Ĵx. Note the difference

between the two homodyne currents as the angle is changed by 90o. Close to 5o the

current shows pronounced switches between two distinct values; the homodyne mea-

surement, made essentially along the X axis, is able to distinguish between the two

semiclassical amplitudes located at X0 and −X0. The optimal axis is tilted slightly

from 0o as the losses introduce a small Y component to the steady state amplitudes (in

the semi-classical equations Y = (κ/ω)X). Specifically, the optimal angle is close to

arctan[κ/ω] = 5o. For an angle close to the Y quadrature, the measurement cannot

distinguish between the two amplitudes and the switching behaviour is lost. More inter-

esting is the effect of a change in the homodyne detection angle on the entanglement of

the system. We see that the entanglement is destroyed whenever we are able to distin-

guish, via the measurement, between the two amplitudes. For the intervals where the

switching is occurring, both amplitudes “coexist” for a very short time, during which

the entanglement is close to one.

The entanglement may also have a persistent non zero mean. In particular, for the

angle where the two amplitudes cannot be distinguished, θ ≈ 95o, the measurement

preserves the entanglement, avoiding collapse to one of the macroscopic states of the

field. We learn also that the state of the atoms is highly correlated with the field. That

is, for λ > λc, the steady state is described essentially by |−`〉x|Xθ〉+|+`〉x|−Xθ〉, where

|`〉x is a Dicke state, eigenvector of the operator Ĵx, and |Xθ〉 is a field state, eigenvector

of the quadrature operator Xθ. In the figures, the coupling strength chosen is λ = 1,
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〈Ĵ
x
〉(
t)

i(
t)

t/ω

θ = 5o

Figure 7.8.: Homodyne current for θ = 5o (ω = ω0 = 1, λ = 1, κ = 0.1)

making the amplitudes ±Xθ well separated. We can make a study of the entanglement

varying the homodyne angle around 95o. In Figure 7.10 we plot the mean entanglement,

EU , averaged over a long time realization (usually of the order of 104/ω). We can see

that the mean entanglement has a maximum for θ ≈ arctan[κ/ω] = 95o, which becomes

sharper as the separation between ±Xθ increases. With the X component becoming

larger, the angle of maximum entanglement moves slightly towards 90o, corresponding

to the limit κ→ 0.

In Figure 7.10 the angle is kept constant while λ is varied. The maximum entanglement

occurs close to λc, and vanishes as the homodyne measurement for θ = 5o selects one

of the peaks. Again, the angle that maximizes the entanglement changes as λ increases,

as demonstrated in Figure 7.12; there, an increase in λ corresponds to the peaks of the

Wigner function being translated along the 〈X〉 axis (from darker to brighter circles in

Figure 7.12). The angle for maximum entanglement, θ + π/2, is such that both peaks

of the Wigner function, in a coordinate system rotated by an angle θ in relation to the
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Figure 7.9.: Homodyne current for θ = 95o (ω = ω0 = 1, λ = 1, κ = 0.1)

original axis, have the maximum overlap in the ordinate axis Xθ+π/2. The choice of the

homodyne angle becomes more critical as λ increases, this explains the decrease in the

entanglement for a fixed angle, as shown in 7.11.

Switching dynamics

The heterodyne scheme measures the intracavity operator â, and can be used to re-

trieve the power spectrum (contaminated by shot noise) from the correlation function

i(t)i(t + τ). We show in Figure 7.13 the real and imaginary heterodyne current record

as λ increases. The current visits the two sites corresponding to the peaks in the Wigner

function. The heterodyne current record can be used to reconstruct the Q function from

the probability P (X,Y ) of the current visiting the site X + iY ; this measurement, how-

ever, is affected by the bandwidth of the filter, 1/τ . Large bandwidths allow unwanted

noise to come in, while very small bandwidths cut off the quantum fluctuations we are in-

terested in – we find the optimal bandwidth corresponds to τ = 1. Thus, reconstructing
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Figure 7.10.: Entanglement vs. θ (ω = ω0 = 1, κ = 0.1)

the Q function from the heterodyne current is not an straightforward exercise.

In Figures 7.14 and 7.15 we show two dimensional histograms with the counts of the

number of visits to the sites of the complex plane. The results become more accurate

as the trajectories run longer, as the current visits a larger region in phase space. This

brings computational problems for higher numbers of atoms, as the time between the

switches becomes larger and more simulation time is needed to get accurate results.

The switching time is also observed to increase with λ. As we saw in Chapter 5,

with the inclusion of a reservoir coupled to the system, the eigenvalues of the Liouvillian

acquire a real part, introducing an exponential decay in the evolution of the density

matrix. The two eigenstates of the system corresponding to the peaks seen in the Wigner

function become unstable. On a short timescale, the steady state system presents only

one of the peaks, corresponding to one of the X values in the semi-classical equations.

As the evolution unfolds over longer times, the state switches, and the sign of X changes

– hence the square wave behaviour seen in the heterodyne current. We can study the

time distribution of the switches. Define the conditional probabilities of switching, P+−,

116



7.2. Quantum trajectory simulations

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

θ = 95o

θ = 5o

θ = 50o

〈ρ
ln

[ρ
]〉(
t)

λ/λc

Figure 7.11.: Entanglement vs λ for different θ (ω = ω0 = 1, κ = 0.1)

and remaining in the state with mean quadrature amplitude ±〈X〉ss, P++ or P−−, by

P+− =P (±, t|∓, t0 = 0) = 1 − e−st, (7.24)

P±± =P (±, t|±, t0 = 0) = e−st. (7.25)

The (inverse) lifetime is given by the eigenvalue of the Liouvillian with the smallest real

part, s. The switching probability per unit of time is given by

dP+−
dt

− dP++

dt
= pswitch(t) = 2se−st. (7.26)

The mean switching time is then given by

t̄ =

∫ ∞

0
tpswitch(t)dt = 2s

(

− d

ds

)
∫ ∞

0
e−stdt, (7.27)

performing the integral and the derivation gives a mean switching time of 2/s. We

simulated the heterodyne measurement scheme, recording the time taken between con-

secutive switches, and used this data to generate figures like 7.16 and 7.17. In Figure

7.16, λ = 1.05, defining an operation condition well above the critical point, but small
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7. Dicke model with finite number of atoms
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Figure 7.12.: Homodyne Detection and Wigner function

enough so that switching is frequent. The large number of switches allows a good ex-

ponential fit. In Figure 7.17, λ = 1.35, and the average time interval between switches

becomes bigger, so the simulation had to run for much longer times in order to obtain

a fairly smooth fit (it also required a larger Fock basis, making the computations even

slower1. In Figure 7.18 we plot the comparison of the mean lifetime obtained from the

simulation and 2/s. Error bars representing the standard deviation from a exponential

distribution are included so the quality of the exponential fit is known. Agreement is

good at low values of λ, but it becomes computationally harder to obtain convergence for

values of λ greater than 1.2. These results shown the equivalence between the quantum

trajectory formalism and the full master equation approach.

1Problems with the random number generators reaching their repetition period are also a concern for

longer simulations
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Figure 7.13.: Heterodyne current across the phase transition (ω = ω0 = 1, κ = 0.1).
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Figure 7.15.: Histogram for heterodyne current (ω = ω0 = 1, λ = 0.8, κ = 0.1)
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8. Conclusion

8.1. Summary

In this thesis we presented an extensive account of the Dicke model through several

possible quantum optical approaches. Our aim was to investigate this model on several

scales and learn different techniques which can be applied to a whole plethora of problems

in quantum optics. Our first step was to review the basic Dicke model in quantum optics

with the introduction of the Dicke states, Dicke Hamiltonian and master equation. We

also stated the problem in its experimental context. Until very recently, it was out of the

question to implement a quantum optical system where the rotating wave approximation

was not valid. As we explained, the main problem is to achieve the regime where λ

is of the order of the field frequency ω. Such a regime still can be pursued, but it

would fall outside the scope of this work as other effects would have to be accounted

for, e.g. the inclusion of the A2 term in the Hamiltonian, which destroys potentially

interesting effects. The system we envisage still is in the strong coupling regime. The

counter rotating terms are included by adding a Raman channel to obtain an effective

Hamiltonian with coupling of comparable order of magnitude as the field frequency. The

counter rotating terms are non-energy conserving, but the energy non-conservation is

accounted for by the external source driving the transitions â†Ĵ+ and âĴ−. This effective

Hamiltonian gives rise to a non-equilibrium quantum phase transition. Historically, this

phenomenon was first studied in statistical quantum mechanics by Heep and Lieb, for

historical consistency, we presented their results for finite temperature.

Our research work started with a phase space study of the Dicke model. We used

the Holstein-Primakoff representation in order to obtain an accurate description of the
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8. Conclusion

system in the thermodynamical limit. This was a textbook application of quantum optics

techniques for obtaining the spectra and second order momenta, which gave information

about spectra, entanglement and squeezing. We carried on the study of the Dicke model

in its phase space form by using the extended version of the Haken representation for two

level atoms. In this case our aim was to reproduce the results in the Holstein-Primakoff

with the advantage of obtaining all moments directly in the atomic variables. In this

endeavor we found the linearized version of the Haken representation does not conserve

the total angular momentum and therefore fails to reproduce second order moments

correctly.

The phase space approach is usually of use for treating problems in the thermodynamic

limit, where quantum jumps become small compared to the quantities of interest – more

generally, the equations obtained include derivatives of order > 3. The introduction of

the atomic coherent states representations gave rise to a Fokker-Planck equation, when

interpreted in the Positive-P sense, which could be simulated exactly for any number

of atom. The simulations showed the problems usually associated with the use of the

Positive-P representation – large fluctuations and numerical instabilities – and were of

use to calculate the means of the atomic quantities for N of the order of 105 atoms, but

teeming with fluctuations for as N as large as N = 103.

Our last presentation was the quantum trajectory theory applied to the Dicke model.

The advantage of this approach is to give a clear picture of the system under a feasible

detection scheme – we employed heterodyne and homodyne detection schemes. Its com-

putational advantages allowed us to obtain the averages and variances for as many as

100 atoms. We were able to observe the sharpening of the transition mean values across

the phase transition in this case.

The Homodyne detection scheme in the quantum trajectory theory provided a way

of measuring how the measurement process preserves/destroys the entanglement in the

system. We also used the heterodyne measurement scheme to compute the statistics

of the switching times. We explored the technique in some detail and showed how the

simulated measurement records may be used to retrieve information about the quantum
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8.2. Future directions

state of the system

8.2. Future directions

With the advantage of hindsight we are able to point some the strengths and weaknesses

of this work. On the one hand, using such a broad range of techniques to study one

subject has the risk of focusing on the methods rather than on the actual physical sys-

tem. On the other hand, it provides a strong background for pointing future directions.

Contemplating all we have done with the present knowledge we see that each chapter

could be extended to become a thesis in its own right. We present the possible paths

which could have been taken for each chapter

Chapter 2 As we noted, the modeling of the system plus reservoir approach for a system

where the rotating wave approximation does not hold is an open problem. With

the proposal we presented here this may become an important research topic in

the future.

Chapter 3 The similarities with the Ising model can be further explored, following the

same lines as were used to show that the optical parametric oscillators have the

same universality as a Lifshitz magnetic phase transition [74].

Chapter 4 We can study other implementations of such a system. Figure 8.1 shows a

similar switching behaviour in RNA folding experiments, where one observes the

same exponential distribution as we verified in our model [1]. The Dicke model

also describes polarization waves in active media, as seen in [75]. It is very likely

that our model has some common feature with many classical-chaotic systems.

Chapter 5 The Holstein-Primakoff formalism can be applied to the Dicke model with

an extra driving field. Alternatively, we can try to express the angular momentum

operators as combinations of two bosonic operators, as, e.g., Ĵz = b̂†b̂− â†â.

Chapter 6 The linearization in the Haken representation can be done by writing a sys-

tem of partial differential equations, to replace the terms e
∂

∂µ . This could work for
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N ∼ 103. We could have used a different approach from the Positive-P represen-

tation for the coherent atomic states representation. Indeed, there is a plethora of

phase space methods which heal the equations from its instabilities. This repre-

sentation can be a good opportunity to try to describe the system in a mesoscopic

regime.

Chapter 7 We could have studied more extensively the behaviour of the system for large

numbers of atoms. We could have used the homodyne and heterodyne current

records to calculate the power and squeezing spectrum, for an increasing number

of atoms. We could also have implemented conditional homodyne detection scheme

in order to observe the giant violation of Bell inequalities as seen in [73].

Figure 8.1.: Folding of protein with time (from [1])

In conclusion, we can identify the principal areas of interest of this work as the quan-

tum to classical transition to mesoscopic systems, and the universality and complexity

of models in quantum optics.
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A. Diagonal operators and symmetry in the

Dicke model

A.1. Bogouliubov transformation

In the Holstein-Primakoff representation the general form of the system Hamiltonian is

Ĥ =ωaâ
†â+ ωbb̂

†b̂+ λ
(

â† + â
)(

b̂† + b̂
)

=
1

2

(

ω2
ax̂

2 + p̂2
x + ω2

b ŷ
2 + p̂2

y + 4λ
√
ωaωbx̂ŷ

)

+ constants, (A.1)

where x̂, ŷ, p̂x and p̂y are the normalized position and momentum operators, given by

the transformations

x̂ =
1√
2ωa

(â† + â), (A.2)

p̂x = i

√

ωa

2
(â† − â), (A.3)

ŷ =
1√
2ωn

(b̂† + b̂), (A.4)

p̂y = i

√

ωa

2

(

b̂† − b̂
)

. (A.5)

This is the general form taken by Hamiltonians (5.6) and (5.10), and it corresponds to

two coupled harmonic oscillators. We can put it in diagonal form by considering

Ĥ =
(

x̂ ŷ
)









ωa 2λ
√
ωaωb

2λ
√
ωaωb ωb

















x̂

ŷ









+ p̂2
x + p̂2

y (A.6)

Let us introduce q̂1 and q̂2 as the eigenvectors of the square matrix, with eigenvalues ε2+

and ε2− given by equations (5.8) and (5.13), which depend the regime the system is in.
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A. Diagonal operators and symmetry in the Dicke model

In the diagonal basis the Hamiltonian becomes

Ĥ =
1

2

(

ε2−q̂
2
1 + ε2+q̂

2
2 + p̂2

1 + p̂2
2

)

. (A.7)

The eigenvectors q̂1 and q̂2 can be written as




q̂1

q̂2



 =





cos(θ) sin(θ)

− sin(θ) cos(θ)









x̂

ŷ



 , (A.8)

where the rotation angles are given by

θ =
1

2
arctan

(

4λ
√
ωaωb

ω2
b − ω2

a

)

. (A.9)

We can now write the modes q̂1 and q̂2 in terms of new quantized operators, written

as ĉ1(2) in equation (5.7), or ê1(2) in (5.12), depending on whether we are treating the

normal or superradiant phase (we call them ĉ for convenience):

ĉ1(2) =
1

2

(

√

2ε−(+)q̂1(2) + i

√

2

ε−(+)
p̂1(2)

)

. (A.10)

Written in terms of these operators, the Hamiltonian takes the form of (5.12) and (5.7).

The expression for ĉ1(2) in terms of â, b̂, â† and b̂† can be calculated easily as

ĉ†1 =
1

2

(

cos(θ)√
ωaε−

(

(ε− + ωa)â
† + (ε− − ωa)â

)

− sin(θ)√
ωbε−

(

(ε− + ωb)b̂
† + (ε− − ωb)b̂

)

)

,

(A.11)

ĉ†2 =
1

2

(

sin(θ)√
ωaε+

(

(ε+ + ωa)â
† + (ε+ − ωa)â

)

+
cos(θ)√
ωbε+

(

(ε+ + ωb)b̂
† + (ε+ − ωb)b̂

)

)

,

(A.12)

where ε± are given by (5.8) and (5.13), depending on the system phase, ωa = ω, and

ωb = ω0 for the normal phase, while for the superradiant phase,

ωb =
ω0

2

(

1 +
λ2

λ2
c

)

. (A.13)

The rotation angle is given by

θ =



















1
2 arctan

(

4λ
√

ωω0

ω2
0
−ω2

)

if λ < λc

1
2 arctan

(

2µ2ωω0

ω2
0
−µ2ω2

)

if λ > λc

(A.14)
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A.2. Symmetry in the Dicke model

For λ = 0 we have θ = 0 in the normal phase, and the operator ĉ†1 depends upon the

operators â† and â only. At resonance we have that θ = π/4 and the normal modes are

composed of both â and b̂ operators.

A.2. Symmetry in the Dicke model

Quantum phase transitions are a result of a break in the symmetry of the system.

Above we saw how the operators ĉ1 and ĉ2 change their nature as the system enters the

superradiant regime. We can study the break in symmetry by introducing the parity

operator

Π = exp
[

iπ
(

â†â+ Ĵz + `
)]

(A.15)

This operator commutes with the Dicke Hamiltonian (4.36), having two eigenvalues

π = ±1. Thus the eigestates of the Dicke Hamiltonian are divided in two subspaces

depending upon the number of excitations, â†â+ Ĵz + `, is even or odd. The eigenstates

of Π are shown in Figure A.1 for ` = 5, the circles represent π = 1 and the stars π = −1.
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Figure A.1.: Set of eigenstates of Π

The break in the symmetry can be studied by writing Π in the Holstein-Primakoff
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representation

Π = exp
(

iπ
(

â†â+ b̂†b̂
))

. (A.16)

Below the critical λ the operators have no displacement, thus the operator given by

(A.16) is a conserved quantity for λ < λc. In the superradiant phase, however, the

operators are displaced, e.g. â→ 〈â〉 + α̂ and the conserved quantity becomes

ΠSuper = exp
(

iπ
(

α̂†α̂+ β̂†β̂
))

. (A.17)

Above the critical point, the operator (A.16) is not a conserved quantity anymore,

demonstrating the change in symmetry that occurs at critical coupling.
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B. Quantum trajectory theory and

heterodyne/homodyne measurement

schemes

B.1. Jumps and conditional evolution in quantum trajectory

theory

In this appendix, we present a simple explanation of the main ideas behind the quantum

trajectory theory [76, 71]. To this end, we apply the quantum trajectory theory to the

simple phenomenon of spontaneous emission. The main idea of the quantum trajectory

theory is to infer the state of the system from a simulated detection record. One of its

advantages is that, in calculating the state of the system from a record of conditional

probability, PREC, and state, |ψREC〉, with

ρ =
∑

REC

PREC|ψREC〉〈ψREC|, (B.1)

we need to evolve, as we see below, a state vector rather than a density matrix. This was

particularly useful for generating Figure 7.1. For 100 atoms and a Fock basis truncated

at n = 100 we simulated a state with only 100 × 101 elements, instead of a density

matrix of 1002 × 1012. Also important is the possibility of simulating the experimental

setup, taking into account the measurement back action on the system. This is of

fundamental importance in quantifying the entanglement in a system subjected to an

actual measurement scheme (as seen, e.g., in [67, 77] and [20]).

Quantum trajectory theory can be thought of as an application of Bayes’ theorem
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B. Quantum trajectory theory and heterodyne/homodyne measurement schemes

to quantum physics; the aim of Bayesian inference is to learn future probabilities from

prior ones, as expressed by

P (A|C) =
P (C|A)P (A)

P (C)
. (B.2)

The event set is determined by the detection scheme we are interested in. For example,

if we are interested in detect photons from spontaneous emission of a two level atom,

we can define C as the event “no photon is detected”, and A as the event “atom in the

excited state”. In addition, we define the events BT for “photon detected at time T”,

and D, for “atom in the ground state”. The probabilities P (A) and P (D) at time t can

be written as,

P (A, t) = P (A|C)P (C) +

∫ t

0
P (A|BT )P (BT )dt′ (B.3)

P (D, t) = P (D|C)P (C) +

∫ t

0
P (D|BT )P (BT )dt′. (B.4)

Notice that we do not assign a state for the system; we are obtaining information from

the measurement events C and BT only. It is easy to infer the conditional probabilities

which make reference to the state of the system once a photon was detected – given that

no superpositions of states are allowed – we have simply that

P (A|BT ) = 0 (B.5)

P (D|BT ) = 1. (B.6)

On the other hand we cannot infer the state of the system while no detection has

happened. All we know is that, as time passes and no detection is made, the more

certain it is that the atom is in the ground state. We use Bayes theorem to write

P (A|C) =
P (C|A)P (A)

P (C)
=
P (A)

P (C)
, (B.7)

P (D|C) =
P (C|D)P (D)

P (C)
=
P (D)

P (C)
, (B.8)

where we used the fact that P (C|A) = 1 and P (C|D) = 1. The probability P (C) is

given by P (A, t) + P (D, t = 0). We stress the fact that the analysis carried out so far
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does not take into consideration coherence. The conditional density matrices, used to

infer the state,

ρ(t) = P (C)ρC +

∫ t

0
P (BT )ρBT

(t′)dt, (B.9)

given by

ρC = |+〉〈+|P (A|C) + |−〉〈−|P (D|C), and (B.10)

ρBT
= |−〉〈−|, (B.11)

have only diagonal elements – we do not allow cross terms |+〉〈−|.
Up to this point it may seem we are walking in circles; notice that the conditional

probabilities were calculated in terms of the system probabilities, P (A) and P (D), but at

no moment have we mentioned how to obtain these. This is the point where the physical

dynamics of the system must be introduced; for the case of no coherence, this is given

by the Einstein equations for quantum jumps, and for the full quantum description, by

the Schrödinger equation. The events C and BT are simulated from Monte Carlo rules;

the whole process is summarized in the following diagram:

Ĥ|ψ〉
Probabilities

========⇒
State feedback⇐=========

Event
Monte Carlo rules⇐=========== .

The system dynamics is used to calculate the probabilities, and Monte Carlo rules decide

whether an event happens. This is equivalent to simulating an experimental record with

the measurement back-action in the system – coming through ρD and ρBT
. For the

jump in the spontaneous emission case, the solution of the Einstein equations gives

P (A, t) = P (A, 0)e−γt, and P (D, t) = 1 − P (A, t); we use the normalization condition,

P (C) +

∫ t

0
P (BT )dt′ = 1, (B.12)

to calculate P (BT , t) = γe−γtP (A, 0). With all these probabilities, we can simulate the

record by generating a stream of random numbers, ri, and comparing them with the

probability of an emission within a time interval ∆t, given, in the Einstein quantum

jumps view, by γ∆t. When ri < γ∆t, the state of the system is assigned ρD; when

this condition in not satisfied, signaling a photodetection, the system collapses to state
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B. Quantum trajectory theory and heterodyne/homodyne measurement schemes

ρBT
. The process is repeated many times and the states obtained for each realization

are summed and renormalized to obtain ρ(t). This is the equivalent of performing the

integral (B.9).

As Feynman noted [78], quantum mechanics deals with probability amplitudes rather

than probabilities themselves. The approach above has to be extended in order to deal

with superpositions. Conditional probability for such states is not a straightforward

concept. Say, e.g., we have a photodetection event, BT . Inference of the state prior to

photodetection, i.e., determining the coefficients c± of the state

|ψ〉 = c+|+〉 + c−|−〉 (B.13)

is not easy if superpositions are allowed – in the case where only jumps can occur, we

know that the atom should have been in the excited state. On the other hand, it is

easy, given the state is |ψ〉, to calculate the probabilities. In order to write an equation

like (B.1) allowing coherence, we have to define what the action of the measurement

device is. We shall not interpret “measurement device” literally. When we derived the

master equation (2.55) we considered the environment to be coupled to the system in

such a way that photons could be lost irreversibly. Measuring, in this case, means an

output channel to a reservoir that can give information to an observer or not. In any

case, the dynamics of a measurement – independent of it providing information or not

– is non-unitary. Instead of calculating the dynamics of a state coupled to the reservoir,

through a master equation, we simulate many realizations of the effect of the reservoir

on the system, and infer the state from an average, as we would do in a real experiment.

For a simple photo-detection, this effect is described by the operators

ĤC = Ĥ − iκâ†â, (B.14)

Ĵ =
√

2κâ. (B.15)

Here, ĤC is a non-Hermitian Hamiltonian associated with the terms −κ(â†âρ+ κρâ†â)

in the master equation, and Ĵ represents the effect of a jump event (photo-emission) on
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the system. The full dynamics of the system can be written as

ρ̇ = (LC + LJ) ρ, (B.16)

where

LCρ = i−1(ĤCρ− ρĤ†
C) (B.17)

and LJ ρ = Ĵ ρĴ †. The evolution of the system density operator can be written as a

Dyson expansion,

ρ(t) = eLCtρ(0) +

∫ t

0
eLC(t−t′)LJ eLC(t′)ρ(0)dt′. (B.18)

The first term of this equation represents the evolution conditioned upon no photon

detection,

ρC = eLCρ(0) = e−iĤCt|Ψ0〉〈Ψ0|eiĤ†
C t = |Ψt〉〈Ψt|. (B.19)

The second term gives the evolution conditioned upon a photodetection at time t′,

ρBT
(t) = e−iĤC(t−t′)Ĵ |Ψt′〉〈Ψt′ |Ĵ †eiĤ†

C(t−t′) = |Ψ′
t〉〈Ψ′

t|. (B.20)

This equation can be rephrased in terms of states. We note that the time evolution given

by the non-Hermitian Hamiltonian is non-unitary. The norm of the state eiĤC t|Ψ0〉 gives

its probability. We can define the normalized conditional states

|ψC〉 =
|Ψt〉

√

〈Ψt|Ψt〉
, (B.21)

|ψBT
〉 =

|Ψ′
t〉

√

〈Ψ′
t|Ψ′

t〉
, (B.22)

and redefine the states ρC = |ψC〉〈ψC | and ρBT
= |ψBT

〉〈ψBT
| so that they are normal-

ized. The Dyson expansion becomes

ρ(t) = P (C)ρC +

∫ t

0
P (BT )ρBT

(t′)dt, (B.23)

with P (C) = 〈Ψt|Ψt〉 and P (BT ) = 〈Ψ′
t|Ψ′

t〉. The Monte Carlo rules can be applied in

this case to calculate ρ(t) for a single trajectory. In pseudo code it can be written as

Compute P (BT ) = 〈Ψ′|Ψ′〉

If rt < P (BT ) then |Ψ(t+ ∆t)〉 = Ĵ |Ψ(t)〉

Else |ψ(t+ ∆t)〉 = eiĤC∆t|Ψ〉
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The process is repeated many times in order to calculate the average (B.1) and obtain the

density matrix. The record is created, as in a experiment, by “preparing” the same initial

state many times and repeating the measurement. The more we repeat the experiment,

the more precise is our knowledge about the state. This treatment can be made very

rigorous to include different measurement schemes, as described below.

B.2. Homodyne and heterodyne detection schemes

To introduce the Homodyne/Heterodyne detection schemes in the quantum trajectory

theory one have to consider what are the effects of the field of the local oscillator. To

account for the extra detector needed by this kind of measurement, we need two output

channels, one for each arm of the beam splitter

ĴP =
1√
2

(

E + Ĵ
)

, (B.24)

ĴM =
1√
2

(

E − Ĵ
)

. (B.25)

According to the definitions of section B.1, we write the total evolution for the system

as a combination of the jumps given above, plus Hamiltonian dynamics, which is given

by

eLCtρ = B̃(t)ρB̃†(t), (B.26)

where LC is the Liouvillian operator defined in equation (B.17), and B̃(t) = e−iĤBt. We

add the contribution of the local oscillator field to the non-Hermitian Hamiltonian

ĤB → ĤB + i
1

2
|E|2 (B.27)

The addition of the local oscillator will make the detectors fire much faster than in the

simple photodetection case. Were we applying Monte Carlo rules in this case the time

steps should be much smaller so the probability of photodetection satisfies ∆tγ|E|2 < 1.

Instead, we consider that the back action is continuous over time. We consider the

detections occur at regular intervals of time1, τ , and write the operator giving the state

1This is not a fundamental requirement. The interval between the detections can be arbitrary; we opt

for a simplified derivation.

136



B.2. Homodyne and heterodyne detection schemes

of the system at time ∆t = Nτ as

|Ψ(t+ ∆t)〉 = B̃(τ)ĴtN−1
B̃(τ)ĴtN−2

B̃(τ) · · · B̃(τ)Ĵt1B̃(τ)|Ψ(t)〉, (B.28)

where Ĵtn = {ĴP , ĴM}, and N is the total number of times the two detectors fired in

the interval ∆t. Considering that N → ∞, i.e. τ → 0, we can expand the evolution

operator as

(

Ĵ + E
)(

1 + iĤBτ
)(

Ĵ − E
)

· · ·
(

1 + iĤBτ
)(

Ĵ + E
)

. (B.29)

We denote the number of detections in the channel ĴP (M) by NP (M), and take the limit

N → ∞ with ∆t→ 2NP (M)/ |E|2, keeping only terms of order ∆t,

( E√
2

)N

e−
1

2
|E|2∆t

{

(

1 + iĤB
∆t

N

)N

+
NP −NM

E Ĵ − (NP −NM )2 −N

2E2
Ĵ 2

}

(B.30)

The first term in the brackets is the Hamiltonian evolution. The terms with NP and NM

will depend on the state of the system and will introduce the measurement feedback.

They are the intensity of the field in each arm of the beam splitter plus fluctuations,

and can be written as

NP =
1

2
〈(E∗ + Ĵ †)(E + Ĵ )〉 +

1√
2
|E|∆WP (t), (B.31)

NM =
1

2
〈(E∗ − Ĵ †)(E − Ĵ )〉 +

1√
2
|E|∆WM(t), (B.32)

where ∆WP (M) are Gaussian distributed random numbers representing the shot noise of

the local oscillator, and have the properties ∆W 2
P (M) = ∆t and 〈∆WP ∆WM 〉 = 0. The

term multiplying the expansion will change the normalization of the state. By replacing

the expressions for NP and NM into (B.30) we obtain (7.17)

The Heterodyne measurement scheme is obtained in a similar way. First we must

consider the local oscillator has noise in both amplitude and phase, we must consider

∆W → ∆Z,

where ∆Z is the complex Gaussian noise given in section 7.2.1. We also introduce the

time dependency in the local oscillator field E → Eei∆ωt, with ∆ω = ω−ωLO. We follow

the derivation, and neglect the high frequency terms e2i∆ωt to obtain equation (7.19).
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Wiley, 1977.

[27] M. Xiao, H. J. Kimble, and H. J. Carmichael, “Quantum Fluctuations for 2-Level

Atoms in a High-Q Cavity with a Spatially Varying Field Mode,” Physical Review

A, vol. 35, no. 9, pp. 3832–3843, 1987.

[28] H. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and

Fokker-Planck Equations. Springer Verlag, 2002. In this book the comutation

relations are different from the ones used in this work, namely:
[
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