Characterization of
Quantum Phase Transitions
in Dissipative Cavity QED Systems
and Cold Atoms with Disorder

DISSERTATION

zur Erlangung des akademischen Grades
“Doktor der Naturwissenschaften”
an der
Fakultat fiir Mathematik, Informatik und Physik
der
Leopold-Franzens-Universitat Innsbruck

vorgelegt von

Sarah Morrison

2008






Z'USAMMENFASSUNG

Die vorliegende Dissertation befasst sich mit der Entwicklung neuartiger Methoden
zur Implementierung und Charakterisierung von Quantenphaseniibergdngen (QPU) in
atomaren Systemen. Sie ist in zwei Abschnitte aufgeteilt: i) Verschrankungsverhalten
bei QPU in dissipativen Spinsystemen im Rahmen der optischen Cavity-QED; ii) Ein
Schema zur Charakterisierung von ungeordneten Quantensystemen, realisiert durch
kalte atomare Gase in optischen Gittern.

Der erste Teil der Dissertation zeigt die Auswirkungen der Dissipation auf das bere-
its bekannte Auftreten von Verschrankungskritikalitit in QPU in wechselwirkenden
kollektiven Spinsystemen. Es wird ein optischer Cavity-QED Aufbau prasentiert, der
ein dissipatives Lipking-Meshkov-Glick Model fiir wechselwirkende Spins realisiert und
bei dem die aus dem Hohlraumresonator entweichenden Photonen eine quantitative
Aussage tiber das kritische Verhalten des Systems liefern, insbesondere iiber die Ver-
schrankung zwischen Spinpaare. Im Fall schwacher Dissipation, das bedeutet, bei
dominierender koharenten Dynamik, stellt sich heraus, dass der wohlbekannte Zweite-
Ordnung QPU fiir ferromagnetische Kopplung erhalten bleibt. Bemerkenswerterweise
ergibt aber ein Hinzufiigen von Dissipation einen zusatzlichen Erste-Ordnung QPU,
welcher in einem aquivalenten geschlossenen System nicht existiert. Eine Analyse der
messbaren Spin-Spin Verschrankung im stationaren Zustand zeigt ein deutliches Maxi-
mum an beiden kritischen Punkten, das mittels einer atomaren Phasenraumverteilung
interpretiert wird. Die Dynamik der Verschrankung in dem System weist neben der
Kritikalitat am QPU fiir lange Zeiten zudem ein vielschichtiges transientes Verhalten
fiir kurze Zeiten auf.

Im entgegengesetzten Regime mit starker Dissipation verursacht der Wettbewerb
zwischen dissipativen und kohérenten Prozessen entweder einen Zweite- oder FErste-
Ordnung dissipativen QPU, abhéangig alleinig vom Verhéltnis der Systemparameter.
Uberraschenderweise bleibt die Verschriinkung im stationiren Zustand am QPU weit-
erhin maximal, trotz deutlicher Modifikationen gegeniiber dem Fall schwacher Dissi-
pation. Zusétzlich weist der Erste-Ordnung Ubergang im semiklassischen Limes sowie
auch in den messbaren homodynen Spektren des Ausgangsfeldes des Hohlraumres-
onators Merkmale von Bistabilitat auf.



iv Zusammenfassung

Der zweite Teil der Dissertation befasst sich mit der Unterscheidung von verschiede-
nen Phasen in ungeordneten Quantensystemen bei Betrachtung von Korrelationen
zwischen unabhangigen Systemen mit identischem Unordnungspotential, sogenannte
“Replikas”. Mittels kalte atomare Gase in einem optischen Gitter wird eine neue
Methode vorgestellt fiir die Kreation von Replikas und anschliessender Messung der
durch die Unordnung induzierten Korrelationen dazwischen, assoziiert mit Quanten-
Glas Phasen. Als Anwendung werden Ergebnisse fiir Korrelationen im ungeordneten
Bose-Hubbard Model prasentiert, die zur Identifizierung der Bose-Glas Phase fiihren.



ABSTRACT

This thesis develops novel schemes to implement and characterize quantum phase
transitions (QPTs) using atomic systems. It is divided into two parts: i) Entanglement
behavior in the QPT of dissipative spin systems realized in optical cavity QED and ii)
A proposal for the characterization of disordered quantum systems implemented with
cold atomic gases in optical lattices.

The first part of the thesis determines the effects of dissipation on the well known en-
tanglement criticality occurring in the QPT's of interacting collective spin systems. An
optical cavity QED setup is presented which realizes a dissipative Lipkin-Meshkov-Glick
model of interacting spins where light emanating from the cavity provides quantitative
probes of the critical behavior of the system, including the entanglement between pairs
of spins. In the case of weak dissipation, where coherent dynamics predominates, the
well known second-order QPT for ferromagnetic coupling is found to persist. Remark-
ably, the addition of dissipation induces an additional first-order QPT not present in
the equivalent closed system. An analysis of the measurable spin-spin entanglement in
the steady state shows pronounced maxima at both critical points which can be inter-
preted using an atomic phase space distribution. The dynamics of the entanglement in
this system also exhibits criticality at the QPT at long times as well as a rich transient
behavior at shorter times.

In the opposite regime of strong dissipation the competition between dissipative
and coherent processes drives either first- or second-order dissipative QPTs depending
only on the ratio of system parameters. Surprisingly the steady state entanglement
still reaches a maximum at either QPT, despite significant modifications compared to
the weak dissipation case. Furthermore, the first-order transition exhibits signatures
of bistability in the semiclassical limit and also in the measurable homodyne spectra
of the cavity output field.

The second part of the thesis is concerned with distinguishing different phases of a
disordered quantum system by considering correlations between independent systems
with identical disorder potentials, so-called “replicas”. Utilizing cold atomic gases in an
optical lattice a novel method is proposed to create replicas, and subsequently measure
the disorder induced correlations between them, associated with quantum glass phases.
As an application results for the correlations in the disordered Bose-Hubbard model
are presented and shown to help identify the Bose-Glass phase.
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(GENERAL INTRODUCTION

Atomic physics has recently emerged as being one of the most rich and diverse
research areas of modern physics due to its suitability for engineering, controlling and
observing individual and many-body quantum systems. The vast and rapid experimen-
tal developments in the area of cavity quantum electrodynamics (cavity QED) [1, 2]
and trapped ultra-cold atomic gases [3] allow for the direct manipulation of atoms and
photons, and for the fundamental study of matter-matter [4] and matter-light interac-
tions [5]. These tremendous achievements have lead to many new fascinating and far
reaching applications, such as high precision atomic clocks [6, 7], quantum information
processing [8-10], simulation of quantum many-body systems [10, 11|, and tests of the
theory of quantum electrodynamics [12].

Cavity QED traditionally explores the coupling of atoms (or ions) to the confined
electromagnetic field of radiation inside a resonator [13]. When the cavity field con-
tains only a few photons, the quantum description of the electromagnetic radiation
becomes important and the corresponding strong coupling regime for individual atoms
has been observed [14-16]. Employing cold atomic clouds, and improved trapping
techniques [17, 18], has enabled cavity QED to enter a new regime where the quantum
motion of the atoms can be manipulated by the light force of the cavity field. This
advance has lead to important applications including the observation of the motion of
atoms inside the cavity [19, 20], cavity cooling of atoms [21, 22|, the non-destructive
observation of photons inside a cavity [23], and the controlled production of single
photons [24-26]. Beyond single atom experiments, collective coupling of multiple cold
atoms to the same field mode of the cavity [27] has lead to the observation of collective
atomic recoil lasing [28], collective motion and ordering of the atoms [29], and super-
radiant Rayleigh scattering [30]. An important aspect of cavity QED systems is the
possibility of monitoring the photons that leak out of the cavity, offering a unique win-
dow on the system’s behavior and properties via fluorescence and quadrature-variance
measurements. Recently, alternative systems that offer the possibility to study cav-
ity QED have emerged such as superconducting qubits coupled to transmission lines
cavities [31] and quantum dots in photonic crystal nano-cavities [32].



2 General Introduction

Dilute atomic gases can now be routinely cooled to the regime where particles ex-
hibit fully quantum behavior by employing the well developed techniques of laser cool-
ing [33], magnetic and optical trapping [33], and evaporative cooling [34]. For bosonic
particles this results in the formation of a Bose-Einstein-Condensate at sufficiently low
temperatures [35-39], in which all particles occupy the same quantum state and the
system exhibits matter-wave coherence. On the other hand, for fermionic particles,
at sufficiently low temperatures a quantum degenerate Fermi gas is obtained [40-42],
enabling for example the study of fermionic superfluidity [43, 44]. Mixtures of bosonic
and fermionic gases have also recently been cooled to quantum degeneracy [45-48] and
used to create composite molecules [48] and to observe phase separation [46]. In ad-
dition to manipulating atoms by magnetic fields, far-off resonant coherent laser light
can be used to generate tailored dipole traps for neutral atoms and to couple the in-
ternal states of an atom. The strength and type (repulsive or attractive) of collisional
interactions between particles can also be modified using optical [49] and magnetic [50]
Feshbach resonances. Importantly, many different techniques have been developed to
precisely measure properties of cold trapped gases, for example time-of-flight measure-
ments reveal the momentum distribution of the system.

The common defining feature of the above systems is their suitability for implement-
ing a broad range of quantum many-body systems that can be described accurately
and transparently by idealized (but nontrivial) many-body Hamiltonians. Furthermore
these systems offer the possibility for quantum critical phenomena, i.e., transitions be-
tween distinct quantum phases, in response to variations of an effective field or particle-
particle interaction strength around some critical value [51]. It should be noted that
in contrast to classical systems, where phase transitions are driven by thermal fluctu-
ations, quantum phase transitions (QPTs) are driven purely by quantum fluctuations.
Observing critical behavior of various properties in these system is also straightforward
by employing standard measurement techniques.

Cavity QED systems also offer the possibility to study many-body systems with,
in particular, long-range interactions due to the collective coupling of all atoms to
a single cavity field mode of the resonator. This was first considered by Dicke, who
studied the collective effects of atoms coupled to a common single field mode, albeit in a
different physical scenario, and showed that the spontaneous emission of the atoms can
become enhanced, so called superradiance [52]. Subsequently, it was shown that both
a thermal equilibrium phase transition [53] and a QPT [54] occur in the Dicke model,
where for sufficiently strong coupling the system can enter the superradiant phase.
Recently, generalizations of the Dicke model have emerged, incorporating for example
general linear coupling [55], additional short range spin interactions [56], extended
ensembles [57], and multiple modes [58], all of which offer the opportunity to study
more complex QPT’s. A closely related model occurs in nuclear physics, namely the
Lipkin-Meshkov-Glick (LMG) model [59] used to describe the behavior of fermions in
nuclei. Originally, this model described a collection of spins identically coupled via
ferromagnetic interactions, and it was shown that as the coupling strength is varied a



QPT occurs between states of different spin polarization. Similarly to the Dicke model,
a generalization of the coupling can lead to different types of QPT, such as continuous
and discontinuous [60].

Important insights into quantum phase transitions have been obtained from an
analysis of the quantum entanglement properties of critical spin systems [61-64]. En-
tanglement expresses the presence of non-local quantum correlations [65, 66] and has
been the subject of intense study over the last two decades, especially in the context
of being a resource for quantum information processing [67]. In the context of QPT’s
it has been demonstrated that entanglement between pairs of individual spins, char-
acterized by the so-called concurrence, or between blocks of spins, characterized by
the so-called entanglement entropy, can display marked critical behavior and scaling at
quantum critical points [64]. Perhaps the most intriguing insight provided by studies
of entanglement criticality is the manifestation of universality at the critical point; for
example it has been observed that a calculation of the scaling of the entanglement
entropy in spin systems is quantitatively equivalent to the entropy of the vacuum in
quantum field theories [63]. Despite these exciting developments, the vast majority of
studies of entanglement criticality has been restricted to closed systems, with very little
being known about entanglement criticality in open dissipative quantum many-body
systems [68].

Dissipation in quantum many-body systems adds yet another degree of freedom to
a system which can modify an underlying closed system QPT or lead to entirely new
dissipation-driven QPTs. For individual systems the effects of dissipation on the same
scale as the characteristic frequency are well known [69]. However, only very recently
have dissipative many-body systems in condensed matter physics been considered [70],
for example the Ising model [71], 1D electron liquids [72], 2D Josephson-Junction ar-
rays [73], and disordered systems [74, 75]. In quantum optical systems, such as cavity
QED, dissipation is typically unavoidable and non-equilibrium phase transitions in open
collective atomic systems have previously been considered, such as the phenomenon of
optical bistability [76] and collective resonance fluorescence [77]. Dissipation will also
affect entanglement in a system, and for the case of few body systems this has been
intensively studied, especially in the context of quantum computing (see for exam-
ple [78]). Surprisingly, it has been shown in many systems that despite dissipation and
associated decoherence, entanglement can still persist [79-83].

Obviously, entanglement in a dissipative quantum many-body system is of consid-
erable interest and in fact can persist and exhibit criticality at a QPT [68]. Nonetheless
a QPT of collective spin models, such as the Dicke model or the LMG model, in optical
cavity QED systems remains elusive (despite the long-range interaction provided by
the cavity field mode) due to the large frequencies associated with optical fields [84].
Recently, however, a feasible experimental implementation for the Dicke model has
been proposed [85] by considering an open cavity QED system that is driven by addi-
tional external laser fields involving Raman transitions between atomic ground states.
In such an open setup conventional thermal equilibrium transitions are replaced by
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dynamical non-equilibrium transitions, and measurements on photons that leak out
of the cavity can provide direct information about the energy spectrum or entangle-
ment [85]. Motivated by these findings, a cavity QED setup in the dispersive regime is
proposed in part I of this thesis which can be used to realize an open dissipative LMG
model. After characterizing the QPTs, the measurable pairwise entanglement in the
steady state is determined and shown to reach a maximum at the QPT. For the case of
weak dissipation only slight modifications occur compared to the closed system case,
whilst in the opposite limit of strong dissipation the QPT is dramatically altered and,
surprisingly, entanglement criticality is still exhibited.

By contrast, cold gases in a periodic optical lattice (a standing wave formed by a
pair of counter-propagating lasers) can be used to implement a wide variety of quan-
tum lattice models commonly having short range interactions [4, 86, 87]. One of the
classic examples is the Bose-Hubbard model [88] describing interacting bosons in an
optical lattice, which exhibits a superfluid to Mott-Insulator transition as the inter-
action strength is varied [89]. Further elementary models include the Fermi-Hubbard
model [90], Bose-Fermi mixtures where phases of composite fermions are predicted [91],
and low dimensional systems [93-95], where strong quantum fluctuations occur [92].
Changing the geometry of the optical lattice can for example be used to investigate
frustrated quantum magnets [96], whilst more elaborate setups, for example involving
multiple internal states or coupling to a molecular state, can be used to realize models
exhibiting exotic quantum phases [97, 98]. By using dipolar molecules in an optical
lattice [99], general lattice-spin models can be realized where the range, strength and
anisotropy of the interactions can be completely controlled giving rise, for example, to
topological quantum phases [99].

The additional presence of disorder in quantum many-body systems presents an-
other exciting avenue of research, and has been extensively studied in condensed matter
systems. Disorder was first considered by Anderson, who showed that a single particle
in a static disordered potential can become localized due to coherent back-scattering
off random impurities [100]. Since Anderson’s seminal work, much progress has been
made towards understanding the role of disorder in many-body systems; for “dirty”
electrons (fermions) the phenomenon of weak localization [101] and the Metal-Insulator
transition [101, 102] have been extensively studied, as well as the super-conductor to in-
sulator transition in thin super-conducting films [103]. On the other hand, for a system
of bosons in a random potential, originally proposed in the context of superfluid *He in
porous media, the addition of disorder gives rise to an insulating Bose Glass phase [104],
characterized by a finite compressibility and vanishing excitation gap. Perhaps one of
the most exciting disordered systems though is the much-debated Spin-Glass, which
occurs in a collection of spins that are randomly coupled and consequently exhibit
frustration due to conflicting couplings [105, 106]. The striking “glassy” behavior of
this system is manifested in the observation of the slow dynamics of magnetic proper-
ties associated with long relaxation times and randomly frozen directions of individual
spins [106]. One of the major difficulties that arises in glass phases in disordered media



is the absence of a simple order parameter distinguishing the different phases of the
system. Whilst it has been shown that the correlations between independent systems
subjected to the same disorder potential, so-called replicas, can be used to identify
a glass phase [107], this generally remains an inaccessible quantity in the disordered
materials usually considered in condensed matter physics.

Clearly then, implementing these systems in cold atomic gases, where in contrast to
condensed matter systems one has unprecedented control over the system parameters,
would provide useful insight into understanding disordered systems. In this vein there
have been several proposals recently for the implementation of the Bose-Glass [108],
Fermi-Glass [109], and Spin-Glass [109], and for the observation of Anderson Localiza-
tion [110]. The main challenge from the experimental point of view is the addition of
disorder to cold atomic gases which are inherently clean and isolated systems. Laser
speckle patterns have been used to implement disordered optical potentials [111-113]
and recently this has lead to the observation of Anderson Localization [114, 115]. Al-
ternatively, superimposing two optical lattices with incommensurate frequencies results
in a quasi-disordered potential [108] and this has been recently used to observe some
characteristics of the Bose-Glass [116]. Another implementation for disorder is the use
of a mixture of cold gases, where one species is quenched and acts as a local impurity
for the second species [110, 117, 118].

The main benefit of using atomic gases to implement disordered systems is the
possibility for controlling, in addition to system parameters such as interaction, the
aspects of the disorder itself’ for example, a specific random configuration (disorder
realization) can be recorded [112] and potentially reused. Another interesting pos-
sibility is that the disorder average over many different random realizations, which is
generally very difficult to determine theoretically in condensed matter systems, may be
calculated by using a superposition of quantum systems each encoded with a different
disorder realization [118]. Motivated by these notions, part II of this thesis comprises
a proposal of an efficient scheme for (i) the preparation of independent systems of cold
atomic gases in an optical lattice subjected to identical disorder potentials, so-called
replicas, and (ii) the subsequent measurement of the disorder induced correlations be-
tween these replicas. Such a scheme enables one to access the aforementioned order
parameters of glass phases and could be used to experimentally distinguish different
phases of a disordered system. Whilst the scheme is applicable to any type of one- or
two-dimensional disordered system realized with cold atomic gases in an optical lattice,
the focus will be on the case of bosons in a random potential where a determination of
this order parameter helps identify the Bose-Glass phase.

Overview

This thesis is split into two parts and contains 4 reprinted articles together with sup-
plementary chapters covering additional information not presented in the publications.
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Part I of the thesis focuses on entanglement criticality in open dissipative collective
spin models that undergo quantum phase transitions. Chapter 1 provides some back-
ground to entanglement in QPTs for closed systems. The articles in chapters 2 and
3 summarize an implementation for a dissipative Lipkin-Meshkov-Glick model using a
cavity QED setup, and associated studies of the QPTs and corresponding entangle-
ment criticality for the case of weak dissipation. In chapter 4 the detailed microscopic
Hamiltonian underlying the proposed cavity QED setup is presented, which has been
omitted from the two preceding articles. Chapter 5 contains a detailed derivation of
the adiabatic elimination of the cavity modes used to derive the effective spin model of
the two preceding chapters. The article in Chapter 6 is concerned with collective spin
systems in the regime of strong dissipation and summarizes the study on entanglement
criticality for the resonance fluorescence model and the dissipative LMG model.

In part IT of the thesis the characterization of disordered systems is considered. The
article in chapter 7 summarizes a novel proposal for the measurement of the correlations
between systems with identical disorder potential and demonstrates how this can be
used to identify the Bose-Glass phase in the disordered Bose-Hubbard model.
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Part 1

Entanglement in Dissipative
Collective Spin Systems






CHAPTER 1

ENTANGLEMENT IN QUANTUM PHASE
TRANSITIONS

In this chapter we wish to give an introduction to the behavior of entanglement
in the vicinity of the quantum phase transition (QPT) of a many-body system. For
closed systems it is well established that the entanglement of the ground state displays
criticality at the QPT [1] due to the presence of long-range quantum correlations in the
system. Specifically, in the majority of systems considered the entanglement reaches a
maximum at the QPT and is continuous (discontinuous) for a second-order (first-order)
QPT. The scaling of the entanglement with finite system size has also been studied
extensively and the emergence of universality at the QPT has also been observed.

Whilst entanglement of few particle systems subjected to dissipation has been ex-
tensively studied [2-4], much less is known about the behavior of entanglement in
open quantum many-body systems [5, 6]. Thus in this part of the thesis (chapters 2
to 6) we study the behavior of entanglement in the open Lipkin-Meshkov-Glick (LMG)
model [7] which is a paradigm for quantum many-body systems exhibiting a QPT. In
chapters 2 and 3 we consider the cases of weak dissipation and study the behavior of
the bi-partite entanglement which, as in the equivalent closed system, is found to peak
at the critical point. Then, in chapter 6 we consider the opposite regime of strong
dissipation in which a dissipative QPT occurs. In this situation the effects of dissipa-
tion become significant but surprisingly we still observe a characteristic peaking of the
bipartite entanglement at the QPT.

In section 1.1 of this chapter we give a brief overview of some of the well known
entanglement criticality features at the QPT of closed systems, focusing primarily on
the results for the LMG model [7]. Then in section 1.2 we will consider a phase space
description of many-body systems which can be used to interpret the extremal behavior
of entanglement at the QPT.
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1.1 Entanglement Criticality in Closed Systems

1.1.1 Entanglement

Entanglement expresses the presence of non-local quantum correlations in a system
and its fundamental importance in understanding the behavior of many-body systems
has been established. For pure states the amount of bipartite entanglement between
two subsystems A and B is usually quantified by the von-Neumann entropy of entan-
glement [8],

S = —Tr{palog, pa}, (1.1)

where py = Trp{p} is the reduced density matrix of system A and p = |¢)(¢)| with |¢)
the joint state of systems A and B. This measure takes the value zero for a separable
state and a value of one for a maximally entangled state (e.g. a Bell state for two level
systems). For mixed states the bipartite entanglement can be computed in a number
of ways [9]; for the special case of a pair of spin-1/2 systems (a two level system), which
we will be our primary interest later on, the bipartite entanglement can be quantified
by the concurrence [10],

C = max{0, VA = vV = v = VA, (1.2)

where \; are the eigenvalues in descending order of the so-called “spin-flipped density
matrix”

p = p12(01y © 09y)piy(01y ® 02y), (1.3)

with p12 the density matrix of the two spins and o;, the Pauli matrices. The concurrence
is zero for a separable state and attains the maximal value of one for the Bell states.

In many-body systems entanglement can arise either between certain subsystems or
it can involve all particles simultaneously [9]. For example, if we consider a collection
of spin-1/2 systems and imagine partitioning the system into two blocks, then we
can quantify the bipartite entanglement between the blocks using the von-Neumann
entropy of entanglement. If we consider on the other hand only two spins, by tracing
out the remaining spins, the bipartite entanglement of the resulting reduced, mixed
state can be quantified by the concurrence. Specifically, for the case of a symmetric
spin state the concurrence of any two individual spins is equal and can be computed
from the expectation values of the collective spin operators [11]. Whilst quantifying the
entanglement between an arbitrary number of spins of a multi-spin system is difficult,
for the special case of three spins a measure has recently been derived [12].

1.1.2 Criticality in quantum phase transitions

Quantum phase transitions arise in (interacting) many-body systems at zero temper-
ature as the competition between fluctuations originating from different coherent pro-
cesses drives the system between fundamentally different ground states as a control



1.1 Entanglement Criticality in Closed Systems 17

parameter of the system is varied across a critical point [13]. The first studies of
entanglement in QPTs focused on a one-dimensional chain of spin 1/2 systems with
nearest neighbor interactions, specifically the so-called Ising and XY models [13] were
considered. In these systems a QPT occurs as the interaction strength drives the sys-
tem from the paramagnetic phase to the ferromagnetic phase [13]. Consequently it
was shown that as the ground state changes dramatically in the vicinity of the critical
point so does its corresponding entanglement. Specifically it was found that the pair-
wise entanglement, as quantified by the concurrence, peaks close to the QPT [14, 15],
whilst the entanglement between two blocks of spins, quantified by the von-Neumann
entropy of entanglement, was found to diverge at the critical coupling strength in the
thermodynamic limit [16]. Moreover it was shown that the observed finite system size
scaling of both the entanglement entropy and the derivative of the concurrence at the
critical point exhibit universality! [15, 16].

Since then there have been countless studies reporting entanglement criticality in
a variety of different systems that display a QPT [1]. For the case of pairwise en-
tanglement the relationship between the non-analyticity of the ground state and the
entanglement thereof has been established [17-19]. Recently much progress has also
been made in understanding the criticality features of multi-particle entanglement at
the QPT of a system [20].

1.1.3 Example: Lipkin-Meshkov-Glick model

In this section we present a summary of the entanglement results found in the LMG
collective spin model. To this end let us first introduce the LMG model and briefly
explain the quantum phase transition encountered. The LMG model [7] descries the
collective interaction between N spin 1/2 systems according to the Hamiltonian

2\
Hime = —2hJ, — N(Jf +J7), (1.4)

where h is the magnetic field, A\ the interaction strength, v € [0,1] is an anisotropy
parameter, and J,, with a € {z,y,z,+,—}, are the angular momentum operators
obeying [J., J+| = £Jy and [Jy,J_] = 2J, (h=1). This Hamiltonian commutes with
J?, thus conserving the total angular momentum, and with e+, corresponding to a
parity (spin-flip) symmetry.

For the case of ferromagnetic interaction (A > 0) the ground state lies in the
maximal spin sector, j = N/2, and thus the effective Hilbert space dimension is reduced
from 2V to N + 1 with the basis given by the Dicke states |j, m) with m € [—j, —j +
1,...,7 — 1,7]. A quantum phase transition occurs for the critical coupling value of
Ac = h in the thermodynamic limit (N — 00), associated with a fundamental change

!No dependence on the microscopic details of the system parameters (such as coupling strength
and fields).
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in the ground state. Below the transition (A < h) the system is in the so-called normal
phase, where the unique ground state corresponds to the collective spin being polarized
in the direction of the magnetic field. Above the critical point (A > h) the system enters
the so-called broken phase, here the ground state becomes doubly degenerate due to
the breaking of the parity symmetry, and the collective spin can now be oriented in one
of two directions displaced from the z-axis (magnetic field direction). Note that for the
case of isotropic interaction i.e. v = 1 the Hamiltonian can be exactly solved due to the
(additional) conservation of the z component of angular momentum ([Hpmg, J.]=0).
We note that for finite system size the parity is conserved and the ground state remains
unique in the broken phase.

We now consider the behavior of the pairwise entanglement, as quantified by the
rescaled concurrence,? Cp = (N — 1)C, of the ground state of the LMG model as the
coupling strength is varied across the QPT. Initial numerical calculations of the con-
currence [21] for finite system sized showed that the concurrence peaked at the critical
point (see Fig. 1.1), whilst its derivative diverged at the critical point [21]. Subsequent
analytical calculations, based on the Holstein Primakov representation of angular mo-
mentum operators and the continuous unitary transformation technique [22], focused
on the thermodynamic limit and determined the scaling behavior of the concurrence
with finite system size at the critical point.

1

——
08 |- ——y=0.2
——=0.8
0.6 |-
Cr 0.4 |
02
0 1 e 1
0 2 4 5

Figure 1.1.  Rescaled concurrence of the ground state as a function of A
for different values of v, N = 1000, and h = 1. Figure reproduced with
permission of J. Vidal from Ref. [21].

We now focus on the special case of v = 0 and relate the observed entanglement
behavior directly to the ground state. In the normal phase (A < h) where the magnetic
field term of the Hamiltonian is dominant the entanglement is small since the ground
state is close to the unentangled state |7, j). Similarly in the broken phase (A > h) when

2Note that for the infinitely coordinated systems considered here, the rescaling is necessary to give
the correct non-trivial entanglement behavior, since the concurrence itself scales inversely with the
system size due to the infinite range interactions [21].
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the interactions dominate the state again is expected to have little entanglement as it
approaches an eigenstate of J, (at finite N it approaches a superposition of positive
and negative J, eigenstates). However when the interaction and magnetic field are
comparable, i.e. near the critical point, the state is generally a superposition of Dicke
states which is of course highly entangled.

Next we consider the entanglement between two spin blocks of size L and N — L,
as quantified by the von-Neumann entropy of entanglement, of the ground state in
the LMG as a function of the coupling strength. Both numerical calculations for
finite system size and analytical calculations in the thermodynamic limit show that the
entanglement entropy diverges logarithmically at the critical point [23] (see Fig. 1.2).
Similarly to the concurrence, in the normal phase (h > \) the entanglement entropy
is small, however, in the broken phase (h < \) the entanglement entropy approaches a
constant non-zero value, in contrast to the behavior of the concurrence.

1.5

Figure 1.2. Entanglement entropy, denoted &, as a function of the
magnetic field, with fited N\ =1, v = 1/4, 7 = 1/4 where T = N/L, and
N = 32,64,128,256 (from numerics) and oo (€©)). Arrows indicate the
behavior of the finite-size correction in various regions. The inset is a
zoom around h = /4 where & = 0, for N = 64 (black line) and oo
(gray line). The expression for £ is given in [23]. Figure reproduced
with permission of J. Vidal from Ref. [23].

Let us now turn to the case of anti-ferromagnetic interaction (A < 0) where a first
order QPT occurs for a critical field strength of h. = 0 in the thermodynamic limit [24].
In the regime of weak interactions the ground state again corresponds to the collective
spin being polarized in the direction of the magnetic field. In the opposite limit of
strong interactions the Hamiltonian is minimized by a state in the small spin sector
Jj < N/2, specifically at the critical point the ground state corresponds to a state
of zero spin. For finite system size and 0 < h < hgysy, Where hgysy is the so-called
supersymmetric point [24], the spin sector of the ground state is for even N j = 0
and for odd N 0 < j < N/2. We note however that in the thermodynamic limit the



20 Entanglement in quantum phase transitions

super-symmetric point approaches the critical field value, h., and thus a discontinuity
in the ground state (from spin j = N/2 to spin j = 0) occurs corresponding to a
first-order QPT. Correspondingly the pairwise entanglement is found to be maximal
and discontinuous at the critical point [24] (see Fig. 1.3).

0.9
0.8
=0
0.7 T
0.6
Cr 05
04 |
0s kL F12
0.2 \
0.1 | ,Y=1
0 L L | 1 L | | | I
0 02 04 06 08 1 12 14 18 18 2
h
Figure 1.3.  Rescaled concurrence of the ground state as a function of

the magnetic field for various anisotropy parameter v and for N = 10?
spins (A = —1). Note that for any 7, one has Cr = 0 at zero field. Figure
reproduced with permission of J. Vidal from Ref. [24].

Finally we note that entanglement dynamics in the LMG model have also been
studied in Ref. [25] for two different initially unentangled states. In particular, for the
rescaled concurrence it was shown that for an initial state polarized in the x direction
very little entanglement is ever produced, and for long times the rescaled concurrence
always vanishes for any choice of system parameters. However, for a state initially po-
larized in the z direction it was shown that the rescaled concurrence is both significant
and long-lived entanglement in the normal phase of the system (weak interaction).

1.2 Entanglement and Phase Space

In this section we pursue an explanation of the extremal behavior of entanglement at
the critical point of a QPT by studying the ground state of the system in a phase
space representation. Recently the phase space representation of many-body systems
was considered by introducing generalized many-body coherent states for both the case
of distinguishable and indistinguishable particles [26, 27]. The state of the system is
most conveniently represented in phase space using the so-called Q-function (or Husimi
function), defined as

Q&) = (€lpls), (1.5)
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where p is the density matrix describing the state of the system and |£) = |£;) ® [&2) ®
-+ ® [&,) are the many-body coherent states parameterized by the complex numbers
&. We will consider the case of a pure state |¢)) which then gives Q(&) = |(£|¢)|*.

Recall that coherent states closely resemble classical behavior and are represented
by a localized distribution of the Q-function in phase space®. Now let us consider the
so-called Réyni-Wehrl entropy of a state defined by [28]

(0) — ()
Sigy = = qlnMM, (1.6)
where the moments of the Q-function are given by
Mg = ¢ [ aue) oy (17)

with ¢ a normalization constant and du(§) the Haar measure of the group [26, 28]. S‘(;i

is considered to be a measure of the effective volume that the ()-function occupies in
phase space [28], and it has been conjectured (and in some special cases proven) that
it should take a minimum value for coherent states. Thus it was suggested in Ref. [26]
that large values of the Réyni-Wehrl entropy, associated with a delocalized @Q)-function,
should indicate quantum correlated, i.e., entangled states. For the special case of a
pair of qubits in a pure state it was shown that the moments of the ()-function can be
directly related to the concurrence [26]. Furthermore, it was then shown that for pure

states S‘SZ; is in fact a bipartite entanglement monotone (measure) [27].

Now that we understand the relationship between entanglement and the represen-
tation of a state in phase space, i.e., its ()-function, we can consider what happens in
a QPT. In Ref. [29] it was shown that the QPT in a system can in fact be related to a
bifurcation at the critical point of the fixed points of the corresponding semi-classical
system. A bifurcation corresponds to a change in stability of the fixed points of a
system as a “control” parameter is varied across a “critical” value. The typical situa-
tion encountered is schematically depicted in Fig. 1.4 corresponding to a supercritical
pitchfork bifurcation: a single stable steady state becomes unstable and two new stable
steady states emerge. Well away from the transition point the fixed points are well
separated, whilst in the vicinity of the critical point they are more closely spaced and
eventually merge at the critical point.

Importantly it was shown that the -function is expected to be concentrated around
the locations of the classical counterpart fixed points. Applying this to a QPT with a
pitchfork bifurcation of the semi-classical fixed point, we expect that well away from
a QPT the Q-function is localized around the individual fixed points and thus has
little entanglement*. However, in the vicinity of the critical point, where the fixed

3For the coherent states of the (quantum) harmonic oscillator, i.e. |a), Q(a) is in fact Gaussian.

4Note that in the regime of two stable fixed points, A > ., quantum correlation associated with
each individual fixed point is small (localized), however it is still possible that entanglement can be
significant as a superposition may be formed.
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fixed point

2 7

Figure 1.4. A supercritical pitchfork bifurcation as encountered in the
classical counterpart of certain QPTs. As the control parameter X is varied
across the critical value of . the single stable steady present for A < A.

becomes unstable whilst two new stable states emerge in the regime A > ..

points lie close together, the Q-function can become delocalized as it spreads across the
different fixed points and correspondingly substantial entanglement is present. At the
critical point itself the @-function is expected to achieve its maximum delocalization
as the fixed points merge and hence the entanglement should be maximal at this
point. This concludes our general discussion about the entanglement and phase space
representation in QPT’s, and we now proceed to give a specific example for the LMG
model.

1.2.1 Example: Closed Lipkin-Meshkov-Glick model

In this section we study the Q-function of the ground state of the ferromagnetic LMG
model and use this to interpret the entanglement behavior of the QPT. Since the LMG
model describes identical (long-range) interaction between all particles, the correlation
functions between any two particles, responsible for pairwise entanglement, is identical.
Moreover, as already mentioned previously in the context of the concurrence, the two
body correlation functions can in fact be related to correlation functions of the collective
system [11]. Thus we will argue that the essential features of the many-body Q-
function, such as its delocalization, are in fact captured by the @-function of the
collective system. We recall that the coherent states for a collective spin system are
given by the atomic coherent states

=ty (Y Yo, (18)

where 1 = ¢ tan g, with @ and ¢ corresponding to spherical coordinates, and |j, m) are
the Dicke states with m € [—j, —j+1,...,7—1, j] (for our system, j = N/2). Thus we
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can now study the so-called spin Q-function of the ground state |¢): Qq(n) = [{(n|v)|?
(see previous discussion for general definition of the @-function).

For the ferromagnetic LMG model an analysis of the stable fixed points of its
classical counterpart shows that a super-critical pitchfork bifurcation, as illustrated in
Fig. 1.4, occurs. For the open-LMG model the bifurcation is calculated in great detail
in the following two chapters and since this situation is qualitatively analogous to the
closed system we will not present explicit results here.

In Fig. 1.5 we plot Qs for several different values of the coupling strength A on the
Bloch sphere. We can see that below the critical point (A < h), Qs(n) is localized
around the unique fixed point at the top of the Bloch sphere (§ = 0) and consequently
entanglement is small in this region. Close to the critical point Qs(n) becomes delo-
calized and significant entanglement is observed (see Fig. 1.1 for v = 0). Above the
critical point (A > h) Qs(n) is now localized around the two new stable fixed points
and again entanglement is small in this region.

(@)
(© 2

Figure 1.5.  Steady state spin Q-function, Q(n), on the Bloch sphere for
(a) A=0.5, (b)) A\=1.1, (¢) A =1.2025, and (d) A= 1.75, with N = 50,
h = 1. Note that dark blue corresponds to the minimum value of zero of
Qs(n) whilst dark red indicates the mazximum value of Qs(n).

1.2.2 Entanglement criticality in open systems

So far we have discussed in detail the behavior of entanglement at the QPT of a closed
many-body system. In this final section we consider applying the ideas of the previous
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section to an open system. For an open system the ()-function of the steady state of
the system should be considered, i.e., Q(§) = (£|pss|€), where pys is the steady-state
density matrix, which is of course in general a mixed state. However, if the dissipation
in the open system is weak then we expect the system to exhibit primarily coherent
behavior. Thus the Q-function of the steady state should exhibit similar behavior to the
closed system case, i.e., localized at the fixed points well away from the transition and
delocalized at the transition, and thus we would still expect that entanglement peaks
at the QPT. Indeed for the open LMG model considered in the following two chapters
we find precisely this behavior of the Q-function® together with extremal behavior of
the entanglement.

In the case of strong dissipation the QPT of a system will be modified drastically;
specifically it is possible in this regime that the dissipation itself drives a quantum phase
transition as competition between coherent and dissipative processes occur. In this case
the above arguments cannot be applied as the state will generally be highly mixed. We
note however, for the system studied in chapter ... that nonetheless a supercritical
fixed point bifurcation occurs and consequently the entanglement is still observed to
be maximal at the QPT. This seems to suggest that the explanation of entanglement
in a QPT due to a delocalization of the ()-function still holds for dissipative cases. We
note that this was already observed in [5], prior to the work on closed systems, and it
seems that this could probably be proved now by generalizing the work of [26, 27, 29]
to the case of open systems.
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We present an optical cavity QED configuration that is described by a dis-
sipative version of the Lipkin-Meshkov-Glick model of an infinitely coordinated
spin system. This open quantum system exhibits both first- and second-order
nonequilibrium quantum phase transitions as a single, effective field parameter is
varied. Light emitted from the cavity offers measurable signatures of the critical
behavior, including that of the spin-spin entanglement.

Remarkable advances with trapped, ultra-cold atomic gases have opened up excit-
ing new avenues of research into strongly interacting many-body quantum systems [1].
Exquisite control of both motional and electronic degrees of freedom of cold atoms can
enable one to “tailor” atom-atom interactions and thereby implement a variety of sys-
tems that exhibit, in particular, quantum critical phenomena, i.e., transitions between
distinct quantum phases, driven by quantum fluctuations, in response to variations of
an effective field or interaction strength around some critical value.
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Recently, important insights into such transitions have been obtained from theoret-
ical studies of the quantum entanglement properties of critical spin systems (see, e.g.,
[2-10]). Bipartite entanglement measures characterizing entanglement between a pair
of spins (e.g., the concurrence) or between two blocks of spins (e.g., the entanglement
entropy) can display marked critical behavior and scaling at quantum critical points.
In this context, a simple but very useful example is the Lipkin-Meshkov-Glick (LMG)
model [11], which is described by the Hamiltonian

Hine = —2hJ, — (2A/N)(J2 +~J2), (2.1)

where {J,, J,, J.} are collective angular momentum operators for N spin-1/2 particles,
h and A\ are effective magnetic field and spin-spin interaction strengths, respectively,
and v € [—1, 1] is an anisotropy parameter. This system, in which each spin interacts
identically with every other spin, exhibits critical behavior at zero temperature; in
particular, either first- or second-order equilibrium quantum phase transitions may
occur, depending on the choice of A and , as the ratio h/\ is varied across a critical
value [6]. Notably, the second-order transition involves a change from a unique ground
state (normal phase) to a pair of macroscopically displaced degenerate ground states
(broken phase). Entanglement in the system displays the above-mentioned critical
behavior, reaching, in particular, a pronounced maximum at the critical point [5-7].

Given these interesting and topical features of the LMG model, it follows that the
physical realization of a system described by such a model would provide a valuable test
bed for studies of quantum critical phenomena and entanglement. Here we propose
an open-system (i.e., dissipative) version of the LMG model based on the collective
interaction of an ensemble of atoms with laser fields and field modes of a high-finesse
optical resonator. In the spirit of a recent proposal for realizing the Dicke model [12],
our scheme employs Raman transitions between a pair of atomic ground states and the
relevant energy scales (e.g., h, A) are set by light shifts of the atomic levels and Raman
transition rates and detunings.

The open nature of this system, a consequence of the external driving fields and
cavity mode losses, introduces a number of important differences from, and, arguably,
advantages over, the closed, Hamiltonian LMG system: (i) thermal equilibrium phase
transitions are replaced by dynamical, nonequilibrium phase transitions, (ii) the cavity
output fields offer quantitative measures of properties of the collective-spin system,
including entanglement, in the critical regime, and (iii) it is possible to observe both
first- and second-order quantum phase transitions as a single effective field parameter,
h, is varied.

We consider N atoms coupled via electric dipole transitions to three laser fields
and to a pair of independent (e.g., orthogonally-polarized) optical cavity modes. The
atomic level and excitation scheme is shown in Fig. 2.1, together with a possible ring-
cavity setup. At the location of the atoms, the cavity and laser fields are copropagating
traveling waves, with sufficiently broad beam waists so as to ensure homogeneous atom-
field couplings. These fields combine to drive Raman transitions between two stable
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electronic ground states of the atoms, |0) and |1) (energies wy = 0 and wy, respectively,
with i = 1) via the excited atomic states |r) and |s) (energies w, and w,). The laser
fields have optical frequencies w,q, ws, and w,, and couple to the atomic transitions
with Rabi frequencies €2,q, 24, and €2,1. Cavity field a, at frequency w,, couples to
the transitions |0) < |r) and |1) <> |s) with strengths g0 and gs, respectively, while
cavity field b, at frequency wy, couples to the transitions |0) < |s) and |1) < |r) with
strengths gy and g,1, respectively. As drawn in Fig. 2.1, the level scheme would apply,
e.g., to °Li, with the ground magnetic substates |F = 1/2,m = +1/2) as |0) and |1)
and a magnetic field perpendicular to the cavity axis to provide a splitting w; between
these states. Modes a and b would be orthogonal, linearly-polarized cavity modes, with
mode a polarized along the direction of the magnetic field.

Figure 2.1. (a) Atomic level and excitation scheme. (b) Potential
ring-cavity setup. The laser fields (dashed lines) are at frequencies that
are not supported by the resonator, but can be injected through one of the
resonator mirrors so as to be co-propagating with the cavity fields through
the ensemble.

The atom-light detunings A, = w, — w0 and A, = w, — wy are taken to be
much larger than any dipole coupling strengths, atomic linewidths, or cavity loss rates.
This enables us to adiabatically eliminate the states |r) and |s) from the dynamics and
neglect the effects of atomic spontaneous emission. Additionally, as depicted in Fig. 2.1,
we assume that only three distinct Raman transitions are of significance (i.e., resonant
or roughly resonant); i.e., we retain only those Raman processes that cause a change
in the electronic state of the atoms (]0) — |1) or |[1) — |0)) and also involve transfer of
a photon from a laser field to a cavity mode or vice-versa. All other possible Raman
processes are assumed to be far off-resonant and therefore negligible. Finally, taking
the wave numbers of the laser and cavity fields to be essentially equal, and introducing
the collective spin operators J, = %Zj\;l (11,1, = 10;0,4]), J4+ = Zj\[:l 11,%0;], and
J_ = (J)T, we can derive a master equation for the cavity modes and ground-state
atoms in the form

pg = —i[Hy, pg] + KaDla)pg + ruD[b]pe, (2:2)

where D[A]p = 2ApAT — ATAp — pATA, Kk, are the cavity field decay rates, and
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(omitting constant energy terms)

Hy = wol, + daa’a+ 6b'b + 25, J.ala + 26, J.b'b

N

+\/“NJw(a +a') + \/N(J,b + Jobh), (2.3)
with J, = (J; + J_)/2 and

Qa0 Q0
= Ol Bl Bl (2.42)
0a = Wa+w] —ws+ NGO, (2.4b)
O = wp+w) —we+ N, (2.4¢)

2 2 2 2

5:|: _ |gsl| + |g7"0| 5i _ |gr1| 4+ |950| 2 4d
a 2A, T 2A, 7 Y 2A, T 2A,7 (2.4d)
V- YN VNOGga VNQgn (2.4¢)
a Ar As y b QAT ) :

where w] = (ws — wy1)/2 =~ wy, and we have assumed the two Raman transitions
involving mode a to occur at the same rate A,.

We now assume (k2 + 02)Y/2 > A\, A\p,wp. In this limit, the cavity modes are
only weakly or virtually excited and may also be adiabatically eliminated to yield the
following master equation for the reduced density operator, p, of the collective atomic
system alone:

p = —ilHfste sl + SEDRLIp+ 12D p, (25
with h = —wg/2, A = 2)26, /(K2 + 62), and T'; = N2k, /(k? + 62) (i = a,b). Note that
in deriving (2.5) we have also assumed that ;, > d, ~ 0. If we then take d, > k, and
', < T'y, then the role played by each cavity mode in relation to the atomic system
is quite distinct. Specifically, mode a mediates the collective spin-spin interaction (of
strength A ~ \2/4,) associated with the Hamiltonian dynamics, whilst mode b mediates
the collective atomic decay (with rate I'y ~ A2 /k).

The equations of motion for the moments {(J.), (J,), (J,)}, derived from (2.5), do
not form a closed set. However, factorizing the means of operator products and taking
the limit N — oo (i.e., neglecting quantum fluctuations), we obtain a closed set of
semiclassical equations,

X = 20Y —T,ZX, (2.6a)
Y = —2nX +2)\ZX —T,ZY, (2.6b)
Z —2AXY + (X2 +Y?), (2.6¢)

where (XY, Z) = ((J.), (J,), (J.))/j with j = N/2, and X*+Y?+7Z? = 1 (conservation
of angular momentum). The stable steady-state solutions of (6) exhibit bifurcations at
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two critical effective field strengths, hS = [\ & (A2 — I'?)Y/2]/2 (we assume \ > 0,T}).
In particular, for b < h® and h > hS the stable steady-state solutions are { Xy = Y5 =
0, Zs = 1}, whereas for h® < h < h¢ one finds
A2 — 4h? I 2h
Xss == 2)\—/\’ szs - KXssy Zss - Ka
where A = A\ + (A2 — T'2)!/2. Note that at both (supercritical pitchfork) bifurcations a
detailed stability analysis [15] shows that a unique steady state becomes unstable and
two new stable steady states emerge. These semiclassical solutions, together with nu-
merical solutions of the finite- N master Eq. (2.5), are plotted in Fig. 2.2 as a function
of h/A (note that (J,) = (J,) = 0 for the finite-NV calculations). The plots indicate
both a first- and second-order phase transition as a single parameter, h, is varied. The
first-order (second-order) transition, at h = h® (h = hS), involves a discontinuous
(continuous) bifurcation in X and associated behavior in Zg. Note that in the purely
Hamiltonian system second-order transitions occur at £h<, but the first-order tran-
sition has no counterpart (for A > 0) and arises here due to a dissipative instability.
The behavior we observe bears some relation to critical points found in cooperative
resonance fluorescence (see, e.g., [13]).

(2.7)
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Figure 2.2.  Semiclassical (solid line) and finite-N steady-state inversion
and second-order moments for T'y/A = 0.01, Ty/A = 0.2, and N = 25
(dotted line), 50 (short dashed line), 100 (long dashed line).

In the large-N limit, quantum fluctuations can be included in the analysis as a
first-order correction using a large-N expansion of the Holstein-Primakoff (HP) rep-
resentation of angular momentum operators [14]. Applied in a coordinate system
where the mean Bloch vector points along the positive z-axis, this takes the form
J. = N/2 —cfe ~ N/2 and J, = (N — cfe)'2c ~ v/N¢, where ¢ (c!) is a bosonic
annihilation (creation) operator. This linearization about the mean field state leads to
a master equation of the general form

p = —i[Hup,p| + T D[cl]p+T_D[cp+ {T (2cpc — p — pc®) + He ), (28)
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where Hyp is a quadratic in {c, ¢’} and the coefficients are functions of {h, \, 'y, T, } [15].
Equation(2.8) yields coupled, linear equations of motion for (c) and (c'), the eigenval-
ues of which display a sequence of bifurcations in both their real and imaginary parts
as h is varied. The phase transitions are marked by the real part of one eigenvalue
going to zero (i.e., critical slowing down) at h = hS.

To examine this structure and dynamics, we consider the transmission of a (weak)
probe laser field through the medium as a function of the probe frequency, i.e., we
examine the frequency response of the system. A schematic of such a measurement
setup is shown in Fig. 2.1(b). To compute the transmission spectrum we retain the two
cavity modes in our model (i.e., we start from (2.2)), but again perform a linearization
(N > 1) about the mean-field state. We consider the case in which the probe laser
drives mode b, and the transmission spectrum 7),(v,) is defined as the coherent intensity,
at probe frequency v, (in the rotating frame), in the output field from mode b.

—~10
Y
= 5
S0
-25
2125
0, 0.0001 1
o/ A _ -0.01 O
v/ 25 7 0.1 B/
~10
= 5
QO ‘ ‘ \\\
451&\\ : M
0 1.25 :
v/ A 1.2525 T o.9999h})\
Figure 2.3. Transmission spectra in the linearized regime,
for  h/A = {-0.6,—-0.1,—0.01, h° /X,0.05,0.3}  (top), and
{0.5,0.95,0.995,h%. /A, 1.1,1.3}  (bottom), with microscopic param-
eters Kqof/0a = 0.02, \y/Ay = 032, kp/0, = 1,0, = 0, giving

[o/A = 0.01, /A = 0.05. We set 6, = 0.

In Fig. 2.3 we plot T,(,) (normalized by the maximum empty-cavity transmission)
for a series of values of h around h¢. For the chosen parameters, the spectra consist
of sharp “atomic” resonances superimposed on a much broader cavity mode resonance
(i.e., kp > I'y). The locations and widths of the atomic resonances are determined
by the imaginary and real parts of the above-mentioned eigenvalues, respectively. For
|h/A| > 1, the main atomic feature is a dip of width 2I', at v ~ 2h, corresponding to
a cavity-mediated, collective spontaneous emission resonance. For |h/A| < 1, spin-spin
interactions play a more significant role and a pair of resonances at opposite frequencies
feature in the spectrum. As h — hS both from above and below these two features
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merge continuously into a single peak, centered at v, = 0, which ultimately diverges
at h = h< in a pronounced signature of the second-order phase transition. The same
merging and divergence is seen for the first-order transition, but only as h — h® from
below. For h very small (but > h°), the spectrum consists of two sharp peaks of width
~ I'yh/X at v, >~ £2X. The transition is signaled by a discontinuous jump from this
two-peaked spectrum to a single divergent peak at v, = 0.

To analyze the entanglement properties of the system, we adopt a criterion for
bipartite entanglement in collective spin systems which, for symmetric states, is both
necessary and sufficient, and reads [16]

Cp=1— (4/N)(AT2) — (4/N*)(J,)> > 0, (2.9)

where J, = sin(y)J, 4 cos(p)J,. Here, we present numerical results for Cg = max, C,
(> 0), which, in fact, equals the rescaled concurrence (N —1)C, where C'is the two-spin
concurrence. In Fig. 2.4 we plot the steady-state value of Cr versus h/\, computed
from the linearized HP model and numerically from (2.5) for finite N. Both transitions
are characterized by a sharp peak in the entanglement at the critical point [5-7], but
they are distinguished by a discontinuity in Cgr at h = h® (for N — o0) as opposed
to a discontinuity in OCr/0h at h = hS [17]. The peaking of Cg at the critical points
agrees with the conjecture of a general association between semiclassical bifurcations
and maximal entanglement in dissipative, nonequilibrium many-body systems [18].
In the region where Cr = 0 the state approaches a mixture of maximally polarized
states possessing large fluctuations (see Fig. 2.2). Note that, in the adiabatic regime
considered, the cavity field operator b(t) o J.(t), and so collective spin correlations
(and hence CRr) can be deduced from moments of the cavity output field, which may
be measured by broadband homodyne detection.

05F ‘ z ‘ ‘
! 7 T
~ L | =~
O 025 \
0 |

-1 0 h/)\ 1 2

Figure 2.4. Mazimum entanglement Cgr computed from the linearized
HP (N — o0) model (solid) and from (2.5) for N = 100 (dashed), with
L./A=0.01 and I';/A = 0.2.

For an experimental realization, we have already mentioned °Li in a ring-cavity
setup. A suitable system can also be designed using the ground states |F = 1,m = +1)
of ¥Rb and linearly-polarized cavity modes [15]. For specific parameter values, we
consider recent experiments with cold atoms inside a high-finesse optical ring cav-
ity [19], i.e., we take g;; ~ 27 - 100 kHz and , ~ 27 - 25 kHz. For N ~ 10° atoms
and a characteristic ratio Q;;/A; ~ 0.0025, we have A\, ~ 27 - 250 kHz. With a
Raman detuning §, ~ 27 - 2.5 MHz, we then have A ~ 2\2/§, ~ 27 - 25 kHz and
Ly >~ Ka(Aa/0s)? =~ 27 - 0.25 kHz. Ground state magnetic level shifts of tens of MHz
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would suffice to ensure distinct Raman channels. Mode b may be more strongly damped
(i.e., the two cavity polarizations have different finesses), e.g., k;, ~ 27 - 250 kHz, and,
with \y >~ 27 - 25 kHz and 8, ~ 0, we would then have T’y ~ \? /k; ~ 27 -2.5 kHz > T,.
Finally, the rate for single-atom spontaneous emission (neglected in our model) is esti-
mated by Iy€27;/(4A7) < 2m - 0.01 kHz < A, T, for an atomic exited state decay rate
Iy =27 -6 MHz.

To conclude, we have proposed a feasible cavity QED system that is described by a
dissipative LMG model and exhibits both first- and second-order nonequilibrium quan-
tum phase transitions as a function of a single effective field parameter. Measurements
on the cavity output light fields provide quantitative probes of the critical behavior.
The system also offers opportunities for investigating phase transitions in response to
variation of the strength of dissipation (i.e., I'), for studying time-dependent behavior,
such as entanglement dynamics, and for preparing very highly entangled states, which
typically occur for short interaction times [15] and may in principle be “frozen” by
switching off all optical fields.

The authors thank A. Daley and H. Carmichael for discussions and acknowledge
support from the Austrian Science Foundation and from the Marsden Fund of the
Royal Society of New Zealand.
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We propose a cavity QED setup which implements a dissipative Lipkin-
Meshkov-Glick model — an interacting collective spin system. By varying the
external model parameters the system can be made to undergo both first-and
second-order quantum phase transitions, which are signified by dramatic changes
in cavity output field properties, such as the probe laser transmission spectrum.
The steady state entanglement between pairs of atoms is shown to peak at the
critical points and can be experimentally determined by suitable measurements
on the cavity output field. The entanglement dynamics also exhibits pronounced
variations in the vicinities of the phase transitions.

3.1 Introduction

The branch of atomic physics associated with ultracold atoms, ions, and molecules now
provides a rich and exciting arena for investigations of strongly interacting, many-body
quantum systems. Trapping and cooling techniques, coherent laser or microwave inter-
actions, and applied magnetic fields enable exquisite control of both external (motional)
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and internal (electronic) degrees of freedom of the particles, allowing one to “tailor”
particle-particle interactions and thereby implement a broad range of systems that can
be described accurately and transparently by idealized (but nontrivial) many-body
Hamiltonians. An important example is the Hubbard model, realized with ultracold
atoms in periodic optical lattices [1, 2], while realizations of other novel and signifi-
cant lattice-spin models have been proposed, for example, with dipolar molecules in
optical lattices [3] and with chains of trapped atomic ions [4]. The common, defining
feature of these systems is the possibility for quantum critical phenomena, i.e., tran-
sitions between distinct quantum phases, in response to variations of an effective field
or particle-particle interaction strength around some critical value.

The above-mentioned schemes generally provide many-body quantum systems that
are subject to short-range (e.g., nearest-neighbor) interactions. Another interesting
and commonly studied class of many-body systems are those possessing long-range,
or even infinite-range, interactions, for which theoretical models typically allow exact
solutions in the thermodynamic limit, or at least enable efficient numerical solution for
large numbers of particles. A standard and classic example is the Lipkin-Meshkov-Glick
(LMG) model [5], which was originally introduced in nuclear physics and is described
by a Hamiltonian of the form

2\
Hine = —2hJ, — W(Ji + 7Jy2)> (3.1)

where {J,, J,, J.} are collective angular momentum operators for N spin-1/2 particles,
h and A\ are parameters giving the effective magnetic field and spin-spin interaction
strengths, respectively, and v € [—1,1] is an anisotropy parameter. In this model,
each spin interacts identically with every other spin and the nature of this interaction
may be ferromagnetic (A > 0) or antiferromagnetic (A < 0). Significantly, the model
exhibits critical behavior at zero temperature; in particular, either first- or second-
order quantum phase transitions may occur (depending on the choice of A and ~) as
the ratio between A\ and h is varied across a critical value.

This quantum critical behavior, combined with the relative simplicity of the model,
has led to renewed theoretical interest in the LMG model from the point of view
of studying entanglement properties of many-particle systems in relation to quantum
phase transitions [6-8]. Bipartite entanglement measures characterizing entanglement
between a pair of spins (e.g., the concurrence) or between two blocks of spins (e.g., the
entanglement entropy) are relatively straightforward to compute for the LMG model
and can display marked critical behavior and scaling at quantum critical points [9-15].

Given these interesting and very topical features of the LMG model, it follows that
the physical realization of a system described accurately by such a model would pro-
vide a valuable test bed for studies of quantum critical phenomena and entanglement.
However, the question naturally arises as to how realistic such an idealized model could
be; the assumption of “infinite-range” interactions is obviously demanding and implies
a very specialized system. Hamiltonians of the form (3.1) (with v = 0) have appeared
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recently in reduced two-mode models of atomic Bose-Einstein condensates undergo-
ing tunnelling in double-well potentials or transitions between two internal atomic
states [16, 17], and in models of a few trapped ions interacting with laser fields [18, 19],
but emphasis in these works has been on unitary or adiabatic evolution from some
initial atomic state to some final, prescribed (entangled) state, while flexibility of these
systems with respect to parameters of the LMG model (i.e., A, N, ) appears limited.

Another possibility, furnished by the field of quantum optics, and for which long-
range atom-atom interactions actually occur quite naturally, is cavity quantum elec-
trodynamics (cavity QED) [20]. Here, one considers ensembles of atoms interacting,
through an electronic transition, with a common electromagnetic field mode supported
by an optical resonator. Through this common coupling, the field mode can effectively
mediate interactions between atoms located at quite arbitrary and separate positions
within the mode. So, in particular, the concept of an interaction “length” becomes
redundant in this setting and a collective description of the atoms is appropriate.

In fact, that an ensemble of atoms coupled to a common field mode can be viewed
as a many-body system of interacting spins was highlighted many years ago with the
prediction of a thermal equilibrium phase transition in the celebrated Dicke model of
N two-level atoms coupled to a single quantized field mode [21-25],

H = wa'a+ wyJ, + \/%(cﬁ +a)(Jy + J), (3.2)
where a is the annihilation operator for the field mode of frequency w, wy is the atomic
transition frequency, and A is the atom-field coupling strength (we set &~ = 1). In
particular, above a certain critical value of the coupling strength the system enters a so-
called “superradiant” phase [26]. This phase transition persists at zero temperature [27,
28], with associated critical behavior of both the atom-field and atom-atom quantum
entanglement [29-31]. The critical coupling strength at zero temperature is given by
Ae = /wwy/2, which means that A must be comparable to the field and/or atomic
transition frequencies if the transition regime is to be reached. For atomic dipole
transitions, this is typically not the case and, in fact, if it happened to be so, then the
model (3.2) would be inadequate; in particular, the A? term [omitted from (3.2)] of
the minimal coupling Hamiltonian should be included and doing so one actually finds
that no phase transition exists [32].

However, a recent proposal for realizing the Dicke model quantum phase transition,
based on Raman transitions between stable atomic ground states in an optical cavity
QED setting [33], circumvents these issues by (i) implementing a system in which the
relevant frequency and coupling scales are determined by light-induced frequency shifts
and Raman transition rates, and (ii) utilizing an open-system dynamics (as opposed to
a closed, Hamiltonian system) with input and output fields (i.e., external laser fields and
cavity mode losses), thereby replacing a (fragile) thermal equilibrium phase transition
with a (robust) dynamical, nonequilibrium phase transition. Furthermore, as shown in
Ref. [33], the cavity output field offers a unique window on the system’s behavior and
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properties, with, for example, fluorescence and quadrature-variance measurements pro-
viding dramatic signatures of criticality in the system, as well as quantitative measures
of fluctuations and entanglement.

These features of the optical cavity QED system, combined with the observation
that, in the dispersive limit w > {wy, A}, the cavity mode may be adiabatically elimi-
nated and the Dicke Hamiltonian reduced to the form

4\,

H = wyJ, — No J, (3.3)
where J, = %(J+ + J_), motivate us to explore the possibilities for studying the LMG
model in such a setting. In particular, by generalizing the configuration of Ref. [33]
to two cavity field modes and operating in a dispersive regime (amounting to far-
off-resonant Raman transitions), we find that it is possible to implement atomic spin
systems that are described by the most general LMG model (3.1), and for which the
Hamiltonian dynamics may still dominate over losses to the output cavity fields, thus
enabling the clear realization of critical phenomena, including both first- and second-
order dynamical quantum phase transitions. We find also that the cavity output fields
can again be used to provide clear and detailed probes of properties of the atomic
collective-spin system, including entanglement, in the critical regime.

We note that the present work bears some relation to studies of optical bistability
and resonance fluorescence in cooperative atomic systems, which can also exhibit first-
and second-order nonequilibrium phase transitions (see, for example, [34-38]). There,
however, the dynamics explicitly includes (resonant) coherent driving of the atomic
system by an external laser field (i.e., the Hamiltonian describing the system contains
a driving term linear in J, or J,, rather than a direct spin-spin interaction term), and
relatively little investigation has been made of the quantum entanglement associated
with the critical behavior [39].

A more specific outline of our paper is as follows. In Sec. 3.2 we describe the mi-
croscopic model of atoms and light fields that realizes our effective spin system. In
Sec. 3.3 we present some background to the LMG collective spin model and show how
to engineer it using the general setup presented in Sec. 3.2. We conclude Sec. 3.3 with
a brief overview of the methods of analysis to be used later in the paper. In Sec. 3.4
we describe a more specific, potential physical implementation of the system we have
proposed, based on alkali metal atoms confined within a high-finesse ring cavity. In
Sec. 3.5 we focus on the v = 0 LMG model and focus on the second-order transition; we
first present a linearized analysis of the system in the thermodynamic limit using the
Holstein-Primakoff representation of spin operators. Using the input-output theory of
quantum optics we relate the internal spin properties to the measurable cavity output
field and determine the probe transmission spectrum as an example. The second part
of Sec. 3.5 is concerned with the presence and behavior of atom-atom (or spin-spin) en-
tanglement in the system, particularly across the quantum phase transition (QPT). We
present results for both the steady-state entanglement and the entanglement dynamics,
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using either exact numerical solutions for finite system size or analytical solutions in
the thermodynamic limit. In Sec. 3.6 we essentially repeat the analysis of the previous
section, but focus on a parameter regime where a first-order phase transition occurs in
the v = 0 LMG model as the effective magnetic field parameter, h, is varied. Finally,
in Sec. 3.7 we conclude and briefly discuss possible extensions of the current work.

3.2 Theoretical Model

We consider a collection of N atoms coupled via electric dipole transitions to (at most)
four laser fields and to a pair of orthogonally polarized optical cavity modes. The
atomic level and excitation scheme is shown in Fig. 3.1. In particular, the atoms are
assumed to possess two stable electronic ground states, labelled |0) and |1), at energies
(h =1) wy = 0 and wy, respectively. The laser and cavity fields combine to drive Raman
transitions between |0) and |1), via the excited atomic states |r) and |s) (energies w,
and w;, respectively). Specifically, the laser fields, at frequencies w,o, wso, wy1, and
ws1, couple to the dipole transitions |0) < |r), [0) < [s), [1) < |r), |1) < |s) with
Rabi frequencies €2,9, Q0, 2,1, and ), respectively. Cavity field a, at frequency w,,
couples to the transitions |0) <> |r) and |1) < |s) with coupling strengths g,o and gs1,
respectively, while cavity field b, at frequency wj, couples to the transitions |0) < |s)
and |1) < |r) with coupling strengths gso and g¢,1, respectively. All of the fields will
be assumed to be far-off resonance with the electric dipole transitions to which they
couple, meaning that the atomic states |r) and |s) are only virtually excited and can
be eliminated from the dynamics. Finally, at the location of the atoms, the cavity
and laser fields are taken to be travelling waves copropagating in the x direction, with
sufficiently broad beam waists so as to ensure a homogeneous atom-field coupling.

3.2.1 Adiabatic elimination of atomic excited states

To facilitate adiabatic elimination of the atomic excited states we move to a rotating
frame according to the unitary transformation U(t) = e~#0! with

N
Hy = (wso — w)ala + (wpo — w))bTb+ Y~ (weols;)(55] + wrolryXrs| + @i [1;X151), (3.4)
j=1

where w] is a frequency close (or possibly equal) to w;. Next, as mentioned above, we
assume large detunings of the light fields from the atomic excited states, i.e., we assume
that A, = w, —w,o and A, = wy—w,o are much larger in magnitude than any other rates
characterizing the system. This allows the atomic excited states to be adiabatically
eliminated and also enables us to neglect the effects of atomic spontaneous emission.

Additionally, as depicted in Fig. 3.1, we assume that only four distinct Raman
transitions are of significance (i.e., resonant or roughly resonant); in particular, in our
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|s)

Figure 3.1. Atomic level and excitation scheme for the general model.

model we retain only those Raman processes that cause a change in the electronic
state of the atoms (|0) — [1) or |1) — |0)) and also involve transfer of a photon from
a laser field into a cavity mode or vice versa. All other possible Raman processes are
assumed to be far-off resonant and therefore negligible. Quantitatively, this requires, for
example, that |w.o —w,| and |w.g — (w1 + w1 )| are sufficiently large, with, in particular,
|wro — Wal, lwro — (Wi +w1)| > |wa — (Wi +w1)], [wro — (wp +wi)]-

Retaining only the four dominant Raman processes simplifies the model consider-
ably, and with a choice of laser frequencies such that wyy — w1 = wy — ws1 = 2w] we
are able to remove all explicit time dependence from the Hamiltonian describing our
system. Employing the collective spin operators,

J, =

N —

Z (J1X15] = [0;X04]), Iy = Z [1;X05],  J- = Z 10, X151, (3.5)

Jj=1

and omitting constant energy terms, our effective Hamiltonian for the collective atomic
system and cavity modes can be written in the form

Hy = woJ, +d.a'a+ 8b'b+ 26, J.ala + 25, J.bTb

A b
+% (Xpa+ Xlah) + 2= (Xob + X0, 3.6
( ) ¢N(b »0") (3.6)

VN

where X; = «o;J, + §;J_ and the effective parameters are given in terms of the micro-
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scopic parameters by

A T e U e )
wo = ( A A A A + wy — wy, (3.7a)
5(1 = W — Wso T+ wi + N(S(—z’_7 (37b)
o = wp—wr+w;+ NG, (3.7¢)
1 |gsl‘2 |gr0|2
+ — —
5t = 2<Asi ) (3.7d)
1 |gr1|2 |930|2
+
= (gl :
5, 5 ( A A ) (3.7e)
NQ* g, N g,
Ao, = @7 A = @’ (3.7f)
2A, 2A,
VNQ g0 VNQ g
Aoy = TOA, Aoy = ToA, (3.7g)

Note that the (dimensionless) factors {aup, Bap} € [—1,1] have been introduced for
convenience. Note also that for a characteristic level scheme as shown in Fig. 3.1, one
might typically expect that g, = g0 and g,1 = g0, so assuming A, ~ A, we would
therefore also expect that |9, ,| < [0, ,].

In summary, the master equation for the reduced density operator, p, (i.e., with
the atomic excited states eliminated and spontaneous emission neglected), is given by
pg = —i[Hyg, pg] + KaDla]pg + Ky D[b] pg, (3.8)

where D[A]p = 2ApAt — ATAp — pATA and k; is the cavity field decay rate.

3.2.2 Adiabatic elimination of the cavity modes

We now consider the limit y/k2 + 67 > A4, Ap, wo. In this limit, the cavity modes are
only ever weakly or virtually excited and may also be adiabatically eliminated from the
dynamics. Following the standard adiabatic elimination procedure [40], we derive the
following master equation for the reduced density operator, p, of the collective atomic
system alone:

p = —i[H, p| + T D[X[]p + T D[X[]p, (3.9)
with A A
a b

Hzmkmﬁ&ﬂ—ﬁ&ﬁ, (3.10)

where the effective spin-spin interaction strengths and collective atomic dissipative
rates are (i € {a,b})

226,
2,
r, = ik (3.11b)

K2+ 02
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Note that both dispersive nonlinear terms [terms proportional to d, and ¢, in Eq. (3.6)]
do not contribute in the adiabatic approximation since in this limit we assume a vacuum
state for both cavity modes.

3.2.3 Cavity output fields and measurement

Taking a brief step backwards now to the atom-cavity Hamiltonian (3.6), and using the
input-output theory of open quantum optical systems [40, 41|, we can derive quantum
Langevin equations for the cavity mode operators; in particular, for the mode b, we
have (neglecting the term proportional to ¢, )

T

, X
b= —(ky+idy)b — z’Ab\/—bN + V25 bin (1), (3.12)

where by, (t) describes the quantum noise input to the cavity mode (see Fig. 3.2) and
satisfies the commutation relation [by(¢), bl (¢')] = 6(t —t'). Equation (3.12) illustrates
the linear relationship between the cavity operator and atomic operator Xg . The
adiabatic limit of the preceding subsection amounts, in the present context, to the
assumption that X,(¢) varies on a much slower time scale than b(t) [and b;, ()], so that
we can write

)\b Xg(t) \/2/461,
Kp + i(sb \/N Kp + iéb

b(t) ~ —i bin(t). (3.13)

The cavity output field is given by bou(t) = v/2ks b(t) — bin(t), so we in turn obtain a
direct relationship between the dynamics of the (mternal) collective atomic spin and
the (external) cavity output field. Hence, spin-spin correlations of the form (X, X;)/N
and (X X,)/N could be deduced from correlations of the cavity output field, which
may be measured, for example, by performing broadband homodyne detection on the
emitted light [42].

3.3 Collective (LMG) Spin Models

The LMG model, originally introduced in nuclear physics to model collective motion in
nuclei [5], describes N interacting fermions distributed on two N-fold degenerate levels
(denoted by +) separated by an energy ¢. Denoting the fermion annihilation operator
by ¢; o, where j € {1,..., N} and ¢ € {4, —}, the Hamiltonian for this system may be
written as

E :O-C] oCio t 5 § : ¢, O'C]/O'c.]’ oCj',—o + 5 § : ¢, JC]’ —6Cj,—0Cj' 0 (3]‘4>

Ji'e »i'e
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Introducing the collective spin operators, J, = %ngac;pcjﬂ and Jy = > c}icj,jF

allows us to reexpress the Hamiltonian as
V %4
H = 5Jz+5(Ji+JZ)+7(J+J_+J_J+). (3.15)

This Hamiltonian commutes with J2, thus conserving the total angular momentum,
and with e™/= corresponding to a parity (spin-flip) symmetry [9]. It is straightforward
to rewrite this Hamiltonian in terms of J, and J,, defined via Jy = J, £+ iJ,, giving
the generalized LMG model,
2\

Hine = =2hJ. = <= (7 + vJ3), (3.16)
where A = —(V 4+ W)N/2, v = (W —=V)/(V + W) (we will only consider v € [—1,1]),
and h = —§/2.

This model is well known for its second-order symmetry breaking phase transition
in the ferromagnetic regime (A > 0) [13]. For small interaction strength the system is
in the normal phase, where the ground state is unique and polarized in the direction
of the magnetic field. As the interaction is increased above a critical value, A., the
system enters the broken phase, where the ground state becomes doubly degenerate
and macroscopically displaced from its original configuration, thus breaking the parity
symmetry. For the special case v = 1 the Hamiltonian also commutes with J,, thus
enabling a direct analytic solution. All other cases v # 1 lie in a separate universality
class. In the antiferromagnetic regime, A < 0, the model exhibits a first-order phase
transition as the effective magnetic field h crosses h. = 0 (provided v > 0).

Using the setup described in the previous section we can implement the generalized
LMG model for any v by making appropriate choices of ay, B4, as, 3y in the Hamilto-
nian (3.10). We now consider three specific cases of general interest.

3.3.1 Conventional v = —1 LMG model

The v = —1 LMG Hamiltonian may be implemented by choosing o, = a;, = « and
Ba = —fp = B (corresponding to X, = aJ, + fJ_ and X, = aJ, — 3J_), and setting
A, = —A, (note that the signs of A, are determined by the signs of the detunings
dap), SO that

2\

H = —2hJ,— W(Ji —J2), (3.17)
with h = —wy/2 and A = 2afA,. This instance of the LMG model has been most
widely studied for its phase transition properties. For the dissipative terms we assume,
for simplicity, that 2I", = 2I", = I', so that the full master equation reduces to the form

p = —ilH.p+ 5D p+ DI (3.18)

where ' = I'a? and I'_ = I'8%2. The Hamiltonian dynamics can be expected to play
a dominant role if d,p > K, (Which corresponds to [Agp| > Lyp).
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3.3.2 Isotropic v =1 LMG model

The isotropic v = 1 LMG Hamiltonian may be obtained, for example, by choosing
a, = By =1 and o = (B, = 0( corresponding to X, = J, and X, = J_), and setting
A, = Ay = A, which gives

2
H = —2hJ, - N(Ji +J7), (3.19)
where h = —wg/2. The full master equation is
. . Fa Fb
= —i|H —D|J_ —D . 2

3.3.3 Simple v =0 LMG model

The v = 0 LMG Hamiltonian, which will be focus of our attention in this paper, may
be obtained by choosing a, = [, = « (corresponding to X, = 2aJ,), and setting
9 = 0 (so that Ay, = 0). This gives

2\

H = —2hJ,—=J2 3.21

e (3:21)
where A\ = 202A,. While the Raman channels involving the cavity mode b could be
omitted completely, here we retain one of them (for reasons to be discussed below),
with the choice (3, = (3, and «p, = 0, corresponding to X, = #J_. Hence, the full master
equation we consider is

L'y

. . I,
po= —ilH pl+ - DRL]p+ 5 DlJi]p, (3:22)

where the factor 32 has been absorbed into T',.

If we now consider the case where |A,| > T, and T, > T, then the role played by
each cavity mode in relation to the atomic system is quite distinct. Specifically, cavity
mode a mediates the collective spin-spin interaction required for the Hamiltonian dy-
namics (with coupling strength A, ~ A\2/4,), while cavity mode b effectively mediates
the collective atomic decay (with rate 'y = A\?/k;). Importantly, we note that X, = J,
implies a quite direct relationship between moments of the cavity mode operators b
and b' and moments of the collective atomic spin operators .J4; in particular, measure-
ments of the output light field from cavity mode b will provide, rather directly and
transparently, characteristic properties of the collective atomic spin.

In contrast, for the v = —1 model the two cavity modes mediate the collective spin-
spin interaction on an equal footing, i.e., |A,| = |Ay|, while the operators X, and X
are linear combinations of J, and J_, which leads to a somewhat less transparent (i.e,
arguably less convenient) relationship between correlations of the cavity output fields
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and atomic spin-spin correlations. Partially for this reason, we focus in this paper on
the v = 0 model, with a clear distinction between the effective roles of the two cavity
modes and a potentially better suitability for measurements of the collective atomic
spin properties.

3.3.4 Methods of analysis

To analyze the atomic-spin master equations presented in the preceding sections, we
make use of both numerical and analytical techniques. For finite spin j = N/2, the
master equations can be solved numerically for quite large N [43], owing to the linear
scaling of the Hilbert space dimension, d, with the system size, i.e., d = N + 1. In
what follows, we will typically present results of numerical simulations for N < 100.

For very large system sizes, N > 1, it is possible to linearize the quantum fluctua-
tions around the mean spin state (i.e., around the “Bloch vector”). First we find this
mean spin state by calculating the steady-state solutions of the semiclassical equations
of motion for the components of the Bloch vector. After a suitable rotation (determined
by the mean state) of the spin coordinate system, we use the Holstein-Primakoff (HP)
representation of angular momentum operators [44, 45], which enables a systematic
large- N expansion of the master equation, to which we then apply the limit N — oo.
While all of the results obtained in the linearized regime are exact analytical results,
in many cases the expressions obtained are too lengthy to give any useful information;
in these cases we simply plot the relevant quantities.

3.4 Potential Experimental Implementation

For a possible experimental implementation of our scheme, we consider, as mentioned
previously, an ensemble of atoms confined inside a high finesse ring cavity that supports
two travelling-wave modes, a and b. The required laser fields, which are assumed to
be at frequencies that are not supported by the resonator, are injected through one
of the resonator mirrors so as to be copropagating with the cavity fields through the
ensemble.

If we take %Li as the atomic species, then the atomic level scheme of Fig. 3.1 can be
implemented directly with the two ground magnetic substates |F' = 1/2,m = £1/2)
as |0) and |1), and with a magnetic field applied perpendicular to the cavity axis to
provide a frequency splitting 2wp between these two states. The modes a and b would
be orthogonal, linearly polarized cavity modes, with, in particular, mode a polarized
along the direction of the magnetic field. (Note that if the two modes happen to be
very different in frequency due, for example, to birefringence in the cavity mirrors, then
the magnetic field may not be necessary.)
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Another possibility, illustrated in Fig. 3.2, might be a configuration based on the
F =1« F’ = 0 transition of Rb, in which the states |0) and |1) are the ground
magnetic substates |F' = 1,m = +1), with frequency splitting 2wp due to a magnetic
field applied along the cavity axis. The modes a and b would be orthogonal, linearly
polarized cavity modes, polarized perpendicular to the magnetic field. Note, however,
that the modes would need to be sufficiently different in frequency (which could be im-
posed, for example, by cavity birefringence) in order that the Raman channels involving
different modes are distinct.

Figure 3.2.  (a) Schematic of potential ring cavity system and setup for
measurement of the output transmission spectrum of a weak probe laser
field of amplitude &, and frequency v,. (b) Possible atomic level scheme
as described in the text.
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Alternatively, the modes a and b could be two entirely different (linearly polarized)
longitudinal modes of the resonator, one quasiresonant with the /' = 1 « F' = 0
transition of the D2 line and the other quasiresonant with the FF = 1 <« F' =1
transition of the D1 line.

For specific parameter values, we consider experimental systems such as those re-
alized recently in Ref. [46, 47|, where cold atoms are held inside a high-finesse optical
ring cavity. In particular, let us assume a single-atom—single-photon dipole coupling
strength of g/(2m) ~ 100 kHz and a cavity field decay rate of k,/(27) ~ 25 kHz.
For N ~ 10° atoms and a characteristic laser-Rabi-frequency-to-detuning ratio of
Q/A ~ 0.005, we have \,/(27) ~ 250 kHz (a, = 1). If we assume a Raman de-
tuning d,/(27) ~ 2.5 MHz > \,/(27), k./(27), we then have, for example, A, =~
AN /5, ~ 2m x 25 kHz and ', ~ A,(ka/0a) =~ 27 x 0.25 kHz. This illustrates that it
should be possible to achieve a regime where the (coherent) Hamiltonian dynamics is
dominant over the effective dissipation. Note also that, for these parameters, readily
achievable ground state magnetic level shifts (2wg) of tens of MHz would suffice to
ensure distinct Raman channels.

The same parameter regime could obviously be chosen for cavity mode b, but if
we consider the v = 0 model as discussed in Sec. 3.3.3, then we might, for example,
assume mode b to be more strongly damped (i.e., the two cavity polarizations have
different finesses), e.g., kp/(2m) ~ 250 kHz, and, with smaller Raman transition rate
N/ (2m) =~ 25 kHz and detuning 8,/(27) ~ 0, we would then have Ty, ~ A\/k; ~
21 x 2.5 kHz > I',. Given these considerations, in the next section, where we examine
the second-order transition of the v = 0 model, we will typically employ the set of
normalized parameters {h = 1, T, = 0.01, I', = 0.2}, which give a critical coupling
strength A\, ~ 1.

Finally, we note that the rate for single-atom spontaneous emission (neglected in
our model) is estimated by T'y,Q%/(4A?%) < 27 x 0.04 kHz < A,, [ p, where an atomic
exited state linewidth of I'y,/(27) = 6 MHz has been assumed.

3.5 Second-Order Phase Transition

We focus first on the positive field case (b > 0) of the v = 0 LMG model with
ferromagnetic interactions (A > 0), for which a second-order phase transition occurs as
the magnitude of the interaction strength is varied [48]. This transition will turn out
to be similar to the one recently studied in the dissipative Dicke model with resonant
atom-cavity interactions (as considered in Ref. [33]). However, it should be noted that
in the Dicke model the cavity field plays an intrinsic role in the dynamics and associated
critical behavior, unlike in our present model where it has been adiabatically eliminated.
Consequently atom-field entanglement is effectively negligible in the present context,
while atom-atom entanglement is significant and will be the focus of our study.
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In Sec. 3.5.1 we consider the spin master equation in a linearized regime, appropriate
for N > 1, and determine the transmission spectrum of a weak probe laser. Spin-spin
entanglement is studied in Sec. 3.5.2 both in the thermodynamic limit and for finite
N; specifically the behavior of the steady-state entanglement, as well as entanglement
dynamics, is examined in the vicinity of the quantum phase transition.

3.5.1 Linearized model

In this section we study the master equation model (3.22) in the thermodynamic limit
by linearizing the quantum fluctuations around the mean-field state. Note that the
atom-cavity coupling strengths appearing in the effective coupling constants (3.7f)
and (3.7g) scale as 1/4/V, where V is the cavity mode volume. The thermodynamic
limit corresponds to N — oo and V' — oo with ¢ = N/V, the atomic density in the
cavity, constant. Since the thermodynamic limit does not alter the effective coupling
strengths, which scale as /o, we will henceforth refer to the thermodynamic limit as
N — oo [28].

Firstly, we present the semiclassical analysis which determines the mean-field state
relevant for N > 1. We then expand the angular momentum operators around the
semiclassical steady state using the Holstein-Primakoff representation, thus obtaining
a linearized version of the master equation, the eigenvalues of which are subsequently
analyzed. Finally, we calculate, for the linearized model, the transmitted amplitude of a
weak probe laser through the atom-cavity system as a function of the probe frequency,
i.e., the probe transmission spectrum. This physically measurable quantity probes
the energy, or eigenvalue, structure of the system and, as we will see, provides clear
signatures of the dynamical quantum phase transition.

Semiclassical equations of motion and steady-state solutions

The equations of motion for the expectation values of the spin components of the Bloch
vector, (J,), (Jy), and (J,), are readily derived from the master equation (3.22), but do
not form a closed set of equations. However, by factorizing all terms (JgJ;) — (Ji){(Ji)
with k,1 € {x,y, 2}, which corresponds to neglecting quantum fluctuations, we obtain a
closed set of equations, which we call the semiclassical equations of motion from hereon.
Introducing the notation X = (J,)/7, Y = (J,)/j, Z = (J,)/j, where j = N/2, the
semiclassical equations of motion are found to be

X = 2nY —T,ZX, (3.23a)
Y = —2hX +2\ZX —1,ZY, (3.23D)
7 = —20XY +T,(X?+Y?), (3.23¢)

with the constraint X2 + Y2 4 Z2? = 1 corresponding to conservation of angular mo-
mentum.
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The steady-state solutions of these equations of motion exhibit a bifurcation at a

critical coupling strength
2

r
Ae=h+ -2 3.24
+ 1 (3.24)
(note A > {h, Iy} for I', # 2h). For A < A, the stable steady-state solutions are
Zo=1, Xg="Yys=0, (3.25)

while for A > A, they become

2h
Zss = K, (326&)
A2 — 4h?
Xeg = £y ———— .2
> 20\ (3.26b)
Ly
Y. = —=ZX.Z. 2
sS 2h SS448S) (3 60)

where
A:)\—l—\/)\?—l“g. (3.27)

The bifurcation at A, is illustrated in Fig. 3.3, where, to facilitate a comparison
between semiclassical and finite- )V solutions (computed from numerical solution of the
master equation), we plot the second-order moments (.J2), (J7), and (JZ) (since the
finite-N master equation gives (J,) = (J,) = 0 for all X\). We note that the two
approaches are already in reasonable agreement for N ~ 50.

o ———
=
& 05) S
= ol |

0 1 5
o~ r '
=~
> 057 e

e

0 1 5

0.05 ,

[}
=~
S 00250
L2 b T T e
> o0

0 1 5

Figure 3.3.  Semiclassical (solid line) and finite-N steady-state second-
order moments for h =1, 'y, = 0.01, Ty, = 0.2, and N = 25 (dotted), 50
(short dashed line), 100 (long dashed line).
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Holstein-Primakoff representation

The quantum fluctuations that are neglected in the semiclassical analysis can be in-
cluded in the limit N > 1 as a first-order correction. This is achieved by using the
Holstein-Primakoff (HP) representation of the angular momentum operators [44, 45],
which in the present context takes the form

J, = 5—50, (3.28a)
T

J. = VN 1—C—Ncc, (3.28h)
.I.

J_ = VN 1—%, (3.28¢)

where ¢ and ¢! are bosonic annihilation and creation operators, respectively, satisfying
[c,c] = 1. In particular, if N > 1 and (J.) = N/2, ie., (c'¢) < N/2 (so that the
Bloch vector points essentially along the z axis), then the HP representation of J, and
J_ can be reduced to J, ~ /N cand J_ ~ /N ¢!, effectively linearizing the dynamics.

In the normal phase (A < A.), this approach can be applied immediately since
the steady-state solutions Xy = Yy = 0. However, in the broken phase (A > \.),
the steady-state solutions X, Yss # 0, i.e., the Bloch vector is rotated away from the
z axis, and the HP representation is most conveniently applied with respect to the
new orientation of the Bloch vector. We do this by first rewriting the semiclassical
steady-state solutions in terms of spherical coordinates # and ¢ as Zy = cosf, X =
sinf cos ¢, and Yy = sinfsin¢, and then applying a unitary rotation R = exp(iu -
J@) around an axis 4 = (—sin¢,cos¢,0), so that the transformed operators J; =
R'J;R describe quantum fluctuations around the semiclassical steady state. The HP
representation (3.28a)-(3.28¢c) and subsequent large- N expansion is then applied to the
operators {J]}.

The master equation obtained in this way may be written, for both phases, in the
general form (omitting constant energy terms in the Hamiltonian)

p = —ilHpm, p] + T xDleflp + Tk Dlcilp+ T, [2ckpck + 2 pel —{cf + (c])?, p}]
—il% . | =2enpon + 2 pe], — [ + ()%} . (3.29)

with
th = Al,kc};ck -+ AQ’k |:Cz + (C;L)Q] + Z'A37k [(02)2 — Cii| s (330)

where k € {<,>} and c. (¢~) denotes the bosonic operator for the normal (broken)
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phase. The coefficients in the normal phase are given by

Aie = 2h— ) (3.31a)
Ay = —)\/2, (3.31h)
Aye = 0, (3.31c)
I,. = T, (3.31d)
T . = Tu+Ty (3.31e)
rs_ = T, (3.31f)
r_. =20, (3.31g)

while in the broken phase they are given by
1

A = ox (—4n* — 3T; + 4AA) (3.32a)

1

Ay = TV ((rg —4h?)\ /N2 —T7 — 4hr§> : (3.32b)
r

Az = zu_l}\ (_4h2 + I} + 4hy /X2 — rg) : (3.32¢)

_ Fa 2 2 I-‘b 2
Fes = AU 1)+ 5 (F2h+ A (3.32d)
S Fa 2 2 2 Fb
D's = on {(4}1 — )y /A2 -T2+ 4hrb] e VA2~ TEERA — 200,
(3.32¢)
s _ Ll o 2 2 2 Th a2 2
P = gy (T — 4R+ dhy 02 = T7) + L (A% — 4n?). (3.32f)

Note that the Hamiltonian (3.30) does not contain any terms linear in ¢ and ¢}, which
is a consequence of the applied rotation, and also means that (cx)ss = <CJ]L>SS =0.

While the coefficients for the broken phase are rather complicated, they do simplify
considerably in the limit of very large A; in particular, for A > h,T',; one finds A; 5 ~
2\, Ay ~ 0, and Az~ ~ 0, while Ty o ~ T'y/4, I, . ~ —I'y/4, and I'* | ~ 0. The
master equation then corresponds to that of a simple quantized harmonic oscillator

coupled to a somewhat unconventional (squeezed-type) reservoir [49].

Eigenvalue analysis

It is interesting to examine the eigenvalues associated with the linear set of equations
of motion for the first-order moments (c), (c}), which may be expressed as 4 = M,
where @ = ((c1), (cl))” and M is a 2 x 2 matrix. The real and imaginary parts of these
eigenvalues are plotted in Fig. 3.4 for our characteristic set of numerical parameters.
We note that except for the region near zero coupling strength the eigenvalues exhibit

very similar behavior to that found in the dissipative Dicke model [33].
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In the normal phase (A < A.) the eigenvalues of M are given by

pe = =Ty & 2i/h(h — N), (3.33)

the imaginary parts of which go to zero at the point X' = h < A, with a characteristic
scaling of vV — A. For X < A < A, the eigenvalues are real and distinct, with one
going to zero at A (i.e., critical slowing down) and the other to —2T.

In the broken phase (A > \.) the eigenvalues of M are given by

oTh
po = = V2212 £ T2 = 2A). (3.34)

In the region A > )\’ where \' = (T'? + 2h?)/y/4h)\., the eigenvalues are complex
conjugate pairs with a real part that diminishes for A > A. like —I';h/A. Provided

Iy < V2hv/1+ /5, then M > )\, and the imaginary parts vanish as A approaches \”
from above with the scaling /A — A (which can be shown using a first-order Taylor
series expansion about A = \”). The imaginary parts are zero in the interval A < A <
A, while the real parts again approach 0 and —2I, respectively, as A — A..

If Ty > v2hV/ 1+ /5 then N’ < ), and the eigenvalues are complex conjugate
pairs immediately above the critical point. In this situation, the dissipation is stronger
than the Hamiltonian dynamics; this is also an interesting regime, but not one that we
will consider in the present paper.
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Figure 3.4. FEigenvalues of the linearized equations of motion, u+, as

given by Eqs. (3.33) and (3.34), for h =1 and 'y = 0.2. The right-hand
column gives a magnified view of the region around A. = 1.01.

Probe transmission spectrum

A standard way to examine the structure and dynamics of an atomic system is to
measure the transmission of a (weak) probe laser field through the medium as a function
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of the probe frequency. This amounts simply to detecting the frequency response of
the system to an applied field or “force”. A schematic diagram illustrating the setup
for such a measurement in the present context is shown in Fig. 3.2 (a).

For our theoretical investigation of the transmission spectrum we retain the two
cavity modes in our model and make use of the input-output theory of open quantum
systems [40, 41]. In particular, our starting point is the atom-cavity Hamiltonian (3.6)
and we again consider the limit N > 1, so that we can perform a linearization. To do
this, we follow our previous working and determine the stable semiclassical steady-state
amplitudes of the atom-cavity system from the semiclassical (i.e., factorized) equations
of motion for the moments {(a), (b), (J.), (Jy), (J:)}. Note that the steady-state cavity
mode amplitudes in this approach can be expressed in terms of the atomic amplitudes
as (neglecting terms proportional to ., and setting d, = 0)

<a>ss - _21.)\0, <b>ss o /\b
\/N —Ka—i_iéa > \/N_/ib
Using the HP representation of the atomic spin operators and linearizing about the

semiclassical steady states as before leads to the following Hamiltonian for the normal
and broken phases,

(Y — i Xss). (3.35)

Hgjin = 50011% + 5aa£ak + 5bbzbk + (Acy, + A*CL)(ak + a,Tc)
+(Bicy + Bach)by + (Bicl + Biep)bl, (3.36)

where k € {<,>}, a; and by denote the annihilation operators for the intracavity
modes in the normal and broken phases, and the coefficients {d., A, B, B2} are given
in Appendix 3.A.

Employing the quantum Langevin equations of the input-output theory of open
quantum systems we can analytically solve for any cavity output correlations and
spectra of interest [33]. Here, however, we focus simply on the amplitude of a probe
laser field transmitted through the system and into the output field, as depicted in
Fig. 3.2 (a). We consider only the case in which a probe laser of frequency v, (in the
rotating frame) and amplitude &, drives cavity field mode b.

The analytical expression for the amplitude of the transmitted probe, A,(v), is
rather complicated, but if we restrict ourselves to a frequency range where |v| <
da, Kp (also with Kk, < d,), then for A < A. the transmitted probe intensity is well
approximated by

Ty(v) = |4, ()

2

P N ) N

WHE=N) | [v=2y/B=N)| +i0,  |v+2y/Ah= )| +T,
(3.37)

12
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where we have normalized the intensity such that it takes a maximum value of unity
for an empty cavity. This form for 7),(v) highlights the presence of atomic resonances
at the frequencies v = Im(py), superimposed on a broad background corresponding
to the bare cavity mode resonance. Note that this is in contrast to the findings in
the dissipative Dicke model [33] where the probe laser transmission spectrum exhibits
strongly coupled atom-cavity resonances.

In Fig. 3.5 we plot the transmission spectrum [computed from the full theory — note
that the approximate expression (3.37) is in good agreement for the parameters chosen)]
for a series of values of A on either side or the transition. Note that we have chosen
I'y, = 0.05 here in order to highlight the main features of the spectrum more clearly.
For A <« \., we observe, at v ~ 2h, a single sharp dip of width 2I', in the envelope of
cavity mode resonance, corresponding to a cavity-mediated collective atomic emission
resonance (0. ~ 2h); at this A, spin-spin interactions mediated by cavity mode a are
small and have little effect on the spectrum.

2
&R
V MZ
1.01
v 15 090 10001
30 :
Figure 3.5. Transmission spectrum in the linearized regime, for

A = 0.3,0.93,0.992,1.000625(= A.), 1.005,1.05, 1.5, with microscopic pa-
rameters k, = 0.3, 0, = 15, and N\, = 0.87, k, = 15, giving I'y, = 0.05.
We set h = 1 as usual. Note that \, is chosen to give the indicated \ for
the given choice of k, and d,, viz. Eq. (3.11a) and recalling that A = 2A,,
while T, varies according to Eq. (3.11b), with Ty, = 0.01 when A = A..

As the interaction strength A is increased, this dip moves to smaller frequencies
and reduces in depth (eventually inverting), while a peak emerges at the corresponding
negative frequency. The positions and widths of these features reflect the real and
imaginary parts, respectively, of the eigenvalue structure of the system, while their
“intensities” also relate to the populations of the energy levels. At A = h the two peaks
merge into a single peak centered at v = 0, with a height 7,(0) ~ (h/T})?. Then, as
A — A, this peak diverges (corresponding to eigenvalue - — 0) in a pronounced
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signature of the phase transition. A similar divergence in the probe laser transmission
spectrum is found in the dissipative Dicke model [33].

Just above the critical point, two peaks reappear in the spectrum and move apart
with increasing A, as shown in Fig. 3.5. The negative frequency peak diminishes in
strength, while the peak at positive frequency inverts to a dip, which narrows and moves
to increasingly larger frequencies. In fact, for A > 1, its position is approximated by
2 and its width by 2T',h/\.

3.5.2 Entanglement
Entanglement criteria

Recently a criterion for bipartite entanglement in collective spin systems was de-
rived [50], and the connection to spin squeezing established. For the case of symmetric
states the criterion is both necessary and sufficient, and reads

4 4

C,=1- N(AJE) - m(J‘p)Q > 0, (3.38)
where J, = sin(y)J, + cos(p)J,. In this work, we will use the magnitude of C,, as a
quantitative measure of the entanglement in the system. Note that for finite N, and
also in the linearized analysis, we have (J,,) = 0 [since there are no linear driving terms
in the effective Hamiltonians (3.21) and (3.30)], and thus C, = 1 — (4/N)(JZ). Note
also that C,,—y = C,, which was shown to be equivalent to the concurrence, C' [51], in
nondissipative LMG models [9].

We also compute the rescaled concurrence, Cr = (N — 1)C, which is the relevant
(nonvanishing) quantity to study for infinitely coordinated collective spin systems in
the thermodynamic limit [15, 29]. It is possible to show that for the system considered
here, Cr may be written as [52]

o 2max{0,C;} if E<F
7 2max{0,C,} if E>F

where
e — \(ﬁﬂ _ <J§>;<J5> +%7 (3.39)
6 _ %_ <£> VNN =2) +4<f]¥2 i G D [C2) (3.40)
and
B g_Lﬁ (3.41)
p - YOO ATIRPIOD0T , WO g
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As pointed out in Sec. 3.2.3, the spin variances required to compute the entanglement
measures described above can in principle be determined from appropriate measure-
ments performed on the cavity output field.

Steady-state entanglement

For finite N we numerically solve the master equation for the steady-state density
matrix and then compute the operator averages required to determine C, and Cg.
In Fig. 3.6 we plot max{0,C,} as a function of A and ¢ for N = 100. We see that
below the critical point, A < ., entanglement is present for a broad range of angles (.
However, as the critical point is approached the range of angles ¢ which gives nonzero
entanglement, C, > 0, becomes increasingly narrow. Once above the transition, A >
Ac, the region of finite C, continues to narrow until it eventually disappears altogether.
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Figure 3.6. Entanglement measure maz{0,C,} for N = 100, h = 1,
', =0.01, and I', = 0.2.

To help interpret the behavior of C,, we make use of a phase space representation
of the atomic state that employs the spin coherent states, which are defined by [52]

m =it (N i, (3.43

m=—j

where n = €' tan £ 5, with 6 and ¢ corresponding to spherical coordinates, and |j, m)
are the Dicke states with m € [—j,—j + 1,...,7 — 1,7] (for our system, j = N/2).
Using these states we can define the spin Q)-function,

Qs(n) = (nlpln)- (3.44)
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Fig. 3.7 displays Qs(n) on the surface of the Bloch sphere for N = 50 and for a series of
interaction strengths A. Below the critical point, Q4(n) is single-peaked and centered
around the top of the Bloch sphere (§ = 0), with little obvious angular dependence.
Correspondingly, the entanglement measure C,, is finite over a rather broad range of
¢, with a maximum close to ¢ = 0 (i.e., near Cy). Note that this slight shift of the
optimum away from ¢ = 0 is a consequence of the dissipation (I'y) in the system.

(a)
¢ £

Figure 3.7. (Color online) Steady-state spin Q-function, Qy(n),
the Bloch sphere for (a) A\ = 0.5, (b) A = 1.01, (¢) A = 1.1, and (d)
A =2, with N =50, h=1,T, = 0.01, and I'y = 0.2. Note that dark
blue corresponds to the minimum value of zero of Qs(n) while dark red
indicates the mazimum value of Qs(n).

As X increases towards the critical point, Qs(n) becomes increasingly elongated
along a direction close to the x axis, until, at the transition, it splits into two peaks lo-
cated approximately at the two semiclassical steady-state amplitudes (3.26b) and (3.26¢).
These peaks continue to move apart in phase space as the interaction strength is in-
creased further; eventually both peaks will lie in the equatorial plane corresponding
to § = 7/2 and ¢ = 0, 7. Correspondingly, the range of ¢ over which C, remains fi-
nite becomes increasingly narrow and is focussed around an axis perpendicular to that
along which the two peaks lie. This narrowing of the “width” of C,, can be explained
by noting that, since (J,) = 0, we have C, =1 — (4/N)<[s1n( ) + cos(p)Jy)?). For
increasing interaction strength A > A, <J12> becomes of order j2 = N?/4 (see Fig. 3.3),
and so the optimal choice of ¢ becomes more critical. In fact, one can show for A > A,
that the range of ¢ over which max{0,C,} > 0 scales as 1/v/N.
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Next, we consider the rescaled concurrence, Cg, as a function of the interaction
strength A. In fact, one finds that

Cr = max C,, (3.45)
%)

i.e., Cr is simply the optimal value of the quantity C, just considered. In Fig. 3.8 we
plot Cr versus A and observe that the entanglement reaches a maximum for A close to
Ac [at finite N the critical point is slightly shifted from A. as given in Eq. (3.24)]. This
peaking of the entanglement at the quantum phase transition has been conjectured and
demonstrated theoretically for the equivalent closed (nondissipative) spin models [12,
14, 15]. Our results confirm that this behavior can persist in steady state in our
nonequilibrium, open-system version of these models, and can in principle be measured
within our proposed setup.
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Figure 3.8.  Rescaled concurrence Cg for N = 100 (dashed line) and in
the thermodynamic limit (solid line) with h = 1, T, = 0.01, and T', = 0.2.

In the linearized treatment (N > 1) of the HP representation, we can write J,, ~
(VN /2)xp, where x, = i(—cre’ 4 cLe ). Noting that (c;) = 0, the entanglement
measure C, can be expressed as

O = 1= () = (e (ed) + e ((e))) — 2(clen)) (3.46)

while the rescaled concurrence is Cy is given by

CHP _ 2max{0,C{’"} if EP < pHP
B = 2max{0,CiP} if EHP > pHP

where
Cit = ) — (chew), (3.47)

B = (cfer) — \/((cler)?) — (chew) (3.48)
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and
E = 2(cley), (3.49)

F =\ ((ehen?) — ) + 1), (3.50)

Using the linearized master equation (3.29), we can derive a closed set of equations
for the second-order moments (cl.cx), (¢2), and ((c!)?), from which we may determine
the steady-state solutions analytically. Note that the fourth-order moment appearing
in ' can be expressed in terms of second-order moments, since the states we are

dealing with in this linearized approximation are necessarily Gaussian.
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Figure 3.9. Entanglement measure maz{0,Cy} in the thermodynamic
limit for h = 1, 'y = 0.01, and I'y = 0.2. Above the critical point, the
system is linearized about only one of the two semiclassical steady-state
amplitudes; hence the less-sensitive dependence of maz{0,C,} on ¢ for
A > A as compared with the finite-N results.

In Fig. 3.9 we plot C,, as a function of ¢ and A, as determined from the linearized
HP representation. The behavior below the critical point (A < A.) is very similar to the
finite- N case. However, the behavior above the critical point (A > A.) is very different.
Here, the sensitivity of Cy, to ¢, for A > A, is much less critical because the linearized
model describes only the fluctuations around one of the two semiclassical steady-state

amplitudes (i.e., around one of the two lobes appearing in the spin @-function for
A> A

Note that we can obtain plots of max{0,C,} similar to Fig. 3.6 for the region
A > A, but determined from the linearized HP model (with a finite value of N), by
making a rotation back to the original coordinate system and then setting, by hand,
(X,) = 0, to mimic an equal, incoherent mixture of the states associated with the two
semiclassical amplitudes.
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Finally, returning to Fig. 3.8, we have plotted Cg as a function of A, computed from
the HP model in the thermodynamic limit. Again, Cr corresponds to the value of C,,
optimized over ¢, and, since the optimal ¢ corresponds to an axis perpendicular to
the (above-transition) splitting of the semiclassical amplitudes, we expect, and indeed
find, good agreement with the finite-N results over the full range of \.

If we make the simplifying assumption that I', ~ 0, then, for A < A, one can show
that 'Y < FHP and

AVAROe — M) + 22— )

HP .01
Cr 4h(Ae — N) (3:51)
1 1h(he =N

(¢

This shows reasonable agreement with the plot, but reaches a maximum value of 0.5
at the critical point.

Entanglement dynamics

We now consider the dynamics of the entanglement; starting from an initially unen-
tangled state, we examine the time evolution of the state and its entanglement as
quantified by Cr(t). The initial state is taken as the A = 0 ground state, i.e., the state
with all atomic spins pointing up (which is a convenient state to prepare in an experi-
ment). As in the previous section, we compute the entanglement both numerically for
finite NV and analytically for N > 1 in the linearized approximation.

In Fig. 3.10 we plot Cgr(t) versus A and time ¢ for N = 100. At long times we
recover the results of the previous section, but at short times the behavior as a function
of X is quite different; the entanglement rises to a high value and remains at that
value for increasing interaction strength A. This behavior can be attributed to the
Hamiltonian dynamics, which dominate the dissipation at short times and can create
highly entangled states. The potential of such Hamiltonian dynamics for generating
such highly entangled states has been proposed previously, for example, in Refs. [17, 18].
Note, however, that the presence of the term —2h.J, in our system Hamiltonian tends
to make the generated states more complicated and less straightforward to interpret.
Although the focus of this paper is on the quantum phase transition, it is clear that
with a slight modification the scheme also has interesting potential for the controlled
generation of specific, highly entangled multiatom states (e.g., Greenberger-Horne-
Zeilinger states). In connection with this, an important aspect of our implementation
should be highlighted here: because both the effective interaction and dissipation of
the spins is controlled by the optical laser fields, we can in principle “freeze” the state
of the atomic system at any time by simply turning these fields off.

In the linearized regime, N > 1, we solve the equations of motion for the second-
order moments, (cic;), (¢2), and ((cL)?), with the initial conditions (c|(0)c(0)) = 0,
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Figure 3.10.  Rescaled concurrence Cg(t) as a function of X\ and t for
N =100, h=1,T,=0.01, and I', = 0.2.

(c1(0)?) = (cx(0)?) = 0. The results for Cg(t) are shown in Fig. 3.11. Below the critical
point the behavior is similar to that observed for finite N. However, above the critical
point, where the dynamics is linearized about only one of the two allowed semiclassical
steady-state amplitudes, the rescaled concurrence is, as expected, quite different, owing
to the more limited range of entangled states that the linearized (Gaussian) theory can

accommodate.
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Figure 3.11. Rescaled concurrence Cgr(t) as a function of X\ and t in
the thermodynamic limit, with h = 1, 'y = 0.01, and I', = 0.2. Above
the critical point the dynamics is linearized around one of the two possible
semiclassical steady-state amplitudes.
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3.6 First-Order Phase Transition

We now turn to the case of a fixed, positive interaction strength (A > 0) of the v =0
model (Sec. 3.3.3) with variable effective field h. In the absence of dissipation this
model exhibits two second-order transitions as h is varied, one occurring at positive h
(the transition discussed in the previous section) and the other, equivalent transition
occurring at negative h. However, in this section we show that with the addition of
dissipation this model actually exhibits a first-order phase transition near h ~ 0 (note
that in the absence of dissipation no such transition exists). As in the previous section,
we begin with a study of the linearized spin master equation, including an eigenvalue
analysis and calculation of the probe transmission spectrum, after which we focus
again on the entanglement properties of the system. For numerical calculations we will
typically employ the set of normalized parameters {A = 1, ', = 0.01, ', = 0.2}, which
correspond to a critical effective field strength h. ~ 0.

3.6.1 Linearized model

As before, we consider the thermodynamic limit and linearize the master equation (3.22)
about the mean-field state. To do so, we first find the semiclassical steady-state so-
lutions and then expand the angular momentum operators around these mean-field
solutions using the Holstein-Primakoff representation.

Semiclassical steady-state solutions

From the (factorized) semiclassical equations of motion for X, Y, and Z, Eqs. (3.23a)-
(3.23c) we again obtain the stable steady-state solutions. These exhibit discontinuities
at the critical field strengths

he = % (A _ M) , (3.53)

and h = 0. For h < 0 the stable steady-state solutions are given by Eq. (3.25), while
for he < h < (A + /A2 —T%)/2 [54] the stable steady states are given by Eqgs. (3.26a)-
(3.26¢). While outside the region 0 < h < h, the stable steady states are unique, inside
the region 0 < h < h. both steady-state solutions (3.25) and (3.26a)-(3.26¢) are in fact
stable. However, for the characteristic parameters we consider here this region is very
small (h. ~ 0.01). Moreover, we have verified (from a linearized analysis) that the
steady-state solution (3.25) is more stable in the region 0 < h < h. and thus we will
only consider this solution in that region. Note that for larger values of the dissipation,
'y, this region becomes more pronounced (in this case all stable steady states should
be considered [53]), but this is beyond the regime we wish to consider here.

The relevant stable steady-state solutions Zg, X and Y are plotted in Fig. 3.12,
together with results from numerical solutions of the master equation for a range of
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values of N up to 100 (at which agreement between the two approaches is already
quite good). The discontinuous jump of Zg at h. ~ 0 signifies the first-order phase
transition. Note that for the case A < 0 the same first order transition occurs except
that it is shifted to —h. (i.e., in Fig. 3.12 all curves are flipped about h = 0).
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Figure 3.12.  Semiclassical (solid line) and finite-N steady-state solutions
for A =1,T, =0.01, T, = 0.2, and N = 25 (dotted), 50 (short dashed
line), 100 (long dashed line). Note the inset in the bottom panel is a
magnified plot of the semiclassical solution of (J7)/j>.

Holstein-Primakoff representation

Here, we again include the quantum fluctuations for N > 1 as a first-order correction
by linearizing the spin operators around the semiclassical steady state via the HP
representation. For h < h. (normal phase) the linearized master equation is identical
to Eq. (3.29) with & =<, while for h > h. (broken phase) the linearized master equation
is also identical to Eq. (3.29) but with k£ =>.

Eigenvalue analysis

The eigenvalues of the linearized system, i.e., of the matrix M, where @ = M and
i@ = ((c), ()T, for h < h. are given by Eq. (3.33) while for h > h, they are given
by Eq. (3.34). In Fig. 3.13 the real and imaginary parts of the eigenvalues are plotted
for our characteristic set of parameters. In the normal phase (h < h.) we see that the
imaginary parts go to zero at the point A’ = 0 < h.. In the region A’ < h < h, both
eigenvalues are real and distinct, with one going to zero at h. and the other going to
—2I",. This behavior is the same as that found for the second-order transition of the
earlier section. However, immediately above the transition, A > h., the eigenvalues
become complex conjugate pairs with a nonzero real part that diminishes for A > h,
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like —T'yh/A. This discontinuous jump of the eigenvalues is an additional signature of
the first-order phase transition.
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Figure 3.13.  FEigenvalues of the linearized equations of motion, jy, as

given by Eqs. (3.33) and (3.34), for A =1, and I'y, = 0.2. The right-hand
column gives a magnified view of the region around h. = 0.0101.

Transmission spectrum

We determine the probe transmission spectrum in the linearized regime following ex-
actly the same calculations as outlined in Sec. 3.5.1. The linearized Hamiltonian
describing the full atom-cavity system is easily obtained; for h < h. it is given by
Eq. (3.36) with # = 0 and ¢ = 0, while for h > h, it is also given by Eq. (3.36),
but with 6 and ¢ given according to the semiclassical solutions Egs. (3.26a)-(3.26¢) as
explained in Sec. 3.5.1.

Restricting ourselves again to a frequency range where |v| < |d4], kp (also with
Kq < |04|), then as previously an approximate expression for the transmitted probe
intensity can be derived in the normal phase for h < h. and takes exactly the same
form as Eq. (3.37).

In Fig. 3.14 we plot the transmission spectrum for a series of values of h across
the critical point h.. In the normal phase (h < h.), we observe the same behavior as
in the normal phase of the system in the previous section (A < A.), except that the
orientations of the peaks and dips have inverted in accordance with the change of sign
of the field (h < 0). The central peak diverges as the critical point is approached from
below in the normal phase, again signifying the phenomenon of critical slowing down
in the vicinity of the phase transition. However, immediately above the critical point,
the spectrum splits discontinuously into two sharp peaks of width ~ T'yh/\, located at
frequencies v ~ £2\. This jump from a single divergent peak at v = 0 to a two-peaked
spectrum offers a pronounced, observable signature of the first-order transition.
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Figure 3.14. Transmission spectra in the linearized regime, for h =

—0.6,—0.1,—0.01,6.25 x 107*(= h,),0.05,0.3, with microscopic parame-
ters K, = 0.3, 0, = 15, Ay = 2.7, Ay = 0.87, and k, = 15, giving A = 1,
'y =0.01 and I'y, = 0.05.

3.6.2 Entanglement
Steady-state entanglement

We compute, as before, the entanglement measures C, and Cg, both numerically for
finite N and analytically for N > 1 in the linearized regime. Fig. 3.15 shows a plot
of U, as a function of h and ¢ for N = 100. We see that, well away from the critical
point, substantial entanglement is present over a broad range of angles ¢. As the
critical point is approached from below, significant entanglement persists, but for a
somewhat narrower range of angles ¢. However, immediately above the critical point
the entanglement drops suddenly to zero for all values of .

To help understand these results we again utilize the atomic coherent state repre-
sentation and study the spin Q-function Qs(n). In Fig. 3.16 we plot Qs(n) on the Bloch
sphere for a series of values of h in the vicinity of the first-order transition. Well below
the critical point, in the normal phase, Qs(n) is a single peaked function with little
angular dependence. Correspondingly, C,, is nonzero over a broad range of ¢, with a
maximum close to ¢ = 7/2 (i.e., near C,). Again, note that this slight shift of the
optimum away from ¢ = /2 is a consequence of the dissipation (I'y) in the system.

As h increases towards the critical point, Qs(n) becomes increasingly stretched along
the y axis. As the critical point is traversed Qs(n) rapidly rotates around from the y
axis towards the x axis, and splits into the familiar two-lobed structure associated with
the two semiclassical steady-state amplitudes of the broken phase. At the same time
as the critical point is approached, the range of ¢ over which C, remains finite narrows
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Figure 3.15.  Entanglement measure maz{0,C,} as a function of h and
o for N =100, A=1,T,=0.01, and I', = 0.2.
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Figure 3.16.  (Color online) Steady-state spin Q-function, Q4(n), on the
Bloch sphere for (a) h = —0.5, (b) h = —0.01, (¢) h = 2.5 x 1073, (d)
h=5x1073, (¢) h = 0.015, and (f) h = 0.15, with N = 50, A = 1,
', =0.01, and I'y = 0.2. Note that dark blue corresponds to the minimum
value of zero of Qs(n) while dark red indicates the mazimum value of

Qs(n)-
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and immediately above the critical point it drops abruptly to zero for all choices of ¢.
This behavior is akin to the behavior we observed for large interaction strength in the
regime of the previous section, where (J2) becomes of order j? = N?/4 (see Fig. 3.12),
which severely restricts the range of ¢ for which C, > 0. Note that at larger values
of h than displayed in Fig. 3.15, the entanglement, C,, once again becomes nonzero
(centered around ¢ = 0) coinciding with the broken phase behavior of the second-order
transition discussed in the previous section.

In Fig. 3.17 we plot the rescaled concurrence Cg as a function of the effective field
strength h and again find that close to the critical point, h., the entanglement reaches
its peak value. Although the equivalent closed system would not feature a maximum
in the entanglement near h. (due to the complete absence of a phase transition), this
result is in agreement with a conjecture concerning entanglement in open systems at
quantum critical points [39].

0.1F |

h

Figure 3.17. Rescaled concurrence Cr versus h for N = 100 (dashed
line) and in the thermodynamic limit (solid line) with A =1, T, = 0.01,
and I'y = 0.2.

In the linearized treatment (N > 1) we obtain very similar plots of C, to those
of finite N (Fig. 3.15) and for Cg the result is shown in Fig. 3.17. In the limit where
we consider I', ~ 0 we can again obtain an approximate expression for the rescaled
concurrence (for h < h.) given, in this instance, by

A/ (h = AJ2)(h — he) + X% = \)
4(h = A/2)(h = he)
1 1hc—h

2 2 A

CiP ~ (3.54)

12

for h.—h <A\ (3.55)

This again has a maximum value of 0.5 at the critical point, and, for large |h|, drops
off like 1/|h|, in reasonable agreement with the plots.
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Entanglement dynamics

Finally, in Fig. 3.18 for N = 100 we illustrate the time-dependent behavior of the
rescaled concurrence, Cg(t), for varying h, given an initial (unentangled) state with all
spins up. Once again, we observe an interesting oscillatory behavior of Cg(t), with,
in particular, highly entangled states generated by the Hamiltonian dynamics at short
times (for almost all values of h), before dissipation has had time to play a significant
role. For the linearized regime (N > 1) a similar plot of Cg(¢) can be obtained which
agrees well with the finite N result for h < h. but shows zero entanglement for almost
all values of h > h. because of the restricted linearization around only one of the two
permitted semiclassical steady-state amplitudes.

20

15

Figure 3.18. Rescaled concurrence Cg(t) for N = 100, with A = 1,
', =0.01, and I'y, = 0.2.

3.7 Conclusions

We have proposed in this paper a feasible cavity QED setup, consisting of a collective
atomic pseudospin and two quantized cavity modes, which realizes a dissipative version
of the LMG model in which the interacting spin system displays both first- and second-
order nonequilibrium quantum phase transitions. The lossy cavity’s output light fields
can be utilized to monitor the system as the model parameters are varied; specifically,
we showed that the transmission spectra vary dramatically in the vicinity of the transi-
tion, with features that are characteristic of the criticality. A further important result
is the steady-state entanglement criticality at the QPT and the possibility of directly
observing this via homodyne detection of the cavity output fields. In particular, the
entanglement can be quantified rather directly in terms of measurable atomic quadra-
ture variances. We also observed an important sensitivity of the entanglement measure
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to the quadrature phase angle in the critical regimes, which we were able to interpret
by employing an atomic phase space distribution. Finally, we have considered how
entanglement evolves in this system, observing not only the criticality at the QPT at
long times (corresponding to the steady state), but also a rich transient behavior at
shorter times.

For future studies, it is clear that the system we have proposed offers a variety of
opportunities, such as (i) investigating phase transitions in response to variation of the
strength of dissipation (i.e., I';), (ii) examining a system of multiple (separately ad-
dressable) atomic pseudospins all coupled to the same quantized cavity modes, which
would permit the study of entanglement between different spin blocks [14], (iii) con-
trolled preparation of robust (insensitive to noise/environment), highly entangled states
by evolution from an initial product state [17, 18], (iv) measurement of more general
atomic spin correlations and their evolution with time, which can also provide sig-
natures of criticality in QPT’s [55], (v) extending our system to accommodate more
complex spin models, e.g., by adding additional lasers to the setup explained in Sec. 3.2
to realize the so-called “two-field model” [15], and (vi) imposing some spatial variation
on the cavity mode to provide, for example, short ranged interactions, which could be
uniform or quasirandom.
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3.A Coefficients of the Atom-Cavity Hamiltonian
in the Linearized Regime

In Sec. 3.5.1 we gave the general form of the linearized Hamiltonian of the joint atom-
cavity system, Eq. (3.36). The coefficients of this Hamiltonian in terms of the system
parameters, h, Aq, Ay, [, and the angles 0, ¢ from Sec. 3.5.1 are

dc = 2hcos+2sinf[2A\ X cos ¢ — I'p(Yas cos ¢ — X sin 9)] , (3.56)
A = % [(1+ cosf) + (1 — cos)(sin ¢ + i cos ¢)?] (3.57)
B, = % [(1—cosf)(sing +icos¢)’], (3.58)

A
B, = Eb(l + cos 0). (3.59)
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Note that for A < A, one has # = 0 and ¢ = 0, giving the simplified expressions
0. = 2h, A = \,, By =0, and By = )\,. Similar to Sec. 3.5.1, we can also derive
simplified expressions in the limit A > A, i.e., for A — oo, one has §. = 4)\,, A = 0,
Bl = —)\5/2, and BQ = /\b/2
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CHAPTER 4

Microscopric CAVITY QED SYSTEM

In this chapter we present the detailed microscopic model of the atom-cavity system
used to derive the effective spin-cavity model (and subsequently the collective spin
system) we studied in the previous two chapters. The system we consider consists of
a cloud of atoms confined inside a cavity and illuminated by several laser fields. The
description considered here includes both the ground and excited states of the atoms,
and the corresponding electric dipole transitions between them mediated via the lasers
and cavity light fields. First in section 4.1 we introduce the system of atoms, whilst
in section 4.2 we briefly discuss the dissipative cavity system. Then in section 4.3 we
describe the coupling of all atoms to the laser fields and cavity modes, which finally
leads us to the full microscopic atom-cavity system in section 4.4

4.1 Atomic System

We begin by considering the description of the internal degrees of freedom of the
atomic system'. We assume large enough inter-atomic separations such that (i) no
(e.g., s-wave) scattering occurs between atoms, (ii) the wave functions of the atoms do
not overlap (no symmetrization required), and (iii) dipole-dipole interactions between
atoms can be neglected. Specifically we assume that each of the N atoms possesses
a pair of stable electronic ground states which we denote |0) and |1), with energies
(h = 1) wy = 0 and wy, respectively. Furthermore we consider two atomic excited
atomic states |r) and |s), with energies w, and wy, respectively, associated with the two
ground states (see Fig. 3.1). With all these considerations the Hamiltonian describing
the atoms is then given by

Hyo = 3 (@ilsissl +wnlr)rns] + 1K1 (4.1)

'We assume that all relevant properties of the system, such as atom-cavity and atom-laser coupling
strengths, do not depend on the motion of the atoms and thus we will not consider external degrees
of freedom.
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We will consider a regime where independent spontaneous emission? of each atom,

associated with a decay from either of the two excited states into one of the two
ground states, can in fact be neglected. This corresponds to a situation where the
single-photon transitions coupling the ground and excited states (described in section
4.3) are far off resonance, and the excited states, |r), |s), are only virtually excited.

4.2 Cavity System

Next we consider a high-() optical resonator supporting two orthogonal cavity modes,
assuming that all other modes are far-detuned from the frequencies of interest and can
thus be neglected. Each field mode of the cavity is quantized and described by bosonic
annihilation and creation operators, a (b) and a' (b'), of a harmonic oscillator with
frequency w, (wp). The Hamiltonian of the cavity system is then given by

H. = wya'a+ wpblb. (4.2)
The loss of photons out of each cavity mode is described by the Liouvillian term
Lepm = ka(2apma’ — a’apy, — pmaTa) + /<;b(2(),0mbT — bbpy, — pmbTb), (4.3)

where k, and k; are the cavity field decay rates for cavity modes a and b respectively,
and py, denotes the microscopic density operator.

4.3 Atom, Laser and Cavity Coupling

We now consider the coupling of the ground and excited states of the atoms by the
laser fields and cavity modes. In fact we will focus on the case where the laser and
cavity fields combine to drive Raman transitions between |0) and |1), via the excited
atomic states |r) and |s) (as schematically depicted in Fig.). At the position of each
of the j atoms, denoted x;, the cavity and laser fields are taken to be travelling waves
copropagating in the x direction, with sufficiently broad beam waists so as to ensure a
homogeneous atom-field coupling.

Specifically, the laser fields, at frequencies w,q, wso, wr1, and wgy, couple to the
dipole transitions |0) < |r), |0) < |s), |1) < |r), |1) <> |s) with Rabi frequencies 2,0,
Qs0, .1, and gy, respectively. The corresponding Hamiltonian describing the laser
mediated dipole transitions in the rotating wave approximation reads

N
D (Qpoe ot Rom) )0 4 Qe et R |51
j=1
F Qe @R [ 1]+ Qe 0t R0m) (s 00)) + Hee ), (4.4)

Hlas

DN | —

2Note that we expect no collective spontaneous emission effects because the atoms are situated far
apart so that emitted photons are immediately lost to the environment and are unable to re-excite
another atom.
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where k., (m € {r,s}, n € {0,1}) denote the wave numbers of the laser fields.

The cavity field a couples to the transitions |0) < |r) and |1) < |s) with coupling
strengths ¢,o and g, respectively, while cavity field b, couples to the transitions |0) <
|s) and [1) < |r) with coupling strengths gso and g,1, respectively. The corresponding
Hamiltonian describing the cavity mediated dipole transitions in the rotating wave
approximation reads

N
Huo = Y {(:0lrs )05 + gals;X1,]) ac™es

j=1
+ (g [ X110 + gsols;)0;]) be™*7 + Hec.} (4.5)

where {k,, ky} denote the wave numbers of the cavity fields. Note that the wave
numbers of all the laser and cavity fields will be assumed to be essentially equal.

4.4 Microscopic Atom-Cavity Model

Finally the microscopic master equation describing the total atom-cavity system, in-
cluding dissipation, is given by

Pm = —1[Hm, pm] + Lepm, (4.6)

where
Hm — Ilat +Hc+Hlas+Hint' (47)

This master equation is in fact the starting point for the derivation of the effective spin-
cavity system in section 3.2.1, where the atomic excited states have been adiabatically
eliminated.






CHAPTER 5

ADIABATIC ELIMINATION OF THE CAVITY
MODES

In this chapter we give a more detailed description of the adiabatic elimination
of the cavity modes, which was used in the previous two chapters to obtain an effec-
tive collective spin system from the total coupled atom-cavity system. We consider
a situation where the dynamics of both cavity modes occurs on a much faster time
scale than that of the spin system, either due to strong losses or large effective fre-
quency (detuning) of the cavity modes, and thus adiabatically follows the dynamics
of the collective spin. It is then possible to seek a description of a reduced system
involving only the collective spin by calculating the effect of the (weak) coupling to
the cavity mode via perturbation theory and using the Born-Markov approximation
[1-3]. We begin by giving the formal reduced system master equation in terms of the
total atom-cavity system in section 5.1. In the following section 5.2 we show (i) why
the non-linear dispersive terms do not contribute after the adiabatic elimination and
(ii) why the adiabatic elimination of each cavity mode can be considered separately.
After these two simplifications, in section 5.3 we sketch the technical aspects of the
adiabatic elimination based on the correlation functions of the cavity modes (and the
Born-Markov approximation).

5.1 Reduced System

Our starting point for the adiabatic elimination of the cavity modes is the master
equation of the atom-cavity system (see section 3.2.1)

pg = —i[Ho + Hy + Hini, pg] + Lepy, (5.1)
where
Leps = Ka(2apga’ —alapg — pgala) + ry(2bpgh! —bbpy — peblb), (5
Hy = wol. +d.a'a+ 6,b'b, (5.
H = 25 J.ata+26; J.btb, (5
(

Aa A
Hi = \/—N(Xaa + Xlah) + \/—bN(Xbb + X1,



80 Adiabatic elimination of the cavity modes

We now pursue a description of the atomic system alone, i.e., of p; = Tr.{py} where
Tr. indicates the trace over both cavity modes. This will be meaningful whenever
the cavity mode dynamics occur on a much faster time scale than the spin system
dynamics. For the open cavity system considered here this can occur either because
the cavity detuning or dissipation strength are large compared to the atomic system
energy scales, i.e., 0;,k; > wp, A;. Then using the Born-Markov approximation we
derive to second order (in the interaction strength) the following master equation for
reduced atomic/collective spin density operator in the interaction picture *

) == [ T {0+ H), O ) + 1) 0 @ 0 s (5)

where p(t) = U(t) ps(t)U(t) and Hi(t) = Ut(t)HinU(t) with U(t) = e "Ho: note
that H,(t) = UT(t)H,U(t) = Hy. p. denotes the total cavity mode density matrix
given by p. = p, ® pp where p,; are the density matrices for the individual cavity
modes a,b, respectively. In what follows we assume a vacuum for each of the cavity
modes, i.e., pap = [0)ap(0]sp Where |n),, are the Fock states for the cavity modes a, b.
This assumption is a consequence of the large cavity detuning or dissipation, which
ensures that the cavity modes are only ever very weakly (or virtually) excited.

5.2 Dispersive and Cross-Cavity Terms

First we show in more detail why the non-linear terms of H; do not contribute pro-
vided we consider a vacuum state for both cavity modes as explained above. First
we see that the term e"*)%<[H, ps ® p.] = 0 because Hip. = 0 = p.H,. To see
that the term Hjelt—t)fe [ﬁint, fs @ pe] also vanishes we note that Hye*=")%< A p., where
A. € {a,a’,b,b'} always contains an odd number of bosonic operators (annihilation or
creation) and therefore when the trace is performed with p. being a vacuum state the
result will always be zero.

Next we explain why the adiabatic elimination of each cavity mode may be per-
formed independently provided we again consider a vacuum state for both cavity modes.
We note that when the double commutator is expanded we obtain (i) terms only con-
taining operators of cavity mode a or b and (ii) terms containing operators of both
cavity mode a and b. Since the two cavity modes are orthogonal any expectation val-
ues involving both cavity modes factorize i.e. Tro{A,Appe} = Tra{Awpa}Tro{Avps}
(where A, € {a,a’} and A4, € {b,b'}) and since we assumed a vacuum state for each
cavity mode these terms give zero contribution.

' This is derived using the method of projectors and the Laplace transform and is in fact a gener-
alization of the result presented in [1]
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5.3 Cavity Correlation Functions and Born-Markov
Approximation

Thus we can express the master equation now as

it = = [ 3 W {im. <O an e plp it 6)

i€{a,b}

where for convenience we have defined H,(t) = \’/\%(Xa(t)e_iéata + X, (t)TePtal) and

Hy(t) = \;‘—%(Xb(t)e*"‘sbtb + X (t)Te?bT) with X;(t) = e”™°tX;. Upon expanding the
above double commutator we only consider terms containing an annihilation and cre-
ation operator as all other combinations give zero contribution for a vacuum state.
Thus we need only consider the four different non-trivial correlation functions that
occur; for cavity mode a they are given by

T faelt 08 afp)) = ) = T falel 0 )
Tro{afe®"% < (ap.)} = 0 = Tr.{ae "% (p.af)}.

Identical results are obtained for cavity mode b with a — b in every term of the above
equations.

Substituting the above results for the correlation functions into the reduced master
equation (5.7) gives

it = = [ 3 S {e e, X w)ao)

i€{a,b}

—e (= dim) X (1), ﬁs(t)Xi(t/)]} dt'. (5.8)

To be consistent with the Markov approximation we must set X7 (') — X/ (¢) and
X;(t') — X;(t) since X;(t) are system operators which change on the slow time scale
according to ps(t). Then we can explicitly perform the integration, making the usual
assumption of fast decaying correlations (setting ¢ — 00), which gives the result

t
) , : 1
—(ki10;) (t—t )dt/ — 1— —(ki10;)t t—00 . 59
Using this result in Eq. (5.8) and transforming the resulting master equation back
from the interaction picture gives the result Eq. (3.9) in section 3.2.2.
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We consider two different collective spin systems subjected to strong dissipa-
tion — on the same scale as interaction strengths and external fields — and show
that either continuous or discontinuous dissipative quantum phase transitions can
occur as the dissipation strength is varied. First, we consider a well known model
of cooperative resonance fluorescence that can exhibit a second-order quantum
phase transition, and analyze the entanglement properties near the critical point.
Next, we examine a dissipative version of the Lipkin-Meshkov-Glick interacting
collective spin model, where we find that either first- or second-order quantum
phase transitions can occur, depending only on the ratio of the interaction and
external field parameters. We give detailed results and interpretation for the
steady-state entanglement in the vicinity of the critical point, where it reaches
a maximum. For the first-order transition we find that the semiclassical steady
states exhibit a region of bistability and we show that homodyne spectra of the
system provide a clear signature of this behavior.
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6.1 Introduction

The field of ultracold quantum gases has recently made remarkable progress toward
the implementation of (fully) tunable interacting many-body quantum systems [1].
Specifically, the degree of control in experiments allows for a precise variation of system
parameters, for example interaction strengths and effective fields, such that the systems
can be made to undergo transitions between different quantum phases [2].

Of particular interest are microscopic, interacting many-body systems, which have
been widely studied in the context of closed systems, where quantum phase transitions
(QPTs) arise due to the competition between fluctuations originating from different
coherent processes in a system (e.g. tunneling versus interaction in the Bose-Hubbard
Model) [3, 4]. Although individual systems subjected to dissipation on the same scale
as their characteristic frequency have been extensively studied [5], the effects of dissipa-
tion on interacting many-body systems are less well-known. Recently a collective spin
system with weak dissipation was studied in the context of a nonequilibrium QPT [6].
It was shown that the well known second-order phase transition found in the equivalent
closed system persists, with weak dissipation being responsible only for minor modifi-
cations to the system properties. However, in addition, a first-order phase transition
was shown to occur exclusively due to the presence of dissipation, i.e., this phase tran-
sition is absent in the equivalent closed system case. For both types of transition, the
spin-spin entanglement was shown to exhibit pronounced signatures of the criticality.

Given these nontrivial results for the case of weak dissipation, it is then naturally
interesting to consider the regime of strong dissipation, i.e., dissipative rates on the
same scale as the interaction strengths and external fields. In this regime marked
differences are expected in comparison to the closed system case, and, specifically, new
types of QPTs, driven by the dissipation, are expected to emerge [7-13]. In this work
we consider two models of open collective spin systems where a QPT arises solely due to
a competition between fluctuations associated with Hamiltonian (coherent) dynamics
and with dissipative processes. In addition to studying elementary characteristics of
the phase transitions, we also study entanglement criticality and find that pronounced
maxima in entanglement measures occur at the QPT. A further interesting feature that
arises in the present work is that, for the second model considered, the nature of the
phase transition, i.e., whether it is continuous or discontinuous, is governed by the ratio
of the spin-spin interaction strength to the effective (“magnetic”) field. This behavior
is in strong contrast to the equivalent nondissipative models, where the character of
the phase transition is governed by the nature of the interaction, i.e., by whether it is
“ferromagnetic” or “anti-ferromagnetic”. We also find in the latter model that within
a semiclassical analysis a region of bistability arises for the first-order QPT; in the fully
quantum mechanical system with finite atom number, N, signatures of this bistability
can be identified in an atomic phase space distribution and in homodyne spectra. We
note that bistable behavior and first-order nonequilibrium phase transitions have also
been found in studies of optical bistability and resonance fluorescence of cooperative
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atomic systems [11, 14, 15]. However, unlike these systems, our second model involves
direct spin-spin interaction terms and does not feature coherent driving of the collective
atomic spin.

A brief outline of the paper is as follows. First, in Sec. 6.2 we briefly examine the
cooperative resonance fluorescence model, which exhibits a second-order QPT as the
dissipation strength is varied, and consider the steady-state entanglement. Then, in
Sec. 6.3 we focus on the dissipative Lipkin-Meshkov-Glick (LMG) model in a parameter
regime where a second-order dissipation-driven QPT arises. Specifically we first present
a semiclassical analysis of the phase transition and then consider the steady-state
entanglement behavior across the phase transition. Next in Sec. 6.4 we present a similar
analysis for a different parameter regime where a first-order dissipation-driven QPT
occurs in the LMG model which in fact exhibits bistable behavior in the semiclassical
steady states that can be further elucidated by considering homodyne spectra for finite
N. Finally in Sec. 6.5 we will summarize our findings and give a brief outlook.

6.2 Cooperative Resonance Fluorescence Model

We consider here a model for cooperative resonance fluorescence as studied in [11-
13], which describes a collection of N two-level atoms that are resonantly driven by a
classical laser field and undergo collective spontaneous emission. This system can be
described by the following (zero-temperature) master equation,

. . Y
p=—ilQJo, pl+ - @Jpds = T d_p = pJiJ-), (6.1)

where €2 is the strength of the coherent driving field and 7 is the collective sponta-
neous emission rate (i.e., v is proportional to the atomic density) [16]. The angular
momentum operators are defined in terms of the individual two level operators by
J, = (1/2) >, o J. = > o) with o the Pauli matrices for atomic spin i, and
J. = (1/2)(J+ + J2), Jy = (—i/2)(J4 — J-). We note that this master equation
possesses the exact steady-state solution [17, 18],

pes = NI (6.2)

where Jo = J. FiQN/(2y).

For a potential experimental realization of this system, we have in mind an ensemble
of atoms coupled collectively to an optical (quantized) cavity mode and laser fields,
which together drive Raman transitions between a pair of stable atomic ground states in
a A-type configuration (similar to the setups described in [6] and [19]). In particular,
a pair of laser fields drive a resonant Raman transition between the atomic ground
states to provide the coherent driving term in Eq. (6.1), while the cavity mode and
another laser field drive a second, distinct Raman transition. In the (“bad cavity”)
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limit where the cavity field decay rate is much larger than the Raman transition rates,
the cavity mode dynamics adiabatically follows the atomic dynamics and can therefore
be eliminated from the model [6], yielding the dissipative term proportional to v in
Eq. (6.1), with ~y the effective (cavity-mediated) collective atomic spontaneous emission
rate. Also note that in such a setup the dissipative term automatically scales with a
factor of 1/N (in contrast to earlier studies [13]), which allows the thermodynamic
limit to be identified more readily and ensures that the critical point is independent of
the system size N in this limit.

In Sec. 6.2.1 we first study the steady-state solutions of the cooperative resonance
fluorescence model. Then in Sec. 6.2.2 we determine and analyze the steady-state
entanglement present in the system.

6.2.1 Steady-states

From the above master equation we derive the following semiclassical equations of
motion for the components of the Bloch vector, X = (J,)/7, Y = (J,)/j, and Z =
(J.)/j (see [6] and [19] for similar derivations)

X = vZX, (6.3a)
Y = —QZ+~2Y, (6.3b)
7 = QY —y(X?+Y?), (6.3¢)

with the constraint X2 + Y2 4 Z2? = 1 corresponding to conservation of angular mo-
mentum. For v > ~. = €, the stable steady-state solutions are given by

Zo = —/1-Q%/42, (6.4a)
Xy = 0, (6.4b)
Yo = Q. (6.4c)

When v < 7, one finds that no (semiclassical) steady-state solutions exists. However,
the (finite-N') master equation has a stable steady-state solution for all ~y, as given by
Eq. (6.2), which indicates that quantum fluctuations play a crucial role in determining
the state of this model. This was extensively discussed in earlier works [11, 12], where
an effective description for N > 1 was developed and the steady-state Bloch vector
components for v < 7. were shown to be

Zo = 0, (6.5a)

Xo = 0, (6.5b)
Q 1—(Q/v)?

Y, = __M‘ (6.5¢)
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In Fig. 6.1 we plot the nonvanishing steady-state Bloch vector components, as given
by the above expressions, together with finite-/V solutions (computed from numerical
solution of the master equation [20]) for comparison. We see that there is good agree-
ment for sufficiently large values of N (in fact, the two approaches are already in
reasonable agreement for NV ~ 100). Also, in Fig. 6.2 we plot finite- N solutions for the
steady-state second-order moments, (J7)/5%, (J7)/j?, and (J2)/5>.

(J2)/3

(Jy)/i

0.05 0.2 0.35

3
Figure 6.1. Semiclassical and asymptotic solutions (solid line), and

finite-N steady-state moments for Q = 0.2, and N = 25 (dotted line), 50
(short dashed line), 100 (long dashed line).
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Figure 6.2.  Finite-N steady-state second-order moments for 2 = 0.2,
and N = 25 (dotted line), 50 (short dashed line), 100 (long dashed line).
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6.2.2 Entanglement

We consider bipartite entanglement between individual atomic spins, as quantified by
the rescaled concurrence, Cr = (N — 1)C, with C' the concurrence [21], and by the
phase-dependent measure max{0, C,,} [22], where

4 4

C,=1- N(AJ@ — ﬁ<‘]“’>2’ (6.6)
with J, = sin(¢p)J,+cos(p)J,. Note that in Ref. [6] the rescaled concurrence was found
to be related to C, through the relation Cr = max, C,,. For our proposed realization
of the model, the latter entanglement measure can in principle be determined from
appropriate (quadrature variance) measurements performed on the cavity output field
as explained in [6]. In the present model we find that the relation Cr = max,, C,, also
holds, which then, indirectly, enables a measurement of the rescaled concurrence.

In Fig. 6.3 we plot the rescaled concurrence as a function of the dissipation strength
v for N = 100 as calculated numerically from the master equation (6.1). We can see
that the entanglement peaks close to the critical point and then very rapidly diminishes
to zero below the critical point, in agreement with a previous study [13]. This behavior
can be understood by considering the entanglement measure max{0, C,,} as a function
of the phase ¢ and the dissipation strength . We find that above the transition,
v > ., C, is nonzero for a broad range of ¢ around ¢ = 7/2. However, below the
transition C, is zero for all ¢ and v as both the mean values and fluctuations of the
components of the Bloch vector, i.e., (J,)?/j% and (J2)/j%, scale as j2 = N?/4 (see
Fig. 6.1 and Fig. 6.2). By using the exact steady-state solution, given in Eq. (6.2),
we are able to calculate the rescaled concurrence for large values of N. However, in
the limit of large v we run into numerical difficulties and thus we will consider here
only the behavior near the critical point. In the inset of Fig. 6.3 we show the behavior
of max(CRr) as a function of N in the vicinity of the critical point (since at finite N
the critical point depends upon N it would be meaningless to consider a fixed value of
7). We see that max(CRr) continues to increase with N and appears to approach the
asymptotic value of 1 (viz. the corresponding thermodynamic limit value, see below)
with an approximately logarithmic scaling in N.

In the present context it is also useful to consider a phase space representation of
the steady state as given by the spin Q-function,

Qs(n) = (nlpln), (6.7)

where |n) are the atomic coherent states defined by

=y Y (), (©5)

m=—j

with n = € tan g, where 6 and ¢ correspond to spherical coordinates, and |7, m) are

the Dicke states with m € [—j, —j +1,...,j — 1, ] (for our system, j = N/2).
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Figure 6.3.  Rescaled concurrence Cr for N = 100 and 2 = 0.2. Inset:
Asymptotic behavior of max(Cr) as a function of N for Q = 0.2 in the
vicinity of the critical point.

In Fig. 6.4 the spin Q-function, Q(n), is shown on the Bloch sphere for four different
values of 7. We see that above the transition point Qs(n) is a symmetric, single-peaked
function centered at the corresponding semiclassical amplitude. As the critical point
is approached Qg(n) stretches and moves down to the equatorial plane. However, once
below the transition point Qs(n) remains centered at § = /2 for all v and merely
continues to spread out in size as the fluctuations increase. Eventually, as v — 0,
Qs(n) covers the entire Bloch sphere, in agreement with the fluctuations becoming
evenly distributed in the x, y and z directions (see Fig. 6.2).

X .
©

Figure 6.4. (Color online) Steady-state spin Q-function, Qs(n),

the Bloch sphere for (a) v = 0.05, (b) v = 0.15, (¢) v = 0.225, (d)
v = 0.5, with N = 50 and ) = 0.2. Note that dark blue corresponds to
the minimum value of zero of Qs(n) while dark red indicates the mazimum

value of Qs(n).
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Next, we consider the thermodynamic limit by linearizing the quantum fluctuations
around the steady-state solution using the Holstein-Primakov (HP) representation [23].
We note that, as follows from the above discussion of the steady-state representation
in phase space, the linearization is only possible for v > ~., since below the critical
point the state can no longer be described in terms of fluctuations centered around a
semiclassical steady-state solution on the Bloch sphere. However, above the critical
point we can easily obtain the linearized master equation by expanding the angular
momentum operators around the semiclassical steady-state solution using the HP rep-
resentation [23], which gives

2

p o= %(1-,/1-%) D[CT]p—l—%(l—i— 1—%) Dclp

QZ
+H (2cpc + 2¢' pct — {® + (')*, p}) , (6.9)

where ¢ and ¢! are bosonic annihilation and creation operators, respectively. Using this
master equation, it is straightforward to compute the rescaled concurrence analytically
and we find

Cr=1—/1—Q2/2. (6.10)

Away from the critical point this is in good agreement with the results shown for
N =100 in Fig. 6.3, whilst near the critical point the agreement between the finite- N
and linearized results improves with increasing system size N, as shown in the inset of

Fig. 6.3.

6.3 Second-Order Transition in Dissipative LMG
Model

We now turn to the dissipative LMG model, first studied in [6], which describes a
collection of N interacting two-level systems in the presence of (collective) dissipation.
Specifically, as shown in [6], by considering an ensemble of atoms coupled collectively
to optical cavity and coherent laser fields, with suitably tailored Raman transitions
between a pair of atomic ground states, one may realize a dynamics described by the

master equation
) . I, r
p = —i[Hima, p] + FDBJ:E]P + ﬁb‘D[JJr]p? (6.11)

where I';, and I', are tunable dissipation strengths, and the Hamiltonian is given by

2\
Hiyve = —2hJ, — W‘Ji’ (6.12)
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with h and A tunable effective field and interaction strengths, respectively. Note that
we have expressed the dissipative terms in the above master equation (6.11) using the
convention D[A]p = 2ApAT — ATAp — pATA.

In this section we will study this model in the regime A < 2h, where a second-
order phase transition occurs. In Sec. 6.3.1 we analyze the steady states and nonlinear
dynamics of the semiclassical equations of motion. Then in Sec. 6.3.2 we determine
the steady-state entanglement in the system.

6.3.1 Semiclassical analysis
Steady-state solutions
The semiclassical equations of motion for the components of the Bloch vector, X =

(Jo)/3, Y = (J)/j, Z = (J,)/j, where j = N/2, derived from the above master
equation, are given by [6]

X = 20Y —T,ZX, (6.13a)
Y = —2hX 42)\ZX —T,2Y, (6.13b)
Z = —2\XY 4+, (X?+Y?), (6.13c)

with the constraint X? 4+ Y? + Z2 = 1 corresponding to conservation of angular mo-
mentum.

The steady-state solutions of these equations of motion exhibit a bifurcation at a
critical dissipation strength

¢ = 2/h(\ — h), (6.14)

provided A > h; also note that I'; < A. For I', > I'} the stable steady-state solutions
are

s =1, Xg=Ys=0, (6.15)

whilst for I', < I'j they become

2h
Zss = X, (616&)
A% — 4h?
X = £\ —— 1
> 20N (6.16b)
I
Yo = —XsZ 1
ss 2% ss4/ssy (6 60)

where

A=A+4/A2 -T2 (6.17)
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From these expressions we can see that, in the present regime of A < 2h, all the
semiclassical steady-state solutions vary continuously across the phase transition corre-
sponding to a second-order phase transition. In Fig. 6.5 we illustrate this bifurcation,
where, to facilitate a comparison between semiclassical and finite-N solutions (com-
puted from numerical solution of the master equation), we plot the second-order mo-
ments (J7) and (J;) (since the finite-N master equation gives (J,) = (J,) = 0 for all
A), and (J,). We note that the two approaches are in reasonable qualitative agreement;
we expect improved quantitative agreement for increasing N, but unfortunately we are
computationally restricted from considering much larger system sizes. This should be
compared to the results of the model in the previous Sec. 6.2, i.e., Fig. 6.1, where the
convergence between finite- /N and asymptotic results was much better. Note that since
A ~ h a significant inversion of X or Zg (as observed for the second-order transition
presented in [6]) does not occur here for I'y, < I'.
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Figure 6.5.  Semiclassical (solid line) and finite-N steady-state second-
order moments for h = 0.2, A = 0.3, and I'j = 0.28, and N = 25 (dotted
line), 50 (short dashed line), 100 (long dashed line).

Next let us briefly consider the detailed stability analysis of the steady-state solu-
tions, which can be readily determined by linearizing the above nonlinear equations
of motions (6.13a)-(6.13c) around the steady-state solutions. The resulting linearized
equations of motion can be expressed as (X,Y, Z)T = M(X,Y, Z)T + C, where C'is a
(constant) three component vector, and we will consider the nontrivial eigenvalues, pi,
of the 3 x 3 matrix M (a trivial zero eigenvalue is always present due to the constant
of the motion). Above the critical point, I, > I'f, the eigenvalues of M are purely real
and given by

From this we see that the eigenvalues scale linearly with the dissipation (in contrast
to the studies of our previous model [6]) with p; going to zero at the critical point.
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Below the critical point, I', < I'j, the eigenvalues of M are given by

2Lh 2 2 2 /)2 2

In the region I'j < I'y, < I'f, where

A2 —4p2 A
Iy = \/— + VA2, (6.20)

2

the eigenvalues are also purely real, with py going to zero at the critical point, whilst
in the region I', < I'} < I'f they become complex conjugate pairs, with an imaginary
part that goes to zero as \/I'y — I',. For our characteristic parameters of h = 0.2 and
A = 0.3 we find that I'} = 0.25 and '} = 0.28, hence I'} < I'j. We note from the above
expression that for the case A\ < 2h considered here, the eigenvalues vary smoothly
across the critical point, as expected for a second-order phase transition.

Time-dependent solutions

Let us now consider numerical, time-dependent solutions of the semiclassical equations
of motion, i.e., of Egs. (6.13a)-(6.13a). We have calculated the evolution of the Bloch
components X (t), Y(t), and Z(t) numerically for a uniform distribution of different
initial states on the Bloch sphere. The resulting trajectories {X(¢),Y(¢), Z(t)} are
mapped from the Bloch sphere into the plane using the sinusoidal projection [24].
This mapping is achieved in two steps. First, the solutions for the Bloch components
are transformed into spherical polar angles 6(t) and ¢(t). Next, the polar angles are
transformed to new coordinates U(t) and V (t) via the transformation

Ut) = (¢(t) — ) cos (0(t) — 7/2), (6.21)
V) = 6(t) — /2. (6.22)

In Fig. 6.6 we plot the trajectories using the sinusoidal projection for a value of I'y, above
the critical point (see the caption of Fig. 6.6 for numerical values of parameters). We
can see that all initial states terminate in the unique steady state given by Eq. (6.15),
corresponding to the point Uy = 0, Vs = 7/2 in Fig. 6.6. Moreover we can see that
all trajectories approach the stable steady state along one of two lines, corresponding
to the stable steady state being a node (eigenvalues s being purely real). Next, we
consider the case where I'y is below the critical value and plot the trajectories using
the sinusoidal projection in Fig. 6.7. In this case we see that different initial states
terminate in either one of the two stable steady states given by Eqs. (6.16a)-(6.16¢), the
cor responding values for the points U, Vi, are given in the caption of Fig. 6.7. We also
note that none of the trajectories ever terminate at Uy = 0, Vs = 7/2, corresponding
to the steady state (6.15), since this solution is unstable in this regime. We can also
see that the trajectories form spirals centered at the stable semiclassical steady states,
corresponding to the eigenvalues being complex conjugate pairs (note that I', < I'} for
the choice of parameters in Fig. 6.6).
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Figure 6.6. Trajectories for different initial conditions on the Bloch
sphere using the sinusoidal projection, with h = 0.2, A = 0.3, and I'y, =
0.45.
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Figure 6.7. Trajectories for different initial conditions on the Bloch

sphere using the sinusoidal projection, with h = 0.2, A = 0.3, and ', =
0.15. For this choice of parameters the stable steady states are located at
Uss ~ £0.357, Vi ~ 0.257 (as calculated from Egqs. (6.16a)-(6.16¢)).

6.3.2 Entanglement

We consider as before the rescaled concurrence Cr and the phase dependent entan-
glement measure max{0,C,}, both numerically for finite N and analytically in the
thermodynamic limit. Note that in this model, for finite N and also in the lin-
earized analysis, we have (J,) = 0 (since there are no linear driving terms in the
effective Hamiltonian (6.12) or the corresponding linearized Hamiltonian [6]), and thus
Co =1—(4/N)(JZ). Again, we find that Cgr = max, C,, as for the above model and
the model studied in [6].
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In Fig. 6.8 (a) we plot max{0,C,} as a function of I', and ¢ for N = 100 with pa-
rameters corresponding to the second-order phase transition. We see that well above
the transition, I, > I}, entanglement is present for a broad range of angles ¢. However,
as the critical point is approached the range of angles ¢ which give nonzero entangle-
ment, C, > 0, becomes increasingly narrow. Below the transition, I, < I', the region
of finite C, continues to narrow and its maximum simultaneously shifts toward ¢ = 0
as I'p decreases.

0.
—37/8 —m/4 —m/8 0
®

0.1
-37/8 —m/4 —m/8 0 /8

12

Figure 6.8. (a) Entanglement measure max{0, C,,} for N =100, h = 0.2,
A =03, and I'; = 0.28. (b) Entanglement measure max{0,C,} in the
thermodynamic limit, with h = 0.2, A = 0.3, and I'j = 0.28.

This behavior can be explained by considering the spin (-function. Figure 6.9
displays @Qs(n) on the surface of the Bloch sphere for N = 50 and for a series of
dissipation strengths I',. Above the critical point Qs(n) is single-peaked and centered
around the top of the Bloch sphere (§ = 0), with a significant rotation in a direction
between the x and y axes due to the large values of dissipation. Consequently we see
that although C,, is relatively broad above the transition, stemming from the broad
shape of the lobe, its center (where it is maximal) is continually shifting toward smaller
values of ¢ as the rotation of Qs(n) away from the x axis decreases with decreasing
dissipation.
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As T', decreases towards the critical point, Qs(n) becomes increasingly elongated
along a direction between the x and y axes, until, at the transition, it splits into two
peaks located approximately at the two semiclassical steady-state amplitudes (6.16b)
and (6.16¢). These peaks continue to move apart in phase space as the dissipation
strength is decreased further, approaching the corresponding dissipation-free points at
§ = 7/2 and ¢ = 0, 7. Correspondingly, the range of ¢ over which C, remains finite
becomes increasingly narrow and is focussed around an axis perpendicular to that
along which the two peaks lie. This narrowing of the “width” of C, can be explained
by noting that, since (J,) = 0, we have C, = 1 — (4/N)([sin(p)J, + cos(¢)J,]?). For
decreasing dissipation strength T’y < T'§, (J2) becomes of order j2 = N?/4 (see Fig. 6.5),
and so the optimal choice of ¢ becomes more critical.

-
z
() z
Figure 6.9.  (Color online) Steady-state spin Q-function, Qs(n), on the
Bloch sphere for (a) Ty, = 0.1, (b) Ty, = 0.25, (¢) T, = 0.4, and (d)
I'v =1, with N =50, h = 0.2, A = 0.3, and I'; = 0.28. Note that dark

blue corresponds to the minimum value of zero of Qs(n) while dark red
indicates the mazimum value of Qs(n).

In Fig. 6.10 we plot the rescaled concurrence calculated for N = 100 (dashed line)
and find that it peaks close to the critical point. In contrast to the model of the
previous section, significant entanglement is present on both sides of the critical point.

We now consider the thermodynamic limit, where we can obtain analytic results
for N > 1 by considering a linearized model. Using the Holstein Primakov representa-
tion [23] it is straightforward to linearize the master equation (6.11) around the stable
semiclassical solutions (6.15) and (6.16a)-(6.16¢). This basically involves replacing the

spin ladder operators .Jx by bosonic creation (annihilation) operators ¢} (¢;), where
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Figure 6.10. Rescaled concurrence Cr for N = 100 (dashed line),
and the thermodynamic limit (solid line), with h = 0.2, A = 0.3, and
I't = 0.28. The vertical dotted line indicates the location of the critical
point I'y = 0.28.

k € {<,>} denotes below or above the critical point, representing the quantum fluc-
tuations. Since we are not directly interested in the linearized master equation we will
refrain from quoting it here and refer the reader to [6].

In Fig. 6.8(b) we display C, in the thermodynamic limit as a function of the dis-
sipation strength I', and the phase angle . We observe that above the transition,
I', > I'g, the behavior is very similar to the finite-/V result of Fig. 6.8(a). However,
the behavior below the critical point, I', < I'}, is very different, with C, nonzero for a
broad range of ¢ due to the linearized treatment, which only accounts for fluctuations
around one of the two semiclassical steady-state amplitudes (i.e., around one of the
two lobes appearing in the spin @Q-function for I', < I'f). Note that we can obtain
plots of max{0, C,,} similar to Fig. 6.8(a) for the region I', < I'f, but determined from
the linearized HP model (with a fin ite value of N), by making a rotation back to the
original coordinate system and then setting, by hand, (x,) = 0, to mimic an equal,
incoherent mixture of the states associated with the two semiclassical amplitudes.

Finally, in Fig. 6.10 we also plot Cr as computed in the thermodynamic limit (solid
line) from the linearized master equation [6]. We observe that in the linearized regime
the peak of the concurrence is shifted below the critical point, whilst at the critical
point there is a marked change in the behavior. However, we can once again recover
a curve within the linearized HP model that is more similar to the finite-N result for
I'y < T} by following the procedure outlined at the end of the previous paragraph.

It is interesting to note that the difference in the behavior of max{0, C,, } between the
finite-N and thermodynamic limit is analogous to that observed in [6]. However, in [6]
the rescaled concurrence peaked at the critical point for both the finite-N calculations
and the thermodynamic limit. Thus, unfortunately, the result for max{0, C,,} in the
thermodynamic limit does not give us any clues to the discrepancy observed in the
rescaled concurrence.
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6.4 First-Order Transition in Dissipative LMG
Model

In this section we consider the dissipative LMG model described by the master equa-
tion (6.11) in the regime A > 2h, where we find that a discontinuous first-order tran-
sition occurs. Moreover, we find that there are in fact two transition points that
encompass a region of bistability, the size of which increases with increasing A. In
Sec. 6.3.1 we analyze the steady states and nonlinear dynamics of the semiclassical
equations of motion. Then in Sec. 6.3.2 we determine the steady-state entanglement
in the system.

6.4.1 Semiclassical analysis
Steady-state solutions

We consider, as previously, the semiclassical equations of motion given by Eqgs. (6.13a)-
(6.13c) and begin by studying their steady-state solutions. In the region I', > \ the
stable steady-state solutions are given by Eq. (6.15), whilst for I, < I'§ they are
given by Egs. (6.16a)-(6.16¢c). However, in the region I'y < I', < A both steady-state
solutions (6.15) and (6.16a)-(6.16¢) are in fact stable, i.e., the semiclassical system is
bistable [25]. These two solutions each exhibit a discontinuity, associated with a first-
order phase transition, at the critical points I'; and A, respectively. Note that for values
of A not significantly larger than 2k, the bistable region i s in fact very small, with
I'; ~ A, and consequently the distinction between steady states in this region becomes
somewhat redundant [6]. However, in the regime A\ > 2h the extent of the bistable
region becomes significant and both stable steady states must be considered. In fact,
in this situation we can expect that a complete description in terms of a single steady
state will not be possible. We will focus on the regime of large A, and study the system
primarily for the characteristic parameters {h = 0.2, A = 0.75, T', = 0.01}.

The behavior of the semiclassical steady-state solutions as a function of I', is il-
lustrated in Fig. 6.11, together with finite-N solutions. Outside the bistable region,
convergence of the finite- N solutions towards the semiclassical results is evident, while
inside the bistable region the finite-N solutions appear to approach the semiclassical
branch corresponding to Eqgs. (6.16a)-(6.16¢), although the rate of convergence with
increasing N is clearly much slower, and indeed the finite-N curves are suggestive of
some degree of “averaging” between the distinct semiclassical steady states. (In fact,
consideration of the spin @-function later in this section will support this picture.)

At the critical points, the semiclassical moments “jump” by a larger amount as
A is increased; specifically the size of the jump at the critical points is quantified by
A =1 — Zg, where Zg is given by Eq. (6.16a). For the critical point I'§ this is given
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Figure 6.11.  Stable semiclassical solutions, (6.16a)-(6.16¢) (solid line),
and (6.15) (dash-dotted line), with h = 0.2, A = 0.75, and I'; = 0.66. Also
plotted are the finite-N steady-state moments for N = 25 (dotted line), 50
(short dashed line), 100 (long dashed line).

by A =1—h/(A— h) and for the critical point A by A =1 — 2h/\, hence we see that
at either critical point the largest possible jump occurs in the limit A > h.

Now let us again consider the stability of the steady-state solutions by examining
the nontrivial eigenvalues p4 of the matrix M describing the linearized semiclassi-
cal equations of motion. For the steady-state solution (6.15), stable in the region
I't < Ty, the eigenvalues are again given by Eq. (6.18), whilst for the steady-state
solutions (6.16a)-(6.16¢), stable in the region I', < A, they are given by Eq. (6.19).
We plot these eigenvalues in Fig. 6.12 and note the discontinuities in Eq. (6.18) and
Eq. (6.19) at I'y and A, respectively, as expected for a first-order transition. These
discontinuities coincide with p, as given by Eq. (6.18), going to zero at I'f, and .,
as given by Eq. (6.19), going to zero at A.

In the bistable region the behavior of the eigenvalues associated with the steady
states (6.16a)-(6.16¢) is quite similar to that of the eigenvalues for I', < I'f for the
second-order transition of Sec. 6.3. Note, however, that whilst for A < %(3 + V/5)
(the case encountered previously in Sec. 6.3) one finds I') < I'f, if A > %(3 + /5)
(corresponding to the case plotted in Fig. 6.12) we find that A > I'y > I'{ (this was
already noted in [6]).

Finally, over essentially all of the bistable region I'y < I', < A\ we observe that the
real part(s) of the eigenvalues associated with the solutions (6.16a)-(6.16¢) are smaller
(i.e., more negative) than the largest real part of the eigenvalues associated with the
solutions (6.15). This points to the steady-state solutions (6.16a)-(6.16¢) being more
stable than the solutions (6.15) over the majority of the bistable region, which is
consistent with the apparent convergence of the finite-N results with increasing N
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Figure 6.12.  Figenvalues of the linearized equations of motion, ji+, as
given by Eq. (6.19) (solid line), and by Eq. (6.18) (dash-dotted line), for
h=0.2, A=0.75, and I'; = 0.66. The inset shows a magnification of the
real part of v mear the critical point at I'y = \.

towards the solutions (6.16a)-(6.16c). We note, however, that for significantly larger
values of A, where the bistable region is much larger, either steady-state solution can
be more stable dependin g on the choice of I', within the bistable region, and thus a
convergence of the finite-V results toward one of the two semiclassical solutions is not
observed.

Time-dependent solutions

Time dependent solutions of the semiclassical equations of motion are now examined,
again using the sinusoidal projection defined earlier. In particular, in Fig. 6.13 we plot
trajectories {U(t), V(t)} for a value of I', within the bistable region I'j < I', < X\ [26].
We see that, in this case, different initial states evolve to either the steady state (6.15),
(corresponding to Uy = 0, Vi = 7/2), or to either of the two steady states (6.16a)-
(6.16¢) (corresponding to Uy ~ +0.567, Vi ~ 0.137). Again we see that the way in
which the trajectories approach the respective steady states is directly related to the
type of eigenvalue.

In Fig. 6.13 we note two distinct “gaps” centered at the points {U ~ £0.217,V ~
0.317}. These points in fact correspond to unstable steady-state solutions of the semi-
classical equations of motion, given by

2h A? — 4p? r,
Zi=—, Xi=44/—— Yi=—"X"7" 6.23
sSs A/ ? SS 2)\A/ ? Ss 2h SS“'ss? ( )

where A’ = X\ — /A2 — T'2. These points separate trajectories that terminate in differ-
ent (stable) steady states, i.e., trajectories that pass “above” (“below”) these points
terminate in the steady state {Us = 0, Vs = 7/2} ({Uss = £0.567, Vg >~ 0.137}).
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Figure 6.13.  Trajectories on the Bloch sphere for different initial condi-
tions, using the sinusoidal projection. Parameters are h = 0.2, A = 0.75,
and I'y = 0.7. For this choice of parameters the broken phase stable
steady states are located at Uy ~ +£0.567, Vi ~ 0.137 (as calculated
from Eqs .(6.4a)-(6.4a)), whilst the normal phase steady-state solution is
located at U = 0, Vi = w/2. Note that the unstable solution described
in the text is located at Uy ~ +0.217w, Vi ~ 0.317 for the parameters
considered.

6.4.2 Entanglement

We now consider again the entanglement measures C, and Cr, both numerically for
finite N and analytically for N > 1, corresponding to the linearized regime. Fig-
ure 6.14(a) shows a plot of C, as a function of I', and ¢ for N = 100. We see that,
well above the critical value I'y, = A, substantial entanglement is present over a broad
range of angles ¢. As I'y, approaches A from above, significant entanglement persists,
but for a somewhat narrower range of angles . However, in the vicinity of [', = A the
entanglement diminishes rapidly for all values of ¢ as I', decreases further.

To help understand these results we again utilize the atomic coherent state rep-
resentation and study the spin Q-function. In Fig. 6.15 we plot Q4(n) on the Bloch
sphere for a series of values of ', in the vicinity of the first-order transition. Well
above the critical point Qs(n) is a single-peaked function with little angular depen-
dence. Correspondingly, C, is nonzero over a broad range of ¢, with a maximum close
to ¢ = 3w /4. Note that in contrast to the results found in [6], here there is a large shift
of the optimum away from ¢ = 7/2, since fluctuations in both the y and = directions
are significant (see Fig. 6.11).

As Ty, decreases towards the value A, Qs(n) becomes increasingly stretched along a
direction between the z- and y-axes. As the critical value I', = A is traversed, Qs(n)
changes from a single-peaked function to a triple-peaked function, corresponding to
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Figure 6.14. (a) Entanglement measure max{0,C,} for N = 100,

h =02, A=0.75, and I'; = 0.66. (b) Entanglement measure max{0, Cy}
in the thermodynamic limit, with the same parameters, for the steady
state (6.15). (c) Entanglement measure max{0, Cy} in the thermodynamic
limit for the steady state (6.16a)-(6.16¢).

the existence of three stable steady states in the region I'; < I', < A. As noted above,
the range of ¢ over which C, remains finite narrows and then drops abruptly to zero
as ['y approaches A from above. This can be explained by noting that in the bistable
region (J,) = 0, and thus we again have C,, = 1 — (4/N)([sin(p)J, + cos(¢)J,]*). Since
both (J2) and (J7) are of order j> = N*/4 in this region (see Fig. 6.11), this severely
restricts the range of I'y, and ¢ for which C, > 0.
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(c) z

Figure 6.15.  (Color online) Steady-state spin Q-function, Qs(n), on the
Bloch sphere for (a) Ty = 0.55, (b) I'y = 0.65, (¢) I', = 0.705, and (d)
I'y = 0.85, with N = 50, h = 0.2, A = 0.75 and I'y, = 0.66. Note that
dark blue corresponds to the minimum value of zero of Qs(n) while dark
red indicates the mazximum value of Qs(n).

As the dissipation strength is decreased further, eventually the critical point I'j is
crossed and the central peak of Qs(n) at the top of the Bloch sphere vanishes; we then
recover the familiar two-lobed structure associated with the two semiclassical steady-
state amplitudes. The moments (J7) and (J7) are still of order j* = N?/4 in this
region (and (J,) = 0), and consequently C,, = 0 for all ¢

Now we briefly turn to the thermodynamic limit again where we can obtain analytic
results for N > 1 from the linearized HP model [6]. Outside the bistable region we
can compute the entanglement by linearizing the fluctuations about the unique stable
steady state. However, in the bistable region we can only compute the entanglement
by linearizing about one or the other of the stable steady states.

In Fig. 6.14(b) we display C,, as a function of the dissipation strength I', and the
phase angle ¢ for the choice of stable steady state given by Eq. (6.15). We observe that,
for I'y > I'g, C,, is nonzero over a broad range of ¢ centered around ¢ = 37 /4, whilst
near the critical point I'j the corresponding range of ¢ narrows. Outside the bistable
region C, is in reasonable agreement with the corresponding finite- N results, however,
as might be expected inside the bistable region, the results differ considerably, since
linearization around simply one of the stable steady states is inadequate.

In Fig. 6.14(c) we display C,, for the choice of stable steady state given by Eqs. (6.16a)-
(6.16¢). For I', > A, C,, is nonzero for a broad range of ¢ centered around ¢ = 37/4,
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which is also in reasonable agreement with the finite-V results. However, in addition,
in the bistable region I'; < I'y < A, we find that C, is nonzero for a small range of ¢.
Specifically, we see that with decreasing I'y, away from the critical point, C, becomes
broader and its center moves toward ¢ = w. The existence of this second lobe and
its behavior can be described by considering the fluctuations in the linearized regime.
In contrast to the finite-V results one finds (not actually shown) that the fluctuations
below the transition are less significant, thus giving C, # 0. The f act that the cen-
tre of Ci, moves toward 7 can be attributed to the dominating fluctuations in the x
direction for I', < I'}, as opposed to approximately equal fluctuations in the = and y
direction for I', ~ I7.

Finally, in Fig. 6.16 we plot the rescaled concurrence Cy as a function of the dissipa-
tion strength T, for N = 100 and in the thermodynamic limit (for each choice of stable
steady state in the bistable region). For finite NV the entanglement attains a peak value
close to I'y, = A, while for V — oo the entanglement peaks at either I'y =I'j or I', = A
for the different steady states, respectively. It is worth noting that the entanglement
for the case corresponding to the more stable steady state, i.e., Eqs.(6.16a)-(6.16¢),
agrees more closely with the finite- /N result.
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Figure 6.16.  Rescaled concurrence Cy for N = 100 (dashed line), and in
the thermodynamic limit [solid line for Eqs. (6.16a)-(6.16¢), and dotted
line for Eq. (6.15)], with h = 0.2, A = 0.75 and I'j = 0.66.

6.4.3 Homodyne spectra

We have seen how entanglement in our system can be quantified in terms of moments
of the collective spin operators. Spectra of fluctuations of the spin quadratures J, =
sin () J, +cos (¢)Jy, i.e., homodyne spectra [27], also offer a useful probe of the system
properties and are given by

Xe(V) = /_ ) (Jo(7)Jp)sse™ M dr, (6.24)

e}

i.e., by the Fourier transform of the two-time spin correlation function, with v the
Fourier space frequency. As we will see, such spectra can provide a very clear signature
of bistability in the region I'; < I, < A. Note also that for the cavity-QED-based
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realization of our interacting spin system, as described in [6], the cavity modes adi-
abatically follow the spin dynamics, and so x,(r) can in fact be directly related to
homodyne spectra of the cavity output field.

To compute Eq. (6.24) we calculate both the two-time correlation function (J,,(7)J,,)ss
(using the quantum regression formula) and its Fourier transform numerically for finite
values of N [20]. In Fig. 6.17 we plot x,(v) for a value of I, in the bistable region
(solid line) with the specific choice ¢ = 0.52 (discussed below); we see that three dis-
tinct peaks appear. The locations and widths of the peaks can be associated with the
imaginary and real parts of eigenvalues of the system master equation (6.11), and for
sufficiently large values of N these correspond simply to the eigenvalues p4 obtained in
the linearized analysis of Sec. 6.4.1. In the bistable region the eigenvalues corresponding
to the trivial solution, i.e., u4 as given by Eq. (6.18), have zero imaginary part, which
corresponds to the central peak of x,(v) in Fig. 6.17 located at v = 0. Similarly, for
the eigenvalues corresponding to the nontrivial semiclassical solutions (6.16a)-(6.16¢),
ie., use as given by Eq. (6.19), we find Im(pus) ~ £2 for the choice of parameters
used in Fig. 6.17 (solid line), which coincide closely with the locations of the outer
two peaks of x,(v). The simultaneous presence in the finite-N spectrum of peaks cor-
responding to distinct semiclassical steady-state solutions signifies the bistability, i.e.,
the spectrum reflects contributions from both underlying stable semiclassical steady
states. Note that within a linearized treatment, with linearization about only a single
stable semiclassical steady state, no such superposition of spectral features can occur.
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Figure 6.17.  Normalized homodyne spectrum, x,(v)/N, for N = 100,
h = 0.2, and I', = 0.01. The solid line is for parameters X = 1.5 and
I'y = 1.185, with I'y = 1.02, and ¢ = 0.52. The dash-dotted line is for
parameters A = 0.75 and I'y = 0.71, with I'; = 0.66, and ¢ = 0.71.

For smaller values of A\, as considered in the linearized analysis of earlier sections,
one is unable to resolve the three peaks of x,,(v) corresponding to the bistability (dash-
dotted line in Fig. 6.17). In this regime of smaller A, the bistable region is less pro-
nounced and Im(py) are smaller in magnitude, so the three peaks lie more closely
together. In order to numerically resolve all peaks would require considerably larger
values of N.

Outside the bistable region, the spectra for finite values of N consist simply of
peaks associated with the unique stable semiclassical steady state. Specifically, for the
trivial solution the spectra consist of a single peak centred at v = 0, whilst for the
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nontrivial solution the spectra consist of two peaks located at v = Im(pug) with ps
given by Eq. (6.19). Note that within a linearized treatment we obtain similar results
to the finite- N spectra outside the bistable region, since the stable semiclassical steady
state is unique [6, 19].

Finally, we note that if we consider x,(v) for the same parameters as in Fig. 6.17,
but with different values of ¢, then an additional very narrow peak (spike), superim-
posed on the central peak, occurs at v = 0. Mathematically, this feature occurs due to
the presence of an eigenvalue of the Liouvillian, £, with zero imaginary part and very
small real part. Physically, it is associated with tunneling/switching between the pair
of nontrivial semiclassical steady-states (6.16a)-(6.16c) [28]. This feature is absent in
the usual linearized analysis, and so for the clearest possible comparison of the loca-
tions of the peaks of x,(v) to the linearized eigenvalues we have focussed on a choice
of ¢ where this spike is not present (as in Fig. 6.17). It is interesting to note that in
fact the choice of ¢ that eliminates the “spike” corresponds to the axis joining the two
semiclassical solutions which previously also played a crucial role in determining the
optimized C,.

6.5 Conclusion

We have shown the presence of quantum phase transitions occurring due to the vari-
ation of the strength of dissipation in two different collective spin systems. For the
cooperative resonance fluorescence model we computed the steady-state entanglement
and showed how the results could be interpreted in terms of an atomic phase space
distribution. In the dissipative LMG model we found that either a continuous or dis-
continuous phase transition occurs depending only on the ratio of the effective field and
interaction strengths. The steady-state entanglement was analyzed in detail and the
modifications due to strong dissipation were interpreted with the help of the atomic
phase space distribution. In the regime of the first-order phase transition we showed
that bistable behavior can occur as evidenced by the semiclassical analysis and, for
finite N, homodyne spectra; specifically we showed that whilst a linearized analysis
is generally inadequate in this regime, one of the two d ifferent stable solutions tends
to dominate and this is also reflected by finite-/N calculations. Finally, we have also
briefly explained how both of these models might be implemented using an ensemble of
atoms that interacts with optical cavity and laser fields, and thus how the entanglement
properties might be measured via the cavity output field.

In the future, it would be interesting to compare the phase-dependent entangle-
ment measure considered here with the context-based entanglement measure stud-
ied in [29], where entanglement is quantified by considering a continuous observation
of the environment of a dissipative system. Specifically, the angle appearing in our
phase-dependent measure can be associated with the phase of a local oscillator in the
homodyne measurement considered in [29]. It would also be interesting to study entan-
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glement criticality in dissipation-driven quantum phase transitions of other systems,
such as generalized collective spin models [30] subjected to strong dissipation, or in
collective models with additional short-range interactions [31] and dissipation.
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We study cold atomic gases in a disorder potential and analyze the cor-
relations between different systems subjected to the same disorder landscape.
Such independent copies with the same disorder landscape are known as repli-
cas. While in general these are not accessible experimentally in condensed mat-
ter systems, they can be realized using standard tools for controlling cold atomic
gases in an optical lattice. Of special interest is the overlap function which rep-
resents a natural order parameter for disordered systems and is a correlation
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function between the atoms of two independent replicas with the same disor-
der. We demonstrate an efficient measurement scheme for the determination of
this disorder-induced correlation function. As an application, we focus on the
disordered Bose-Hubbard model and determine the overlap function within per-
turbation theory and a numerical analysis. We find that the measurement of the
overlap function allows for the identification of the Bose-glass phase in certain
parameter regimes.

7.1 Introduction

The interplay between disorder and interaction gives rise to a plethora of fundamental
phenomena in condensed matter systems. The most predominant examples include
spin glasses [1-3], the superconducting-to-insulator transition in thin superconducting
films [4, 5], and localization phenomena in fermionic systems such as weak localization
and the metal-insulator transition [6]. While the nature of order in spin glasses and
its theoretical description is still highly debated [1, 7-14], a substantial contribution
to the understanding of bosons in a disordered medium has been provided by work on
the disordered Bose-Hubbard model introduced by Fisher et al. [15]. The disordered
Bose-Hubbard model has recently attracted considerable attention due to its potential
realization with cold atomic gases in an optical lattice [16-22].

A general challenge in the description of glass phases in disordered media is the
absence of a simple order parameter distinguishing the different ground states. This
problem becomes evident in the disordered Bose-Hubbard model where the phase dia-
gram is determined by the competition between a superfluid phase, the Mott-insulator,
and a Bose-glass phase. While the superfluid phase exhibits a finite condensate frac-
tion and is characterized by off-diagonal long-range order, the Bose glass is only dis-
tinguished from the incompressible Mott-insulator by a vanishing excitation gap and
a finite compressibility. However, in experiments on cold atomic gases the excitation
gap and the compressibility are difficult to determine accurately and are also obscured
by the finite harmonic trapping potential. The challenge is therefore to develop mea-
surement schemes allowing for the experimental determination of these observables or
to develop new observables to characterize the glass phase. While inaccessible in “real
materials,” the Edwards-Anderson order parameter [1, 23| is commonly studied ana-
lytically and measured numerically to quantify the “order” in a disordered system. It
can be expressed as the correlation between independently evolving systems with the
same disorder landscape (so-called replicas), or as a correlation of the same system
at different temporal measurements. Because the latter depends on an extra variable
(temporal measurement window) it is advantageous to study two replicas of the sys-
tem with the same disorder. Thus, the measurement of this order parameter requires
the preparation of several samples with exactly the same disorder landscape, and the
subsequent measurement of correlations between these.
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Figure 7.1.  (Color online) Schematic representation of the implementa-
tion of disorder replicas with the cold atomic gases toolbox: Two planes o
and ( with equal disorder realizations, illustrated here for the case of a dis-
order landscape introduced using a second particle species (black dots), in
which additional probe atoms (blue/lighter dots) evolve. The planes can be
combined to measure correlation functions, such as the Edwards-Anderson
overlap function.

We demonstrate that such a procedure is feasible in cold atomic gases allowing
one to gain access to characteristic properties of disordered systems naturally hidden
in condensed matter systems. The basic idea is to focus on cold atomic gases in an
optical lattice: along one direction, the optical lattice is very strong and divides the
system into independent two-dimensional (2D) planes [24-27]. In addition, the system
is subjected to a disorder potential and we are interested in the situation where in
each plane the same disorder landscape is realized (see Fig. 7.1). Although the atoms
in different planes are decoupled, the presence of the same disorder landscape within
each plane induces a correlation between the different realizations: this correlation is
of special interest in the replica theory of spin glasses and allows one to measure the
overlap function, a characteristic property of spin glasses. Furthermore, we show that
this correlation function is accessible in experiments on cold gases: The main idea is to
quench the motion of the atoms by a strong optical lattice, and combine the different
planes into a single one. Subsequently, the particle number occupation within each
well carries the information about the correlation function. The possibility for the
accurate determination of the particle number within each well of an optical lattice has
recently been demonstrated experimentally for the superfluid-Mott-insulator quantum
phase transition [28].

Note that this measurement scheme for the overlap between system with the same
disorder can be applied to any disordered one- or two-dimensional system realized with
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cold atomic gases in an optical lattice. Of special interest is the realization of spin
glasses and their study in the quantum regime. As an application, we focus here on
the disordered Bose-Hubbard model and calculate the overlap function analytically in
different regimes and compare it with one-dimensional numerical simulations. We find
that the overlap function ¢ exhibits a sharp crossover from the Mott-insulating phase
with ¢ =~ 0 [29] to the Bose-glass phase with ¢ ~ p(1 — p), with p € (0,1), and thus
makes it possible to distinguish the two phases. Because the superfluid phase can be
detected via the interference peaks in a time-of-flight measurement, we propose that
this novel measurement scheme for the overlap function can be used for a qualitative
experimental verification of the phase diagram for the disordered Bose-Hubbard model.

Different implementations of disorder or quasi-disorder in cold atomic gases have
been discussed and experimentally realized. Several groups attempted to search for
traces of Anderson localization and the interplay of disorder-nonlinear interactions in
Bose-Einstein condensates (BECs). The first experiments [30-34] were performed with
laser speckles that had a disorder correlation length larger than the condensate healing
length. Localization effects were thus washed out by interactions. As an alternative,
superlattice techniques—which are combinations of several optical potentials with in-
commensurable spatial periods—were used to produce quasi-disordered potentials with
short correlations. This approach allowed the observation of some signatures of the
Bose glass by the Florence group [35]. Only very recently the Palaiseau group has
managed to create speckle potentials on the sub-micron scale and directly observe An-
derson localizations effects in a BEC released in a one-dimensional waveguide [36]. The
Florence group reported observations of localizations phenomena in quasi-disordered
potentials in BEC of K*°, which allows for complete control of the strength atomic
interactions using Feshbach resonances [37]. It is worth noting that experimental at-
tempts for local addressability in an optical lattice also offer the possibility to create
disorder with correlation lengths comparable to the lattice spacing [38, 39]. Mixtures
of cold gases, on the other hand, provide an alternative approach for the realization of
disorder by quenching the motion of one species by a strong optical lattice, which then
provides local impurities for the second species [40, 41]. While production of 2D planes
with equal disorder realizations follows naturally if the disorder is implemented with
laser speckles, we also show how such a system can be realized in the case of disorder
induced by a mixture of atomic gases.

In Sec. 7.2, we start with a detailed description of the disordered Bose-Hubbard
model and the different disorder realizations. After a short review of the phase dia-
gram of the disordered Bose-Hubbard model, we provide the definition of the overlap
function ¢ characterizing the disorder-induced correlations between independent real-
izations of the system. In Sec. 7.3, we describe in detail the preparation of the system
and the subsequent measurement scheme for the overlap function. In Sec. 7.4, we de-
termine the overlap for the disordered Bose-Hubbard model via perturbation theory
for physically-relevant limits and compare the result with numerical simulations of the
one-dimensional system. Details of the calculations are presented in the appendices.
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7.2 Bose-Hubbard model with Disorder

Cold atomic gases subjected to an optical lattice are well described by the Bose-
Hubbard model [34, 42]

H = —JZblTbj—i—%Zni(ni—l)—Z(M—Ai)ni, (7.1)
(i) i i

with bl (b;) the bosonic creation (annihilation) operator and n; = blb; the particle

number operator at the lattice site i. The first term describes the kinetic energy of the

atoms with hopping energy J between nearest-neighbor sites, the second term accounts

for the onsite interaction between the atoms, and the third term describes the disorder

potential with random-site off-sets A; of the chemical potential p.

The disorder potential {A;} can be generated via different methods [30-32, 35, 40,
41] and is determined by a probability distribution P(d) describing the probability of
having an onsite shift with strength 6. The mean square of the disorder distribution

A? = / dé 52 P(6) (7.2)

gives rise to a characteristic energy scale A of the disorder potential (note that the
mean energy shift of the disorder potential is absorbed in the definition of the chemical
potential). In addition, the disorder potential is characterized by a correlation length.
Here, we are interested in short-range disorder with the disorder in different wells in-
dependent of each other. The probability distribution P(d) and its correlation length
depend on the microscopic realization in cold atomic gases, thus the most promis-
ing possibilities are laser speckle patterns and mixtures of different cold atomic gases.
While first experiments with laser speckles had a disorder correlation length larger than
the lattice spacing [30, 31|, experimental efforts towards local addressability in an opti-
cal lattice also offer the possibility for the creation of disorder with a correlation length
comparable to the lattice spacing, as well as Gaussian probability distributions [38, 39].
Alternatively, a disorder potential can also be created in mixtures of cold atomic gases
in optical lattices [43, 44] by quenching the motion of one species. Then, the disorder
correlation length is naturally of the order of the lattice spacing, while the probabil-
ity distribution becomes bimodal with A; = +A; here we are primarily interested in
such short range disorder with A; being independent in different wells. Note that both
Gaussian disorder, as well as bimodal disorder generally give rise to different physical
phenomena in glass physics and thus both are interesting in their own right.

The zero-temperature phase diagram of the Hamiltonian (7.1) was first studied
by Fisher et al. [15] where three different phases were discussed: the superfluid, the
Mott-insulator, and the Bose-glass phases. In the two-dimensional regime of interest
here, the superfluid phase appears for large hopping energies J 2 U, A and is char-
acterized by off-diagonal (quasi) long-range order (finite superfluid condensate) and a
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linear excitation spectrum giving rise to a finite compressibility. On the other hand,
for dominating interaction energies U > A, J the ground state corresponds to an in-
compressible Mott-insulator phase with an excitation gap and a commensurate filling
factor, i.e., the averaged particle number in a single well (n;) € N is an integer. While
the quantum phase transition from the superfluid to the Mott-insulator has been ex-
perimentally identified [45], the disorder potential gives rise to an additional Bose-glass
phase characterized by a vanishing excitation gap and finite compressibility; see Fig. 7.2
for a sketch of the phase diagram. The details of the phase diagram have been studied
via analytical methods in the regime of Anderson localization [41, 46, 47] and in other
regimes via numerical methods such as quantum Monte Carlo [48], density matrix
renormalization group (DMRG) [49], dynamical mean-field theory [50], and analytical
methods [51, 52]. Furthermore, recent interests focused also on the appearance of alter-
native phases for different disorder types in the Bose-Hubbard model, e.g., off-diagonal
disorder giving rise to a Mott-glass phase [53].

0

0 JJU

Figure 7.2.  Sketch of the phase diagram for the disordered Bose-Hubbard
model: the Mott-insulator (MI) appears for integer filling and the overlap
function q vanishes for small hopping J/U < 1, while in the Bose-glass
phase (BG) the overlap function approaches a finite value ¢ = p(1—p) with
p € (0,1) characterizing the bimodal disorder distribution (see Sec. 7.4).
Consequently a measurement of the overlap allows for a clear distinction
between the Bose-glass and the Mott-insulator phase in this regime. In
turn, the superfluid phase (SF) is characterized by off-diagonal long-range
order resulting in coherence peaks in a time of flight experiment.

The superfluid phase in the absence of disorder is experimentally identified via a
measurement of the coherence peaks characterizing the condensate fraction, while the
transition to a Mott-insulating phase is characterized by the disappearance of these
interference patterns and as well as a change in the behavior of excitations [24, 45].
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However, the identification of the Bose-glass phase in the presence of disorder requires
an additional observable allowing for the distinction between the Mott-insulator and
the Bose-glass, where the condensate fraction vanishes. Such an additional property is
known from spin-glass theory as the Edwards-Anderson order parameter [1, 23] which
appears as an order parameter in the mean-field theory on spin glasses [54]. In the
present situation with a disordered Bose-Hubbard model, its generalization leads to

qra = [((ni) — n)Z]av = [(ni>2]av - ([<n2>]av)2 ) (7.3)

where n = [(n);]a, denotes the mean particle density in the sample. It is important
to note the different averages involved in the definition of the order parameter ¢g,:
for a fixed disorder realization, the average (...) denotes the thermodynamic average
over the ground state of the system, while [...],, describes the disorder average over
different disorder realizations. While the experimental determination of this quantity
in the Bose-Hubbard model requires an exact state tomography of the system for
each lattice site, a simpler and alternative route is obtained by preparing two systems
with the same disorder landscape and measuring the correlations between these two
decoupled systems: the remaining correlation is disorder induced and disappears for
weak disorder. This so-called overlap function ¢ between the two systems realized with
the same disorder landscape takes the form

¢ = [(nf)(n))aw = () aw (7)o (7.4)

and where a and ( describe the two different systems with the same disorder. This
definition follows in close analogy of the mean-field order parameter in the replica
theory of spin glasses [54].

7.3 Measurement of the Overlap Function

In this section we outline the key process of this work, i.e., the basic experimental
procedure by which physical replicas can be prepared and used to measure the over-
lap function ¢ defined in Eq. (7.4). This consists of three essential steps: (1) initial
preparation of disorder replicas, (2) introduction of probe atoms and (3) the measure-
ment process, involving recombination of the replicas and spectroscopy to measure the
overlap itself. At no stage do we assume individual addressability of lattice sites, but
rather consider global operations and the measurement of global quantities.

7.3.1 Initial preparation of disorder replicas

We consider a situation in which atoms are confined to a three-dimensional optical
lattice, which is particularly deep along the z-direction, so that an array of planes
with 2D lattice potentials are formed in the x—y plane, with no tunneling between the
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planes. Each of these 2D planes of the potential can be divided into two subplanes,
again along the z-direction, by adding a superlattice of half the original period which
can be controllably switched on and off [25, 26]. The resulting two subplanes then
constitute our replicas, and our goal is that these pieces should have the same disorder
realization.

In the case of disorder generated optically (using, e.g., speckle patterns) the different
layers exhibit the same disorder landscape for a suitable orientation of the lasers.
However, for a disorder induced by a second species, the replicas must be produced
in several steps. We start with a two-species mixture in the undivided plane. A
fast ramping up of the optical lattice depth within the plane for the disorder species
results in a Poissonian distribution of particles in the lattice. The next step is then
a filtering procedure removing singly-occupied sites and keeping only doubly-occupied
and unoccupied sites (which are distributed randomly). Such a filtering procedure has
been achieved in recent experiments where atoms are combined to Feshbach molecules,
and atoms remaining unpaired are removed from the system using a combination of
microwave and optical fields that is energy-selective based on the molecular binding
energy [55]. Finally, the superlattice is applied adiabatically providing a double-layer
structure, where exactly one atom of the disorder species is transferred to each of the
two subplanes. The result is two planes with a random distribution of atoms of the
“disorder species,” with an exact copy in each subplane, i.e., a replica of the random
disorder pattern. This is illustrated in Fig. 7.1.

Interactions between atoms of a probe species and the disorder species can now
be adiabatically increased, or the probe species otherwise adiabatically introduced to
the system (e.g., using spin-dependent lattices or superlattices). This results in two
replicas of the same system, which we label a and 3, with atoms in each replica evolving
independently according to their system Hamiltonian in the same disorder potential.
We again reiterate that the superlattice separating the replicas should be deep, so that
there is no tunnelling between the replicas. The only correlations between the two
should thus be determined by the identical disorder realizations.

7.3.2 Measurement process

To measure the overlap ¢ as given in Eq. (7.4) we need to compute correlation functions
that compare the state of probe atoms in the two replicas o and 3. In each case, the
correlation functions can be computed if we measure the joint probability distribution
for occupation numbers in the two replicas (this is discussed in detail below). In
particular, we need to determine the proportion of lattice sites in layer o having n
particles given that there are m particles in the corresponding lattice site in layer (3,
which we denote p,,,, and the fraction of lattice sites in layer «, 3 with n particles
denoted by p2# (both depicted in Fig. 7.3). We thus first freeze the state in each
replica by ramping the lattice suddenly to deeper values in all three directions, so that



7.3 Measurement of the Overlap Function 119

tunnelling no longer occurs. We can then measure the different possible configurations
of particles occupying individual lattice sites in the layers « and 3 (see Figs. 7.3-7.5).

This is done in two steps: First, the layers are combined so that at each site each
initial eigenstate involving different occupation numbers in the two replicas becomes
a superposition of degenerate states involving the total number of atoms spread over
motional states in a single well (see Fig. 7.4, Sec. 7.3.2 below). The final state is,
of course, strongly dependent on the combination process, as well as the initial state
before the combination of the layers. However, we need only determine the fraction
of lattice sites with a total of n particles, denoted p,, which is unchanged provided
that the lattice is deep within each plane, to prevent tunnelling of atoms. The relative
frequency with which each final configuration p, occurs can then be measured based
on the different spectroscopic energy shifts arising from different numbers of atoms
in the final well, and different distributions of atoms over the motional states (see
Fig. 7.5, Sec. 7.3.2 below). This involves weak coupling of atoms to an auxiliary
internal state, similar to that performed in Ref. [28]. We show that the set of possible
final states given an initial configuration can be distinguished spectroscopically from
the set of states corresponding to initial configurations giving different contributions to
Pn, and thus we can reconstruct the original joint probability distribution p,,, prior to
combining the layers. The reduced probabilities p®? can be determined from similar
spectroscopy without first combining the layers, allowing the full overlap function ¢ to
be constructed. Below we give further details of each step in this procedure.

1ayer [0 ° . . oo oo

p]l p]() p]Z pZO pO() p22

layer (3 . o oo

p,j2 P, P, P2 P, p,

combined
layer

Figure 7.3. A sample system illustrating the required joint and combined
system probabilities involved in the measurement scheme before and after
combining the two layers respectively. Top: The individual layers o and
B and the corresponding joint probability p,,, at each site. Bottom: Com-
bined layer and the corresponding combined system probability p, at each
site. Note that this is only a guide, because after combining the layers the
particles are spread across multiple motional states (not depicted).



120 Publication: Physical replicas and the Bose-glass in cold atomic gases

Quantities that need to be measured

We need to measure two quantities to determine the overlap ¢, namely [(G1)]q,, Where
1
o1 o B
=7 % nin;, (7.5)

with a # (8 and L is the total number of lattice sites, corresponding to the density-
density correlations between the two layers, and [(G9)]av, [(G5)]aw, Where

1
A 7/8 . a7ﬂ
i =g 2o (75)

corresponding to the average density of each layer. Then we can express

¢ = [{@1)]aw = 1(@5)]av[(@2)]aw- (7.7)

The disorder average should be performed by repeated measurements of the quantum
average for different realizations of the disorder [56]. In general, one can expect that a
measurement on n; and n; for large separation between sites 7 and j is independent of
each other, and consequently the summation over lattice sites automatically performs
a statistical quantum average [57]. In the following, we are interested in small filling
factors such that lattice sites with three or more particles are rare and can be neglected
in all three phases of the system.

First we focus on measurement of [(G)]ay[(G5)]av, i.€., the second term of the
overlap in Eq. (7.4). If the layers are prepared as discussed above, the symmetry
(1/L) 32, (n&) = (1/L) 32 (n?) is preserved and thus we can measure the average over

two replicas, [(G2)]* where [58]

~ ]- AQL ~ [0

b= 5@ +@) =57 ) _(nf +n)). (78)
For the average density we obtain:

(@) = 57 S (n) + (nf) = 5 3 nlof + 92 (7.9)

K3 n

where p®# = N%P /[ with N the number of sites with n particles in layers «, 3, and
thus

. 1, N
(@2) = 5 (0 + 97 + 205 +2p3). (7.10)

Next we consider the measurement of [(¢;)] i.e., the first part of the overlap in
Eq. (7.4). In this case the density-density correlations can be expressed as

%Z(n?n% = anpnm, (7.11)



7.3 Measurement of the Overlap Function 121

where pum = Npm/L with Ny, the total number of sites with n particles in layer «
and m particles in layer (, and thus, keeping terms up to two particles in total over
the replicas at a given site

. 1 o
(@) = i Z<nz nzﬁ> = pu1 + 2(p12 + pa1) + 4paa. (7.12)

i

Now consider p, = N, /L, with N,, the total number of particles from both layers,
which can be measured by combining both layers (described in detail in Sec. 7.3.2) and
subsequently applying a similar scheme to the one presented in Ref. [28] (described in
detail in Sec. 7.3.2). Using the following equations that relate both p, and p2*® to pum

D1 = DPo1 T+ Pio PT = pio+ P12+ p,
P2 = P20+ Po2 + P11 pf = pPo1 + P21 + P11,
P3 = P12+ P2 P3 = poo+ P21+ P,
Pa = P22 pg = DPo2 + P12 + D22,

we can show that py; = $(p§f + pf — p1 — p3) which in conjunction with p3 = p12 + pa
and py = pas gives all necessary terms. Then, Eq. (7.12) simplifies to

. 1 . 3
(@) = 507+ —p1) + 5ps+ dpa. (7.13)

Finally, note that g, as given in Eq. (7.10), can also be expressed as (Ga) = 3 >, NPn.

In the following two sections we show how to measure these conditional probabilities
by combining the two replicas together, and performing spectroscopy where a single
atom is coupled to a different internal state. In Sec. 7.3.2 we describe the process of
combining the two layers into a single one whilst in Sec. 7.3.2 we describe a similar
scheme to the one presented in Ref. [28] that can be used to distinguish different
occupation numbers.

Combining layers

We now describe in more detail the process of combining the two layers into a single
one and determine the resulting joint state for the different possible initial configura-
tions. The combination of the layers is achieved by lowering the potential barrier that
separates both layers (switching off the superlattice). Specifically, we now determine
the final (after completely lowering the barrier) state for each of the different initial
configurations of particles (prior to lowering the barrier).

After the superlattice is removed and layers are combined, the system is described
by the Hamiltonian

U
Heo, = Z [Eknk + %nk(nk — 1)| + 2Upngny, (7.14)
ke{0,1}
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where Uy, = 2w a [ dz|wg(2)|?|wi(2)]?, with a the scattering length, w the transverse
trapping frequency, wy(z) the Wannier functions for band k, and €, the band energy

(k,1€{0,1}).

States which are initially nondegenerate will evolve adiabatically to the correspond-
ing eigenstate of the Hamiltonian (7.14), provided the barrier is lowered slowly with
respect to the energy separation between the (nondegenerate) eigenstates. However,
we note that some of the initial states are doubly degenerate due to the equal single
particle energies in the two layers. Thus when the barrier is lowered these degenerate
states become coupled to each other (because the single particle states change time
dependently) and the final state will evolve into a process-dependent superposition of
the different corresponding eigenstates of the Hamiltonian (7.14). However, this poses
no problem for our measurement scheme since the states that are initially degener-
ate contribute equally to the probabilities we are trying to measure. Moreover, for
a given initial configuration it is not necessary to know the full final state, in fact it
is sufficient to know only the possible corresponding final eigenstates of the Hamil-
tonian (7.14) (with the same number of particles as the initial configuration) that
contribute to the final state. Figure 7.4 depicts all the different possible states before
and after combining the layers for up to a maximum of four particles in total.

before combination after combination

W A
o\ =\ N
w Wﬁ@y%g

A RAvAV)

Figure 7.4.  Analysis of the process of combining the two initial replicas,
showing possible states with at most double occupation (dots) in a given
well before combination of the layers (left hand side), and the resulting
possible states after combination of the layers (right hand side). Note that
here 47 indicates a general superposition with unspecified coefficients, as
these are dependent on the precise time dependence of system dynamics
during combination. Knowledge of these coefficients is not necessary in
the measurement scheme presented here.

In the next section we show how the different configurations for a given particle
number can be measured and thus the total occupation numbers determined.
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Number distribution characterization

We now investigate a scheme similar to the one presented in Ref. [28] that uses density-
dependent energy shifts to spectroscopically distinguish different particle numbers at
each site of the combined layer (see Sec. 7.3.2 above). We begin with all atoms in an
internal state a, and investigate the weak coupling of particles to a second internal
state b (with at most one particle transferred). Due to the difference in interaction
energy between particles of species a and b, and particles solely of species a there
is an energy shift between the “initial” state (all particles of species a) and “final”
state (one particle of species b and all others particles of species a). Thus different
initial particle numbers can be distinguished by the energy shift (corresponding to the
Raman detuning at which the transfer is resonant), provided the shift is different for
the different particle numbers. Since particles in the combined layer can be spread
across multiple motional states (see Sec. 7.3.2 above), different energy shifts occur for
different configurations of the same number of particles. Whilst we find that the energy
shifts of some of the configurations (of the same number of particles) are identical or
very similar, there are other configurations having substantially different energy shifts.
Thus we have to check that the energy shifts for all configurations of a given number
of particles can be distinguished from energy shifts of configurations corresponding to
a different total number of particles. To this end we now present a detailed calculation
of the energy shifts arising from all the different initial configurations of particles and
show in which cases the total number of particles can be distinguished.

Let aL and bL denote the creation operators for particles of species a and b, re-
spectively, in band k where k € {0,1}. Then the Raman coupling between the two
internal states a and b is described by an effective Hamiltonian (within a rotating-wave
approximation)

Q(t
Hyo = é )(agbo +alby + Hee) — A()(bibo + blby), (7.15)

where A(t) is the Raman detuning, Q(t) the effective two-photon Rabi frequency, and
we have assumed that Q(t) < A’ where A’ are the detunings of the lasers from the
atomic excited state. In what follows we assume that f Q(t)dt < m, i.e., weak coupling
to internal state b and that the two lasers creating the Raman transition are running
waves with equal wave vectors. Note that processes in which the internal state and
the band would change do not occur provided the Raman detuning and effective two-
photon Rabi frequency are smaller than the band separation.

The onsite interaction energy for atoms of species a and b in the lowest two bands is
described by the following Hamiltonian

Ho = 3 [Bujing 1)+ Ghoio — 1)+ 20iinint | + ot + vt
i€{a,b}
ab | _a, b a, b t T T T
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where

U — 2 i, / dzlwn(2) Plun(2) ], (7.17)

with a;; the scattering length between two particles in internal states i and j (4,7 €
{a,b}), w, the transverse trapping frequency, and wy(z) the Wannier functions corre-
sponding to band k (k,l € {0,1}). Note we have also introduced the particle number
operators n¢ = ajay and nf = b;bk. We further make the assumption that the lattice is
very deep so that we can approximate all the Wannier functions by simple harmonic os-
cillator eigenfunctions. This assumption of a deep lattice gives the following simplified
expressions 207, = Ug) and U}l = (3/4)Ug.

Using Eq. (7.16) we now explicitly compute the energy shift AE = E; — E; asso-
ciated with the processes |i) — |f), where |i) is the initial state corresponding to all
particles of species a and having energy FE;, and |f) is the final state corresponding
to one particle transferred to internal state b and having energy E;. Clearly, AE de-
pends on how the particles are initially distributed in the lower and higher bands after
combining the two layers (see the right hand side of Fig. 7.4). There are two different
cases to be considered; either all particles are initially in the same band (this is the
situation in Ref. [28]) or particles are initially in both bands. In the latter case it is then
possible that particles in either band are transferred to internal state b and since these
different possible resulting states are coupled by the interaction Hamiltonian (7.16) the
final resulting state is a superposition of these, corresponding to an eigenstate of the
Hamiltonian (7.16).

For example, let us consider a total initial number of two particles as depicted in
Fig. 7.5. The different initial and final states are most conveniently expressed in the
occupation number basis [N, N&: N2, N?) with NO* (N®*) the number of particles of
species a, b in the lower (higher) band at a given lattice site. First consider the case
where both particles are initially in the lower or higher bands corresponding to the ini-
tial states |2,0;0,0) or |0,2;0,0) (see top and bottom of Fig. 7.5). The corresponding
final states are given by |1,0; 1, 0) and |0, 1;0, 1), and the corresponding energy shifts are
AE/USS = e—1and AE/USS = 3(e—1), where we have defined e = Ugl/Uss. Next we
consider the case where there is a particle in each band initially corresponding to the ini-
tial state |1,1;0,0) (see middle of Fig. 7.5). Then the corresponding final states are the
eigenstates of the Hamiltonian (7.16) in the subspace corresponding to one particle of
species a and one particle of species b given by |1,1)+ = (1/v/2) (|0, 1;1,0) = |1,0;0, 1)),
with eigenenergies E, /US§ = € and E_/UgS = 0. The associated energy shifts for these
two possible final states are AE/U{§ = e—1 and AE/U§S = —1 respectively. Note that
the Raman transition only couples the state |1,1), to the initial state |1,1;0,0) with
a matrix coupling element Q; = /2, where Q; = (f|Hycli), while for the state |1,1)_
we find Qy; = 0. Figure 7.5 summarizes the different possible configurations for a total
of two particles together with the corresponding energy shift AE and matrix coupling
element (27, We note that the energy shifts, AE, for the different final states to which
the initial states couple (i.e., Qy; # 0) are very similar, this is of advantage since our
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scheme needs only to distinguish energy shifts for different total particle numbers.

|

|
4 < < s

Yy AE/Uy

V2 (e—1)

v Vi (D)
_v 0 »

V2 e

|

|

T 4 <@ <
l

Figure 7.5. Lllustration of the number distribution characterization
within the two layers for states with two particles in the combined layer.
On the left are all possible initial configurations of two particles of species
a in the combined lattice (dark-colored circles) and the corresponding final
states with one particle each of species a and b (light-colored circles). On
the right we list the respective coupling matriz elements, Cg;, and energy
shifts, AEJUSS, for each of the configurations on the left.

Similarly, we can determine the energy shifts and coupling matrix elements for
other numbers of particles. If all particles are initially in the lower or higher state
corresponding to the initial states |N§,0;0,0) or |0, Ni;0,0), the corresponding final
states are given by |[N§ — 1,0;1,0) and |0, N} — 1;0,1). The corresponding energy
shifts are then given by AE/USs = (N§ — 1)(e — 1) and AE/UGS = 3(N{ — 1)(e —
1), and the matrix coupling element in each case is Qy; = \/N_é1 and Qf = \/N_la
respectively. For other initial configurations with m particles in the lower band and n
particles in the higher band the corresponding final states are found by diagonalizing
the Hamiltonian (7.16) in the appropriate particle subspace. This always results in a
pair of eigenstates denoted |m, n)+ with eigenenergy Eim’") and using these expressions
the energy shift AE and coupling matrix elements {2, can be directly determined. For
a total initial number of three and four particles the expressions for |m, n), E(im’n), AFE
and )y, are given in appendix 7.A.1 and 7.A.2, respectively, for all the different initial
configurations. In Tab. 7.1 we list the results for up to a maximum number of four
particles; the first column lists the different initial configurations and corresponding
final states, the second column lists the corresponding matrix coupling elements {24,
and the third column lists the associated energy shifts AFE.
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Table 7.1.

i) = 1) | Qn| AE/Ug | Qi | AE/Us |
11,0;0,0) — [0,0;1,0) 1 0 1 0
0,1;0,0) — [0,0;0,1) 1 0 1 0
2,0:0,0) — [1,0:1,0 V2| 3(e—1 1.4 —0.018

4
12,0;0,0) — [1,0;1,0) | /2 (e —1) 1.4 —0.024
11,1;0,0) — [1,1)4 V2 (e—1) 1.4 —0.024
11,1;0,0) — [1,1)_ 0 —1 0 —1
13,0;0,0) — [2,0;1,0) | V3| 2(e—1) 1.7 —0.049
2,1;0,0) — [2,1), V31| 2(e—1) 1.7 —0.049
2,1;0,0) — [2,1)_ 0 £-2 0 —15
11,2;0,0) — |1,2), | BN —3 1.7 —0.29
11,2:0,0) — 1,2y [ "7 | ETY —3 | —0.0034 —18
0,3:0,0) —]0,2:0,1 V3] 3(e—1 1.7 —0.037
2
14,0;0,0) — [3,0;1,0) | V4| 3(e—1) 2| —0.073
13,1;0,0) — |3, 1)4 Va | 3(e—1) 2| —0.073
13,1;0,0) — [3,1)_ 0 e—3 0 —2.0
. @2 | (22 _ 23 ~
2,2:0,0) — [2,2), ny? | B . 2.0 0.070
12,2:0,0) — [2,2)_ 0> | EBY — 8 [ _0.0031 2.0
1,3:0,0) — [1,3). | gy _ 15 2.0 1.4
+ + 4
11,3;0,0) — |1,3)_ 5P ESY 10,0054 | —0.52
0,4;0,0) —10,3;0,1) | V4| 2(e—1) 2| —0.055

Resonant energies and coupling strengths for the transfer of

single atoms in the combined layer to a different internal state. Column
one lists the different initial configurations and the corresponding final
states up to a maximum number of four particles. In the second and
third column we list the matriz coupling elements C1p; and energy shifts
AFE, respectively, corresponding to the different initial configurations in
the first column. The states |m,n)y are listed in the text and appendices

together with the corresponding eigenenergies Eim’n)

elements nim’") The last two columns give numerical values of {1y and

AFE for the specific value € = 0.98.

and coupling matrix

It is possible to distinguish different occupation numbers for specific ranges of €
if the energy shifts for different total numbers of particles are distinct. The desired
range of € is then between points where any energy shifts for different total number of
particles would coincide (e.g., € = 1) [59]. For a specific example we consider the value
e = 0.98 (corresponding to scattering length values in Ref. [28]) and give numerical
values for the matrix coupling elements (2;; and the energy shifts AE in columns four
and five, respectively, in Tab. 7.1. Then, to a high accuracy, the determination of p,
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is obtained by applying the coupling between the different internal states a and b for
a short time t, = At/y/n at all resonant frequencies in Tab. 7.1 with total number
of particles n (ignoring the resonances with small and vanishing couplings €2¢;). The
total number of transferred particles is then proportional to p, and efficiently avoids
problems arising from non-adiabatic combination of the layers.

7.4 Overlap Function in the Disordered
Bose-Hubbard model

In this section we determine the overlap function ¢ [see Eq. (7.4)] in the disorder Bose-
Hubbard model, both analytically and numerically. We focus on a bimodal disorder
potential A; = £A with the probability distribution P(A) =1 — P(—A) = p, which
is the appropriate description for the chosen disorder implementation (see discussion
in earlier sections). In the following, we present the modifications due to the presence
of a weak (A < U/2) bimodal disorder potential, and the prediction for the overlap
function within the different phases (see Fig. 7.2). It follows from this constraint that
we do not enter the compressible disordered phase, and hence the system will always
have a unique ground state. Thus, the ground states in two exact copies «, ( of the
system (i.e. same disorder distribution) are the same, and consequently (n%) = (n?).
We therefore expect a Sherrington-Kirkpatrick-type behavior for the overlap [60], i.e.
the overlap between any two copies will always be the same, and thus the overlap

function ¢ can in fact be calculated using Eq. (7.3).

While the above is a self-evident statement for a replica-symmetric system such
as the one we examine here, it may no longer be true for systems thought to exhibit
replica-symmetry breaking (e.g. a classical spin glass type model [54], or quantum
systems with extended interactions [61]). For the latter type of system, measurement
of the overlap function using physical replicas (see Sec. 7.3) is thought to yield different
values for the overlap depending on v and (3, the defining signature of replica symmetry-
breaking.

In Sec. 7.4.1 we analytically calculate the overlap function, for the various phases
of the disorder Bose-Hubbard model (7.1), whilst in Sec. 7.4.2 we present results for
the overlap function from numerical simulation of the one-dimensional system.

7.4.1 Analytical determination of the overlap function

Starting with the limit of vanishing hopping J = 0, Eq. (7.1) reduces to an onsite
Hamiltonian and the ground state is given by |Q2) = T1;|Q2); with |Q2); the lowest energy
state within each site ¢. This lowest energy states takes the form |Q2); = |n;) with |n;)
being a state with fixed particle number n; at site i, with n; subject to the constraint
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For a weak bimodal disorder potential (A < U/2), we have to distinguish two different
cases.

First, for a chemical potential within the range U(ng — 1) + A < u < Ung — A
the above constraint in Eq. (7.18) is fulfilled independently of the site parameter i for
the integer value ng, i.e., at each site the ground state is characterized by the integer
particle density [(n;)]s, = no and we obtain a Mott-insulator (MI) phase (see Fig. 7.2).
Furthermore, the overlap parameter vanishes identically in this limit, i.e., ¢ = 0 for a
Mott-insulator at J = 0.

Second, for chemical potentials in the range Uny — A < u < Ung + A, the particle
number at sites with different disorder potential A; differs by a single particle, i.e.,
at each site with disorder potential A; = A the particle number is determined by ny,
while at sites with disorder potential A; = —A the lowest energy state is characterized
by ng+ 1 particles. Therefore, the averaged particle density and the overlap parameter
take the form

[(ni)]aw =m0 + (1 —p) q=p(l—Dp). (7.19)

This situation corresponds to the disorder-induced Bose-glass (BG) phase (see Fig. 7.2)
and the ground state is characterized by nonhomogeneous filling. Similarly to the
case of the MI phase, the particle number is fixed over a finite range of the chemical
potential and thus the BG is incompressible. In contrast to the MI phase, the BG
phase is characterized by a non-vanishing overlap parameter dependent on p.

Next, we focus on small hopping, J < U, A, i, and determine the overlap function
using perturbation theory. We seck a unitary transformation of the form U = ¢
which transforms the total Hamiltonian (7.1) to an effective Hamiltonian having the
same eigenspectrum but acting only in the space of the unperturbed eigenstates. Using
this unitary transformation we can directly determine the corrections due to hopping
in perturbation theory by computing (Q|7;|Q) where 71; = UTn;U. Details are given in
appendix 7.B.

We start with the Mott-insulator and consider the leading order (non-vanishing)
correction to the overlap function which occurs at fourth order due to a site (disorder)
independent density, (Q|n;|Q2) = ng (using |Q2); = |ng) in the MI). To lowest order in
perturbation theory the overlap is then given by

a =" (1A = [(A)]2,) (7.20)
where
A, = _%[51, S0, ml, (7.21)
with
S1=—i Y il (ol + He., (7.22)

(k)
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and |¢;r) = |no + 1)j|no — 1)gIlij|n0);. Using these expressions it is straightforward
to compute the expectation value of the density correction

1 1
(A3) = ng(ng + 1) <% <(Eo “EE (B Eji)2> : (7.23)

where Fy — E;; = —U + A; — A;. Tt is now straightforward to calculate the disorder
averages and the overlap is given by

J4U2A2

q = 64(no(no +1))*p(1 — p)=(z + 1)@’

(7.24)

where z is the number of nearest neighbors.

Next we turn to the Bose-glass phase and consider the leading order (non-vanishing)
correction to the overlap function which occurs here at second order. The expression
for the overlap in lowest-order perturbation theory is then given by

0= a0+ 7 ([0 Aol = [} ]uul (A ) (7.25)

where gy = p(1 — p) (the overlap at zero hopping), A; and S; are as given above for
the MI phase but with

€2) = [T dilno + 1) + (1 = di)lno)] (7.26)
!
and
5e) = [djlno +2); + (1 = d;)Ino + 1);] [di[no)r + (1 = di)|no — 1)4]
XIyzjkldi|no + 1)1 + (1 = di)[no), (7.27)
where d; i, (1 — djx,) is zero (one) for Aj,; = A (Ajx; = —A). Again, using these

expressions it is straightforward to compute the expectation value of the density cor-
rection and for ng > 1 we obtain

~ %’23' 7321'
() =2 (( "B (B E;-»?) ’ (7:28)

Eo

where

and
’)/Z'j = (di\/ Un + 2 + (]. — di>\/ U + ].)(dj\/ U + 1 + (1 — dj>\/n_o) (730)

Once again a straightforward calculation of the disorder averages gives the following
expression (ng > 1) for the overlap:

(7.31)

q=p(l—p) (1 _ Jz(n0+ 1)2U(U - 2A) +A2)

2A2(U — A)?
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An analogous calculation for ng = 0 gives

i=p1-9) (1= 35 ) (7.2

which corresponds to the U — 0 limit of Eq. (7.31).

When the effects of hopping dominate, the bosonic atoms are in the superfluid
phase (see Fig. 7.2). Then, the influence of weak disorder on the superfluid phase
can be studied within a generalized mean-field approach. In analogy to the Gross-
Pitaevskii formalism, we replace the bosonic operators b; in the Hamiltonian (7.1) by
a local complex field 1);, and minimize the corresponding free energy functional H (1);).
The effect of disorder is to produce fluctuations in the local density. Hence we make
the ansatz v; = €"®v/ng + d0n; where ng is the homogeneous density in the absence of
disorder and dn; o A; is the disorder induced density fluctuation. Introducing the
notation 0n = [0n;]q, as the disorder-averaged density fluctuation, the particle density
reduces to [(n;)]as = no + 0n. We substitute this ansatz into H(v;), expand 1; for
small fluctuations, dn; < ny (see appendix 7.C) and minimize the resulting expression
in Eq. (7.75) at fixed particle number, which is equivalent to requiring [07;]s,, = 0.
Note that for large dimension and thus a large number of nearest neighbors we may
replace

Z dn; ~ zon. (7.33)
(@)

Using this relation and self-consistently solving for the density fluctuations dn; (see
appendix 7.C) gives the overlap function

47’loA 2
1— 34
E <2Un0+zJ) p(l —p) (7:34)

where ng = (u+ Jz)/U + 3.

In summary, we find that in the limit of small hopping J/U < 1, the overlap
signals a sharp crossover between the Mott-insulator with ¢ &~ 0 and the Bose-glass
with ¢ = p(1 — q), see Fig. 7.2. In turn, the superfluid phase is characterized by off-
diagonal long range order giving rise to coherence peaks in a time of flight picture.
Consequently, the overlap and the coherence peaks in time of flight allow for a clear
identification of the phases in the disordered Bose-Hubbard model. However, we would
like to point out that the overlap function behaves smoothly across the phase transition
and consequently is not suitable for the precise determination of the exact location of
the phase transition.
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7.4.2 Numerical results

We have simulated the disordered Bose-Hubbard model (7.1) in 1D using a number-
conserving algorithm based on time-dependent matrix product states [62, 63]. In the
matrix product state representations, we reduce the Hilbert space by retaining only the
x most significant components in a Schmidt-decomposition of the state at each possible
bipartite splitting of the system. States in 1D can be efficiently represented in this way,
with relatively small x giving essentially unity overlap between the represented state
and the actual state. The simulations both serve as a check for the perturbation theory,
and allow computation of the overlap function beyond the perturbation limit from the
microscopic model.

Because we consider the regime 2A < U, the system remains incompressible and
does not enter the disordered glass phase. Therefore we do not expect replica-symmetry
breaking to occur. For our simulations, the presence of replica-symmetry is equivalent
to convergence to a unique ground-state for any given disorder independent of initial
conditions. The overlap function can then be computed as

q= % Z(ni? -7, (7.35)

where 7 is the density of the system. Computation of the overlap function can be sim-
plified in this way as L' >~ (n;) self-averages to [(n;)]s, for sufficiently large systems,
which in turn self-averages to 7.

The ground states used in Eq. (7.35) are computed by imaginary-time evolution,
c.f. Ref. [63], of the 1D Bose-Hubbard-model (7.1) with a randomly-chosen bimodal
distribution, and different impurity strengths 2A. The lattice size is L = 64, represen-
tative of current experimental capabilities, and we compute the overlap as a function of
A for several different values of U/J and the fraction of impurity-occupied sites, p. In
Fig. 7.6 we display results for U/J = 10 and p = 0.5. We have performed convergence
tests in the time step, the duration of imaginary-time evolution, the number of disorder
realizations, and the number of retained states y. We find that the overlap function
converged even for surprisingly small values of y ~ 20 states in the large U/J limit
(Mott-insulator or Bose-glass regime). Regarding the number of disorder realizations
for each value of A, we find that whilst 10 random realizations of bimodal disorder are
not sufficient to narrow the error down, 20 realizations suffice. Much of the observed
fluctuations in the value of the overlap function for a given A stem from the fact that
we allow the number of impurities in each realization to fluctuate around the mean Lp.
Conversely, in our simulation data we observe different disorder realizations with the
same number of impurities having overlaps closer to each other than the error bars is
Fig. 7.6 would suggest.

As shown in Fig. 7.6, we generally found very good agreement between numerical
simulations and perturbation theory in its region of validity. For the Mott-insulator
regime (commensurate filling factor) this is the regime where 2A < U. We observe the
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Figure 7.6. QOverlap function q as a function of impurity strength A
in the Mott-insulating phase at filling factor no = 1 (black lines) and in
the Bose-glass phase for ng = 0 (gray lines). In both cases, the impurity
probability is p = 0.5 and U/J = 10, for L = 64. Simulation results
(solid lines) are shown wversus results from perturbation theory (dashed
lines). Much of the variation in the simulated overlap function is due to
the fact that we allow the number of impurities to fluctuate around the
value given by Lp in each particular disorder realization. Note that the
perturbation result in the Mott-insulator diverges as A approaches U due

to energy degeneracy [c.f. Eq. (7.24)]. In the Bose-glass phase, second-
order perturbation theory yields a divergence as A approaches 0, again due

to energy degeneracy [c.f. Eq. (7.32)].

breakdown of our second-order perturbation theory as A approaches U/2 = 5.J, which
is caused by energy-degeneracy of adjacent impurity- and non-impurity occupied sites
when A = U/2. In the Bose-glass regime, breakdown of perturbation theory sets in for

low A, as degeneracy occurs there for A = 0.

7.5 Conclusion

We have shown how the Bose-glass phase can be identified by measuring the overlap
function characterizing the correlations between disorder replicas, i.e., systems having
identical disorder landscape. We have described a procedure to create disorder replicas
using cold atomic gases in an optical lattice, focusing on the case of disorder induced by
a second atomic species. A scheme to measure the overlap has been presented, which
involves the characterization of the occupation numbers in both the individual replicas
and the joint system, where both replicas have been combined. Specifically, we have
shown that after combining the replicas together, particles can be distributed across
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multiple motional states and we explained in detail how to determine the occupation
number distribution in this situation. Using perturbation theory we have calculated
the overlap for weak hopping and have shown the different behaviors exhibited in the
Mott-insulator and Bose glass phases; these results are in good agreement with the
results from a one-dimensional numerical simulation. In the opposite limit of very
large hopping we also obtain analytical results for the overlap within a mean-field-
theory treatment.

Applying our proposed measurement scheme for the overlap to other types of disor-
dered models [54, 61] would provide interesting insights to characteristic properties of
disorder-induced quantum phases. Of particular interest would be the quantum spin
glass where the overlap corresponds to the Edwards-Anderson order parameter which
has been conjectured to exhibit replica symmetry breaking [54], i.e., the results for
the overlap depend on the particular replica. In addition to equilibrium properties
considered here, the dynamics of the overlap might also posses an interesting behavior,
and could be measured in a similar setup. In one-dimension the time evolution of the
overlap could be determined numerically [63].
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7.A Energy Shifts and Couplings for Three and
Four particles

In the following two sections we determine expressions for the eigenstates and eigenen-
ergies of Eq. (7.16), i.e., |m,n)+ and EV™ and associated energy shifts and couplings
for all possible initial configurations of three and four particles. Note that the case
where all particles are in the lowest or highest energy band has already been explained
in Sec. 7.3.2 and will not be discussed here further.
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7.A.1 Three particles

We consider the two different configurations described by the initial states i) |2, 1;0,0)
and ii) [1,2;0,0).

For case i) the two eigenstates are given by

1

1
2.1y = —(=v2]2,0;0,1) +[1,1;1,0)), 7.37
2,1) ﬁ( | )+ | )) (7.37)

with eigenenergies Ef’l) =2 +1and E®Y = €/2 + 1 respectively. We see that only
the state |2,1), couples to the initial state |2, 1;0,0), with a matrix coupling element
of Qf; = /3, whilst for the state |2, 1)_ we find Q; = 0. The energy shifts for the two

different possible processes are given by AE/Ugf = 2(e — 1) and AE/USS = § — 2.

For case ii) the two eigenstates are given by

1,2
L+ (082

where

(1,2) —1—€e&+ \/33€2+2€+1

= , 7.39
T 44/ 2¢ ( )
and with eigenenergies
(1,2) s o7, 1
ELY = e—i—lig 33€2+26+1+§(6—1). (7.40)

In this case both states |1,2). have nonzero coupling to the state |1,2;0,0) given by

Qi = n¢? = (1,2] Hyel1,2;0,0) (7.41)
— —(7&’2)—1—\/5)-

L+ (78)?

~—~ || —

The energy shifts for the two different possible processes are given by AE/USS =
B -3,
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7.A.2 Four particles

We consider the three different configurations described by the initial states i) |3, 1; 0, 0),
ii) 12,2;0,0) and iii) |1, 3;0,0).

For case i) the eigenstates are given by

1
3.1+ = —2(13,0:0,1) + V3[2,1;1,0)), (7.42)

1
3,1). = ﬁ(—\/é\& 0;0,1) + |2,1;1,0)), (7.43)

with eigenenergies Ef”l) =3(e+ 1) and E®Y — ¢y 3, respectively. We see that only
the state |3,1) couples to the initial state |3,1;0,0), with a matrix coupling element
of Qf; = \/4, whilst for the state |3, 1)_ we find Qy; = 0. The energy shifts for the two
different possible processes are given by AE/USS = 3(e — 1) and AE /U = € — 3.
For case ii) the eigenstates are given by
1
|272>i = T (’7:2|:72|1727170>_'_‘271’071)) ’ (744)
2,2
L+ ()2

where

22  —1+eEt065e?—2+1

and with eigenenergies
(22) _ Ve —ae 1 L
ETY = 342+ V652 —2¢+1— g(l +€). (7.46)

In this case, generally both states |2,2). have nonzero coupling to the state |2,2;0,0)
given by

O = 722 =(2,2]4 Huel2, 2;0,0) (7.47)
2 2,2)
= [— (Y 1)
L+ (1)

The energy shifts for the two different possible processes are given by AE/US =

EEY -2

For case iii) the eigenstates are given by

1

L ()
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where

et VB F 2 F 1
WP = ‘ cheer (7.49)

2\/§€

and with eigenenergies
(L3) _ B e 11
EyY = 342+ V13e2 + 2+ —1(2+6). (7.50)

In this case, generally both states |1,3)+ have nonzero coupling to the state |1,3;0,0)
given by
Qn = o\ = :
fi = nj: — <173|:|:HRC|153a 070> (751)

N (1,3) (yil’?’) N \/5)
L+ (™)

—_

The energy shifts for the two different possible processes are given by AE/US =

EPY 15,

7.B Perturbation Theory

In this section we derive the corrections to the overlap function due to small hopping in
perturbation theory following closely the method presented in Ref. [64]. We start with
the zero hopping Hamiltonian H, with ground state |2) and eigenenergy Fy. We treat
the hopping Hamiltonian, JH; with H; = — ) (i ) b;rbj, which has eigenstates denoted
by |¢:;) and eigenenergies denoted by E;; in perturbation theory. We proceed by
determining a unitary transformation that transforms the total Hamiltonian H = Hy+
JHy into an effective Hamiltonian H’ with the identical eigenspectrum but acting only
in the unperturbed Hilbert space of the state |[{2). The required unitary transformation
may be written as U = ¢~* and can be determined consistently to any order by writing
S = JS) +J?Sy+---. We assume that S has only non-diagonal matrix elements which
connect the unperturbed ground state |2) and the excited states |¢;;). Using the
unitary transformation we can directly calculate the correction to the particle density
due to the hopping by computing (Q2|7;|Q) where 7; = UTn;U. We show in the following
sections that it is sufficient to determine S to first order. Moreover, it is straightforward
to show that to first order the matrix elements of S, i.e. S;, are given by

Vg
(95114 = % (752)
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7.B.1 Mott-insulator

In this section we derive the leading order correction to the overlap function for small
hopping in perturbation theory for the MI phase. We begin by expanding S to fourth
order and calculate the average corrected density to be

(i) = (i) + 24: T (4;), (7.53)
where B
Ar = [S1,n4, (7.54)
Ay = [Soini] - %[sl, (51, 4]l (7.55)
Az = [Ss,ni] — % ([S1, [S2, mi]] + [S2, [S1,mi]]) — é[Sl, [S1, [S1,nd]l],  (7.56)
A = (S0 = 5[5 (82 ml] + 52151 (51, (51, 1, ]
R SCHER FRCHERS i} (7.57)

First, note that since we have chosen S to have no diagonal matrix elements ([S,, n;]) =
0 to all orders.

We now calculate the first part of the overlap function (7.3) and find
(i) e = [(n)%]aw + J*[(n5) (A2)]av
+ 2 [(ni) (As)]aw + S [((n) (As) + (A2) aw + O(J%). (7.58)

Similarly, for the second term of the overlap function (7.3) we obtain the following
expression

(e =[]y + T [(nid]aw[(A2)]aw + T2 [(ni)]aw[(As)]ao

+J([(ni)]ao[(Ad)]av + [(A2)]20) + O(T7). (7.59)
Using (n;) = ny we obtain the following expression for the overlap
q = [{1) Jav — (i) = J* ([(A2)]aw — [(A2)]3,) + O(T7). (7.60)

Note that because (n;) = ng at all lattice sites (independent of the disorder) the second-
and third-order contributions cancel.

To determine the required commutators [Sy, [S1, n;]] we write S; and n; as projectors

Sio= =iy el (el + He, (7.61)
(Jk)
n, = HO‘QMQ‘—FHO Z |¢jk ¢jk“+ n0+ Z ‘¢zg ¢zj‘+ no_l Z ’(bﬂ ¢JZ
(ik)#1

(7.62)
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where

_ {(QV[gjk)
Gk = Ejjk : (7.63)
) = H o), (7.64)
and
|6s5) = Ino + 1)5ln0 — i [ ] Inoh- (7.65)
14,

Using these expressions it is straightforward to compute the expectation value of the
density correction

) =not+ ) Y- (5= 57~ o) (7.66)

(@)

where EU — E’U =-U -+ A] — Az

7.B.2 Bose-glass

In this section we derive the leading order correction to the overlap function for small
hopping in perturbation theory for the BG phase. Again we consider the corrected
density (7;) as given in Eq. (7.53) but only up to second order in J. Again we have
([Sn,n;]) = 0 because we have chosen S to have no diagonal matrix elements. Thus
the overlap to second order is given by

¢ = [(1:)"]av — [(7:))ay = g0 — J* ([{na)(A2)]aw — [(ni)]a[(A2)]aw) + O(T%),  (7.67)

where qo = [(n;)%]40 — [(n:)]?, is the overlap at zero hopping derived in Sec. 7.4.1. Since
(n;) is now site dependent the second-order contribution does not vanish.

To determine the required commutators [Si, [S1, n;]] we again write S; and n; as
projectors

Sio= =i cilQ (gl +He, (7.68)
(Jk)
ni = (no+d)|QNQ+ (no+di) D @) (Bl + (di(no +2) + (1= di)(ng + 1))
(k) #i

X Z |6i7) (Dl + (dino + (1 = di)(no — 1)) > |éji)(sal, (7.69)

(3@@) (4(@@)

where (QAV]650)
o ik
C]k EO . E]k 9 (770)
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with
1) = [ldilno)i + (1 = di)|no + 1)), (7.71)
!
and
[63k) = djlno +2); + (1 = dj)|no + 1);][dk[no) + (1 = di)|no — 1)«]
xMizjildilno + 1)i + (1 = di)|no)il, (7.72)
where djj; (1 — d;r,) is zero (one) for Aj,; = A (Ajr; = —A). Again, using these

expressions it is straightforward to compute the expectation value of the density cor-
rection and for ng > 1 we obtain

%‘23* ’szz‘
(A2) =) ((Eo B B Eﬂ)2) , (7.73)

(43(@@)

where

Y = (divno+2+ (1 —d;j)vnog +1) (djvno + 1+ (1 —d;)y/no) ., (7.74)

7.C Mean Field Theory

We replace the annihilation operators b; in the Hamiltonian (7.1) by the mean field
v = €'®v/ng + on; and expand the fluctuations dn; < ny up to second order to obtain

1
H(én;) = —% Z&niénj - 5(57%2 +6n?) + % Z 6n? + (2ng — 1)on;
0= ,
(i) 7
= (ot 2J = A)dng + O(6n3). (7.75)

Next, we minimize Eq. (7.75) at fixed particle number which is equivalent to requiring
[0ni]ap = 0. Using Eq. (7.33) and consistently solving gives

I C UJ_ =3 (7.76)
U+ 2L

2ng0

Finally, then the overlap can be expressed in terms of these fluctuations as follows
q = [<ni>2]av - [<n1>]¢2w = [57%2]&11 - [5ni]¢2w~ (7.77)

Substituting Eq. (7.76) into Eq. (7.77) and performing the disorder average for a
bimodal distribution gives the result in Eq. (7.34) for the overlap function q.
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