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Abstract

We investigate the behaviour of a harmonically trapped atom interacting with a
resonant standing-wave laser field in the Lamb-Dicke limit. The laser field is treated
classically, the atomic motion quantum mechanically, and the internal state of the
atom as a two-level system. Spontaneous emission by the atom is neglected in order
to focus on the coherent motional and internal dynamics produced by the atom-field
interaction.

We solve the system numerically and characterise the motional dynamics of the
atom by constructing the Q and Wigner functions for the atomic centre-of-mass
state. The Q function is found to consist of two pieces, each representing a single
dressed motional state of the atom. When viewed in a rotating coordinate system,
the two pieces move in opposite directions on the phase plane, indicating that the
atom-field interaction modifies the atomic centre-of-mass oscillation frequency by
an amount that depends on the internal state of the atom. We also investigate
the internal dynamics of the atom and find that the atomic excitation probability
exhibits collapse and revival behaviour.

We then present an analytic diagonalisation of the system Hamiltonian by means
of a Bogoliubov transformation of the trap operators. This allows the derivation of
analytic expressions for the operator moments and phase-space distributions con-
sidered previously, and for the state-dependent shift of the motional oscillation fre-
quency. It also provides a useful starting point for possible future extensions of the
model.
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Chapter 1

Overview

There is nothing more evocative of the subject of physics than a stylised depiction
of the atom á la Bohr, with miniature electrons orbiting like planets around a
tightly-packed cluster of spherical protons and neutrons. While the field of physics
is of course far richer than this stereotype would imply, it is certainly true that
the atom has played a starring role in many of the most important and influential
developments in physics of the past century. It was the desire for a more complete
theory of the properties of the atom and its interaction with radiation that motivated
the development of the pillar of modern physics that is quantum mechanics, and the
deep understanding thus obtained that led to the development of nuclear fission and
the invention of the laser, achievements of such importance that their influences
extend far beyond the scientific realm.

The experimental mastery over matter demonstrated by these accomplishments,
however, did not extend to the isolation and manipulation of individual atoms and
ions, and some two centuries after they were written, the words of the German
physicist Georg Lichtenberg still rang true: “I think that it is a sad situation in all
our chemistry that we are unable to suspend constituents of matter free.” [48].

The breakthrough in the free suspension of constituents of matter came in the
1950s and ’60s, when Wolfgang Paul and Hans Dehmelt independently developed
methods of confining electrically charged particles by means of their interaction with
the electromagnetic field. Their invention of what are now known as the Paul and
Penning traps made possible for the first time the isolation of individual charged
particles, and led to Paul and Dehmelt being awarded the 1989 Nobel Prize in
Physics.

The impact that ion traps have had on physics since their introduction has been
immense. In conjunction with laser cooling [1], the ability to isolate an individual
particle from the environment for very long periods of time [31] has led to many
achievements in precision measurement [62], precision spectroscopy [19] and the use
of optical transitions as frequency standards [38]. Further, the ability to interrogate
an individual quantum mechanical entity has allowed the experimental observation of
such phenomena as quantum jumps between atomic states [18, 20] and the quantum
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Zeno effect [68].

While research into the precision measurement aspects of trapped ions contin-
ues, the focus of the field in recent years has turned towards the topic of quantum
information processing [28]. The ability to decouple trapped ions from the environ-
ment while maintaining a high level of control over their internal dynamics means
that a trapped ion qubit can be accurately initialised and manipulated, while the
the development of the electron shelving method of internal state detection means
that the state readout can be accomplished with effectively unit efficiency. Trapped
ions currently stand as one of the most promising architectures for the eventual
construction of a quantum computer [29, 59, 67].

The aspect of the field of trapped ions considered in this thesis is the interaction
of a single ion with a near-resonant standing-wave laser field. This model is by no
means novel, having been previously studied from several different perspectives. It
was first investigated in the context of laser cooling, when it was shown that aligning
the trapping potential with a node of the standing wave allows the sideband cooling
of the trapped ion [27, 71]. The system Hamiltonian has been shown to be equivalent
to that of the Jaynes-Cummings model, both when the trap is centred at a node
of the standing wave and placed at an arbitrary position [25, 70]. This equivalence
leads to collapse and revival behaviour in the atomic inversion of the ion [26]. The
system has also been studied in the context of quantum state engineering, and has
been shown to provide the possibility of preparing exotic motional states of the
trapped ion [40, 73].

Although each of these analyses focuses on a different aspect of the system, the
approach common to them all is the alignment of the centre of the trapping potential
with a node of the standing wave. In contrast, there has been comparatively little
attention paid to the case where the trapped ion is localised about an antinode of
the laser field; this latter situation is the focus of this thesis. In a similar approach
to much of the work mentioned above, we consider the system in the Lamb-Dicke
limit and neglect spontaneous emission by the ion in order to focus on the coherent
motional and internal dynamics produced by the ion-field interaction.

There are perhaps two main motivations for an investigation of this nature. The
first is a desire for a deeper scientific understanding of a system that is inherently
quantum mechanical, and thus exhibits such interesting behaviour as collapses and
revivals. An added attraction is the fact that the model we use is experimentally
realisable, and so any novel theoretical predictions made in the course of the work
could (at least in theory) be tested experimentally.

A second motivating factor is that in the Lamb-Dicke limit and the absence of
spontaneous emission, the Hamiltonian is sufficiently simple to allow an analytic in-
vestigation of the system. A thorough analytic characterisation of this model and its
dynamics would provide a useful knowledge base for future numerical investigation
of related models.
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CHAPTER 1. OVERVIEW

1.1 Thesis outline

The work presented in this thesis may be broadly divided into two sections. The
first section, comprising Chapter 2, contains the background material required for
a complete appreciation of the investigation of the system proper, which begins in
Chapter 3.

Chapter 2 presents an overview of the theoretical background associated with
each component of the system. This treatment is briefer in parts than it could have
been, since the majority of this theory is standard material covered in detail in many
quantum mechanics and quantum optics textbooks. References to such books are
provided where relevant.

Chapter 3 discusses the details of the system and the approximations inherent in
the model used to describe it. The system Hamiltonian is developed and the results
of the numerical solution of the system presented and discussed.

In Chapter 4, a Bogoliubov transformation is used to diagonalise the Hamiltonian
and analytic expressions for operator moments and phase-space distributions are
derived. The physical interpretation of the diagonalisation and its relation to the
features seen in the system dynamics are discussed.

Two extensions to the original model are presented in Chapter 5. The Hamilto-
nian is modified to allow the trapping potential to be moved relative to the standing
wave, and the effect on the system dynamics of including higher-order terms in the
Lamb-Dicke parameter investigated.

The body of the thesis concludes with Chapter 6, which contains a summary of
the results and discusses potential topics for future research.
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Chapter 2

Background Theory

This chapter presents a summary of the theory associated with the most important
aspects of the system studied in this thesis. We begin with an overview of the
most commonly used ion traps and the behaviour of the ions trapped in them.
After reviewing the theory of the harmonic oscillator, the interaction of an atom
with the electromagnetic field is discussed, and the features of the semiclassical
and quantum treatments outlined. The chapter closes with a discussion of quasi-
probability distributions, which prove valuable in providing a visual representation
of the state of the system.

2.1 Ion traps

The purpose of an ion trap is to confine particles to some small region of space
in order that they may be observed and experimented with over a much longer
period of time than would otherwise be possible. While the ability to use electric
fields means that traps are simpler to realise for particles with a net electric charge,
neutral particles may also be trapped (for example, by use of a magneto-optical trap
[51]). The neutrality or otherwise of the trapped particle which plays a central role
in this thesis is irrelevant to the results obtained, and so in keeping with current
interest in the literature, we will restrict our discussion to the most common traps
for charged particles.

Faced with the task of confining a charged particle, a natural reaction might be
to ask whether it is possible to find an electrode configuration that produces a local
minimum of the electric potential Φ at some point. The region centred on this point
would act as an ion trap, as suitably charged particles would be attracted to the
potential minimum and subjected to a restoring force should they try and escape.

The answer to this query is, unfortunately, in the negative. Earnshaw’s theorem
[42] states that a static electrode configuration can never create an extremum in the
electric potential; all critical points are saddle points.1 If we are to realise our goal

1The proof of this is simple: Laplace’s equation states that in a charge-free region,
∇2Φ = −∇ · E = 0. Applying Gauss’ Law, we find that

R

S
E ·dA = 0, so there is no point where the
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2.1. ION TRAPS

of creating an ion trap by using electromagnetic fields, we must be a little more
devious in how we go about it.

Fortunately, we physicists are a wily bunch, and not one, but two methods of
overcoming this problem have been devised. The first method, which forms the basis
of ion traps developed by the German physicist Wolfgang Paul, sidesteps Earnshaw’s
theorem by using time-varying electric fields. The second involves supplementing a
static electric field by a static magnetic field in such a way that the combination of
fields results in a suitable trapping potential.

2.1.1 The quadrupole potential

In designing an ion trap, one of the first things we must do is choose the shape of
the confining potential. This is of key importance, as the shape of the potential
dictates both the behaviour of the ions in the trap and the electrode configuration
required to achieve it. We would ideally like a potential which can be produced by
a relatively simple electrode conformation and which gives rise to neat, predictable
ion trajectories.

In view of the elegant form and tractable theory of simple harmonic motion, the
shape which stands out as the sensible choice for a trapping potential is a quadratic.
This is fortunate, for the potential in the neighbourhood of any equilibrium point
is, to leading order, quadratic, which means that a harmonic potential is relatively
easy to implement: we need simply find an electrode configuration which produces a
potential minimum and keep our ions localised about this region. Conversely, it also
means that any attempt at creating a higher-order trapping potential – a quartic,
for example – relies critically on the precise cancellation of leading-order terms, to
the extent that one slight electrode misalignment means that we will simply have
discovered an expensive and complicated method of producing a harmonic potential.

For reasons which will become apparent shortly, a harmonic potential is also
known as a quadrupole potential, and has the general form (see, for example, [33]):

Φ(x, y, z) =
Φ0

2r2
0

(αx2 + βy2 + γz2) (2.1)

where Φ0 is an externally applied potential, α, β, and γ are constants which describe
the structure of the field, and r0 is a constant that depends on the physical system.
The Laplace equation ∇2Φ = 0 then imposes the requirement that

α+ β + γ = 0, (2.2)

electric field (and therefore the force) points inwards (or outwards) from all directions. A similar
argument shows the impossibility of magnetic levitation using a static configuration of permanent
magnets.

6



CHAPTER 2. BACKGROUND THEORY

which makes it clear that the potential cannot be confining in all three directions.

There are obviously an infinity of coefficient combinations which satisfy the re-
striction given by Eq. (2.2). However, not all of these result in unique field configura-
tions (linearly dependent combinations describe the same field, up to an overall scale
factor) and in any case, the field configurations which will prove most useful to us
are the simplest ones. We can thus limit our discussion to the first two combinations
of coefficients which satisfy the required restriction.

The two-dimensional quadrupole field

The simplest quadrupolar field configuration corresponds to the case of α = −β = 1,
γ = 0, and has the form

Φ(x, y) =
Φ0

2r2
0

(x2 − y2). (2.3)

This field has a saddle point in the x - y plane located at the origin, and is indepen-
dent of z. Charged particles will thus be trapped in one of the x- or y- directions,
anti-trapped in the other, and free to move along the z-axis.

The suitability of calling it a ‘quadrupole’ field becomes clear when we note
that this simple quadratic field can be produced by four electrodes arranged in a
square of side length

√
2r0. In order to maximise the area over which the potential is

quadratic, the electrode surfaces should be cut to match the hyperbolic equipotential
lines of Eq. (2.3); however, the shape of the field close to the origin is negligibly
affected by the details of the electrode profiles, and electrodes of circular cross-section
(or equivalently, point charges) produce essentially the same potential configuration
in this region.

The three-dimensional quadrupole field

The next-lowest set of coefficients which satisfy Eq. (2.2) are α = β = 1, γ = −2,
giving rise to the field

Φ(x, y, z) =
Φ0

2r2
0

(x2 + y2 − 2z2). (2.4)

This potential will trap charged particles in either the x - y plane or the z-direction,
and can be produced by the three-electrode configuration illustrated in Fig. 2.1.
The ideal electrode shapes are again dictated by the equipotential surfaces of the
field; thus the surface of the ring electrode is hyperbolic and each endcap electrode a
hyperboloid of revolution about the z-axis. The distances from the electrode surfaces
to the origin are related by r20 = 2z2

0 , accounting for the factor of 2 appearing in
Eq. (2.4).
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2.1. ION TRAPS

r0
z0

endcap

endcap

ring

z

Figure 2.1: A cross-section of the (cylindrically symmetric) electrode configura-
tion required to produce the field given by Eq. (2.4). The diagonal
lines represent the asymptotes of the hyperbolic electrode surfaces.

2.1.2 The linear Paul trap

Based on the quadrupole mass filter developed for mass spectroscopy [48], the linear
Paul trap uses four rod-shaped electrodes to create a two-dimensional potential of
the form described by Eq. (2.3). Though capable (through a suitable choice of
Φ0) of providing radial confinement, this field is constant along the z-axis, and a
separate potential is required to prevent particles escaping along the trap axis. This
is provided by a pair of endcap electrodes held at a static potential U0, creating a
potential which, near the centre of the trap, is given by

Φz(x, y, z) = κU0

[

z2 − (x2 + y2)

2

]

=
m

2q0
ω2
z

[

z2 − (x2 + y2)

2

]

(2.5)

where κ is a geometric factor with units of [L]−2 and ωz ≡
√

2κq0U0/m is the axial
oscillation frequency of an ion of mass m and charge q0.

While axial confinement can be provided by a DC potential, we have already seen
that a static potential applied to the rod electrodes cannot trap an ion along the x
and y axes simultaneously. The linear Paul trap overcomes this problem by applying
to diagonally opposite electrodes the oscillatory potential Φ = Ur − Vr cos Ωt, where
Ω is typically in the radio-frequency region (∼ MHz). The other two electrodes are

8



CHAPTER 2. BACKGROUND THEORY

held at ground. The overall potential near the centre of the trap is then given by

Φ =
mω2

z

2q0
z2 −

[

mω2
z

4q0
− Ur − Vr cos Ωt

2R2

]

x2

−
[

mω2
z

4q0
+
Ur − Vr cos Ωt

2R2

]

y2 (2.6)

where R is the distance from the centre of the trap to the surface of an electrode.
Although at any one instant this field is only confining in two dimensions, we shall
see that the effect of the time dependence is to create a potential which, on average,
is harmonically trapping in all three directions.

Ion equations of motion

The equations of motion for a charged particle in the potential given by Eq. (2.6)
are simple to obtain. Setting mẍ = −q0∇Φ, we find

d2z

dt2
= −ω2

zz (2.7a)

d2x

dt2
=
q0
m

[

κU0 −
Ur − Vr cos Ωt

R2

]

x (2.7b)

d2y

dt2
=
q0
m

[

κU0 +
Ur − Vr cos Ωt

R2

]

y. (2.7c)

The first equation describes harmonic oscillations in the z-direction at frequency ωz,
and needs no further explanation. The motion in the radial directions, however, is
more complex, and it is useful to recast the equations in the form

d2uj
dτ2

+ [aj − 2qj cos 2τ ]uj = 0 (2.8)

where uj = x or y, τ = Ωt/2, and

ax = − 4q0
mΩ2

[

κU0 −
Ur
R2

]

qx =
−2q0Vr
mΩ2R2

(2.9a)

ay = − 4q0
mΩ2

[

κU0 +
Ur
R2

]

qy =
2q0Vr
mΩ2R2

. (2.9b)

Note that aj and qj are both small (≪ 1). The advantage of making this change of
variables is that the equations of motion now match the canonical form of a Mathieu

equation, one of a class of differential equations with periodic coefficients [2]. Ob-
taining solutions for the motion of the ion is now simply an exercise in mathematics.

Floquet’s theorem [3] states that the solutions to this type of equation are of the
form

Fβ(τ) = eiβτP (τ) (2.10)
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2.1. ION TRAPS

where β is the characteristic exponent and P (τ) is a periodic function with the same
period as the coefficients in the differential equation. In the case at hand, P (τ) has
period π, and the fact that the Mathieu equation is second-order means that Fβ(−τ)
is also a valid solution. Thus we can write

uj(τ) = Aj e
iβjτP (τ) +Bj e

−iβjτP (−τ), (2.11)

where Aj and Bj are arbitrary coefficients which could be chosen to match pre-
scribed initial conditions.

It is clear from Eq. (2.11) that the characteristic exponent β = β(a, q) determines
the stability of a particular solution. If β is imaginary or complex, one of the terms
in the solution grows exponentially, and the ion will be lost from the trap. Solutions
which are bounded for all τ (corresponding to stable ion trajectories within the trap)
require β to be purely real.

By making a Fourier expansion of P (τ), we can write a general bounded solution
to the Mathieu equation as

uj(τ) = Aj

∞
∑

n=−∞

C2n e
i(βj+2n)τ +Bj

∞
∑

n=−∞

C2n e
−i(βj+2n)τ , (2.12)

where the Fourier coefficients C2n are functions of aj and qj . By substituting this
solution into the Mathieu equation, recursion relations linking these coefficients to
the characteristic exponents and the parameters aj and qj can be found; a little fur-
ther manipulation yields continued-fraction expressions for C2n and βj , from which
the solutions may be evaluated to arbitrary accuracy [4].

A first-order approximation to the ion’s trajectory can be found by expanding
the continued-fraction expressions to first order in aj and second order in qj . For
the initial condition A = B, we find

uj(t) ≈ 2AjC0 cos (ωjt)
[

1− qj
2

cos Ωt
]

(2.13)

where ωj = βjΩ/2, with

βj ≈
√

aj + q2j /2 ≪ 1.

Since βj is small, ωj is much smaller than Ω, and the motion of the ion comprises two
distinct pieces. Superimposed on the large-amplitude, low-frequency oscillations de-
scribed by the first term (known as the secular motion of the ion) is a high-frequency
oscillation with an amplitude that is a factor of qj/2 smaller. These small, fast oscil-
lations are known as micromotion, and have their origin in the Fourier expansion of
the periodic function P (τ). We can see from Eq. (2.12) that expanding the solution
to higher orders (i.e. retaining more terms in the Fourier series) will result in the
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CHAPTER 2. BACKGROUND THEORY

Figure 2.2: The first stability region for the linear Paul trap, taken from Ref. [33].

addition of terms with progressively higher frequencies and smaller amplitudes to
the micromotion.

Since qj is a small parameter, in most cases the micromotion is sufficiently small
in comparison with the secular motion that is a reasonable approximation to neglect
it altogether. This simplifies the theoretical treatment of the system enormously,
for if the micromotion is neglected the ion moves as if subject to the potential

q0φ = 1
2m(ω2

xx
2 + ω2

yy
2) (2.14)

where the oscillation frequencies ωx,y are defined above. The net result of applying a
time-dependent potential to the trap electrodes is to create a pseudopotential which
is harmonic in both the x and y directions.

A further comment on stability

As noted earlier, restricting ourselves to stable ion trajectories requires that the
characteristic exponent β be real. It turns out that this is a necessary, but not
sufficient, condition: not all real values of β correspond to stable solutions. This
restricts the range of usable trap parameters to those corresponding to a value of β
which gives a stable solution, resulting in the existence of ‘stability regions’ on the
a - q plane. The first of these stability regions is bounded by the curves corresponding
to β = 0 and β = 1, and is illustrated in Fig. 2.2.

It is exactly this feature exhibited by solutions to the Mathieu equation that
makes the quadrupole mass filter so useful in mass spectroscopy. For a given ratio
of Ur/Vr, stable trajectories only exist for ions which have a charge-to-mass ratio

11



2.1. ION TRAPS

that falls within a certain range. Ions whose charge-to-mass ratio lies outside this
range have unstable trajectories, and are lost on their journey through the trap.
Varying the ratio Ur/Vr allows the q0/m ratio for which the mass filter selects to be
varied, giving a relatively simple method of analysing ions produced from a sample
of interest.

2.1.3 The Paul trap

Just as the two-dimensional quadrupole field lies at the heart of the linear Paul trap,
the 3-D quadrupole field forms the basis for the Paul, or rf, trap. This consists of
two end-cap electrodes and a ring electrode arranged as in Fig. 2.1; as for the linear
case, the electrode profiles have a negligible effect on the field near the centre of the
trap, and precisely shaped surfaces are not crucial to producing a quadratic field [5].

Holding the ring electrode at ground and applying the potential

Φ0 = Ur − Vr cos Ωt

to the end-cap electrodes creates the field

Φ(x, y, z) =
Ur − Vr cos Ωt

2r2
0

(x2 + y2 − 2z2); (2.15)

thus the equations of motion for an ion in a Paul trap are

d2z

dt2
=

2q0
m

Ur − Vr cos Ωt

r2
0

z (2.16a)

d2r

dt2
= −q0

m

Ur − Vr cos Ωt

r2
0

r, (2.16b)

where r ∈ {x, y}. These equations can be put into the general form of the Mathieu
equation (Eq. (2.8)) by defining

az = −2ar = − 8q0Ur
mr20Ω

2
, qz = −2qr = − 4q0Vr

mr20Ω
2
. (2.17)

Solving these equations of motion and neglecting the micromotion terms shows that
the ion moves as if subject to the harmonic potential

q0φ = 1
2m(ω2

r ρ
2 + ω2

z z
2) (2.18)

where ρ2 = x2 + y2, ωj = βjΩ/2, and β2
j = aj + q2j /2 as previously.

As for the linear trap, the requirement that the ion trajectories be stable restricts
the trap parameters to certain regions on the a - q plane. However, due to the factor
of two between the r and z parameters, the stability zones of the three-dimensional
Paul trap are not symmetric about the b-axis, as illustrated by the first stability
zone shown in Fig. 2.3.

12



CHAPTER 2. BACKGROUND THEORY

Figure 2.3: The first stability region for the three-dimensional Paul trap, taken
from Ref. [33].

2.1.4 The Penning trap

The Penning trap is geometrically identical to the Paul trap, consisting of a pair
of end-cap electrodes with hyperboloid surfaces separated by a hyperbolic ring elec-
trode. The difference between the two is in the mode of operation — in place of a
radiofrequency field, the Penning trap uses a static potential U0 and a static mag-

netic field, which is usually applied in the z-direction.

In order to trap positive ions, a negative potential is normally used, giving rise
to a field of the form

Φ(x, y, z) =
U0

2r2
0

(2z2 − x2 − y2). (2.19)

Ions in this potential will be confined in the z-direction but pulled away from the
centre of the trap in the radial direction, quickly hitting the ring electrode. The axial
magnetic field prevents the particles from being lost in this way by forcing them into
circular orbits in the x - y plane when they stray from the centre of the trap. Once
away from the centre of the trap, the ions see a non-zero radially directed electric
field, which, in combination with the magnetic field, gives rise to a tangential E×B

drift. The overall motion of the ions thus consists of harmonic oscillations in the
axial direction and fast orbits superimposed on a slower circular drift in the radial
plane. The details of the trajectories may be found in Chapter 3 of Ref. [33].
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2.2. THE HARMONIC OSCILLATOR

2.2 The harmonic oscillator

Harmonic oscillations occur in any system whose Hamiltonian contains quadratic
dependence on a canonical variable and the momentum conjugate to it. In a me-
chanical system, this describes the existence of a force which is proportional to,
and directed opposite, the displacement of a body from its equilibrium position.
In addition to the archetypal mechanical system of a mass connected to a spring,
harmonic oscillations are observed in LC circuits, where the canonical coordinate
and momentum are, respectively, the charge stored on the capacitor and the current.

The ubiquity of the harmonic oscillator in physics stems from the fact that
virtually any potential is quadratic in the neighbourhood of a minimum. Consider
the Taylor expansion of an arbitrary potential V (x) about a local minimum at x0:

V (x) ≈ V (x0) + V ′(x0) δx+
V ′′(x0)

2
(δx)2 + . . . (2.20)

where δx ≡ x − x0 is the displacement from the equilibrium position. Setting the
zero point of potential energy at V (x0) and neglecting terms in (δx)3 and higher
gives

V (x) ≈ V ′′(x0)

2
(δx)2 (2.21)

where we have used the fact that x0 is a minimum to write V ′(x0) = 0. (We also
assume that V ′′(x0) > 0. If not, the critical point is either a maximum, and the
system is unstable with respect to small perturbations, or a point of inflection, and
the leading term in a Taylor expansion is the cubic.) For small displacements, then,
the motion about any stable equilibrium point is harmonic! The exact meaning of
‘small’ will depend on the characteristics of the potential, in particular the second
and higher derivatives of V (x).

2.2.1 The classical harmonic oscillator

The Hamiltonian for the classical harmonic oscillator is

H =
p2

2m
+
mω2x2

2
(2.22)

where x and p denote the coordinate and momentum respectively. They may rep-
resent physical displacement and momentum (as for a mass on a spring, or a pen-
dulum), or may be canonical variables in the sense of Hamiltonian mechanics. The
equations of motion that follow from this Hamiltonian are

ẋ =
∂H

∂p
=

p

m
(2.23a)

ṗ = −∂H
∂x

= −mω2x (2.23b)
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which have the familiar solutions

x(t) = α sinωt+ β cosωt (2.24a)

p(t) = −mω(β sinωt− α cosωt) (2.24b)

where α and β are constants determined by the initial conditions.

2.2.2 The quantum harmonic oscillator

The Hamiltonian can be quantised by promoting x and p to operators

x → x̂

p → p̂

and imposing the canonical commutation relation

[x̂, p̂] = i~. (2.25)

This puts a limit on how accurately we may simultaneously know the position and
momentum:

(∆x̂)2(∆p̂)2 ≤ ~
2

4
, (2.26)

where (∆ĉ)2 ≡ 〈ĉ2〉 − 〈ĉ〉2 is the variance of the operator ĉ.

Motivated by the fact that the Hamiltonian is the sum of two squares, we define
the non-Hermitian ladder operators

â ≡
√

mω

2~

(

x̂+
ip̂

mω

)

(2.27a)

â† ≡
√

mω

2~

(

x̂− ip̂

mω

)

(2.27b)

which obey the commutation relation

[â, â†] = 1. (2.28)

After substituting for x̂ and p̂, the Hamiltonian assumes the simple form

Ĥ = ~ω (â†â+ 1
2). (2.29)

2.2.3 Number states

The recasting of the Hamiltonian of the quantised harmonic oscillator into the form
of Eq. (2.29) makes the energy eigenstates of the system simple to find. We recognise
â†â as the number operator, which can be shown to possess eigenstates with integer
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eigenvalues; the eigenstates of the Hamiltonian are therefore the number states |n〉,
with

â†â |n〉 = n|n〉 (2.30a)

â|n〉 =
√
n |n− 1〉 (2.30b)

â†|n〉 =
√
n+ 1 |n+ 1〉. (2.30c)

Thus we have

Ĥ|n〉 = ~ω(n+ 1
2) |n〉; (2.31)

the energy spectrum of the quantised harmonic oscillator consists of a ladder of
equally-spaced energy levels with energies 1

2~ω, 3
2~ω, 5

2~ω, . . ., etc. The time evo-
lution of the number states amounts to multiplication by a time-dependent phase,
and so the time evolution of an arbitrary state is simplified by choosing to expand
it in the basis of number states:

|ψ(t)〉 = e−iĤt/~|ψ(0)〉

= e−iĤt/~
∞
∑

n=0

cn|n〉

=
∞
∑

n=0

cn e
−iωt(n+1/2)|n〉. (2.32)

The expectation values of x̂ and p̂ in a number state follow from Eqs. (2.30) and
(2.27):

〈x̂〉|n〉 = 〈p̂〉|n〉 = 0 (2.33)

while their variances can be found to be

(∆x̂)2 =
~

mω

(

n+ 1
2

)

(2.34a)

(∆p̂)2 = ~mω
(

n+ 1
2

)

. (2.34b)

We see that of the number states, the only minimum-uncertainty state (i.e. the only
one which satisfies the equality in Eq. (2.26)) is the ground state |0〉.

Position-space wavefunctions

The position representation of the harmonic oscillator eigenstates can be deduced
by using the equation â|0〉 = 0 to write

√

mω

2~
〈x|
(

x̂+
ip̂

mω

)

|0〉 = 0

=⇒ d

dx
〈x|0〉+ mωx

~
〈x|0〉 = 0 (2.35)
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where we have used the relationship

〈x|p̂|ψ〉 = −i~ d

dx
〈x|ψ〉. (2.36)

Equation (2.35) and the requirement that the solution be normalised give the result
directly:

〈x|0〉 =
(mω

π~

)

1
4
e−

mω
2~
x2

; (2.37)

the position representation of the ground state is a Gaussian centred at the origin.
The squared modulus of this wavefunction has characteristic width σ =

√

~/2mω.

The position-space wavefunctions of the higher number states can be found by
repeatedly applying the raising operator to the ground state:

〈x|n〉 =
1√
n!
〈x|(â†)n|0〉

=
1√
2nn!

(mω

π~

)

1
4

(

√

mω

~
x−

√

~

mω

d

dx

)n

e−
mω
2~
x2

. (2.38)

To evaluate this we invoke a useful operator relation:2

z − d

dz
= −e z2

2
d

dz
e−

z2

2 (2.39)

which, through a change of variables, gives

(

√

mω

~
x−

√

~

mω

d

dx

)n

= (−1)n
(

~

mω

)

n
2
e

mω
2~
x2 dn

dxn
e−

mω
2~
x2

. (2.40)

This allows us to rewrite Eq. (2.38) as

〈x|n〉 =
(−1)n√

2nn!

(mω

π~

)

1
4
(

~

mω

)

n
2
e

mω
2~
x2 dn

dxn
e−

mω
~
x2

=
1√
2nn!

(mω

π~

)

1
4
e−

mω
2~
x2

Hn

(
√

mω

~
x

)

(2.41)

where the Hermite polynomial Hn(x) has been introduced using the definition in
Eq. (A.1). The position-space wavefunctions of the number states are the Hermite
polynomials multiplied by a Gaussian. The wavefunction of the nth energy eigen-
state crosses the x-axis n times, and the symmetry of the Hermite polynomials (see
Eq. (A.3)) means that the wavefunctions are alternately even and odd, starting with
the even ground state. Figure 2.4 shows the first few wavefunctions.

2This can be proved in a few lines of algebra: let each side act on a test function f(z) and show
that they give the same result.
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Figure 2.4: The wavefunctions of the first four energy eigenstates of the harmonic
oscillator. ξ is a dimensionless position variable defined in Eq. (2.54a).

2.2.4 Coherent states

Although the number states form a very useful basis in which to expand a state,
an oscillator in a number state is not a good representation of the classical case of
a particle moving to and fro in a harmonic potential. Most notably, the vanishing
expectation values of the position and momentum operators do not reproduce the
classically expected sinusoidal oscillations in x and p. This is related to the fact that
an oscillator in a number state has a well-defined amplitude but completely indeter-
minate phase, in contrast with our accurate knowledge of both the amplitude and the
phase of the classical particle. To the extent permitted by the uncertainty principle,
we would like to reproduce this knowledge in our quantised oscillator; this means
sacrificing some knowledge about the amplitude in order to gain some information
about the phase and motivates the introduction of the coherent states. These are the
quantum mechanical states which most closely approximate the classical situation,
and can be defined as the eigenstates of the annihilation operator:

â|α〉 = α|α〉 (2.42)

where the fact that â is not Hermitian allows α to be complex. A coherent state has
the number state expansion

|α〉 = e−
|α|2

2

∞
∑

n=0

αn√
n!
|n〉. (2.43)
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The coherent states are complete, but not orthogonal, with

1̂ =
1

π

∫

d2α |α〉〈α| (2.44)

〈β|α〉 = e−
1
2 |β|

2

e−
1
2 |α|

2

eβ
∗α. (2.45)

This means that not only may a number state be expanded into coherent states,
but a coherent state may be expanded into coherent states. The coherent states are
therefore said to be overcomplete.

The expectation values of x̂ and p̂ in a coherent state are

〈x̂〉α =

√

~

2mω
(α+ α∗) (2.46a)

〈p̂〉α = −i
√

~mω

2
(α− α∗) (2.46b)

and their variances can be found to be

(∆x̂)2 =
~

2mω
(2.47a)

(∆p̂)2 =
~mω

2
, (2.47b)

independent of α. The product of the variances satisfies the equality in Eq. (2.26),
and so all coherent states are minimum-uncertainty states.

The time evolution of an oscillator prepared in a coherent state |α0〉 can be found
by using the explicit expansion given by Eq. (2.43). Denoting by |ψ(t)〉 the state
at time t, we have

|ψ(t)〉 = e−iĤt/~|α0〉

= e−
|α|2

2 e−iωt(â
†a+

1
2)

∞
∑

n=0

αn0√
n!
|n〉

= e−
|α|2

2 e−iωt/2
∞
∑

n=0

e−inωtαn0√
n!

|n〉

= e−iωt/2|α0 e
−iωt〉. (2.48)

We find that an oscillator prepared in a coherent state evolves to another coher-
ent state of amplitude α = α0 e

−iωt. The expectation values of the position and
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momentum operators in the state |ψ(t)〉 are (cf. Eqs. (2.24))

x(t) =

√

~

2mω
(α0 e

−iωt + α∗
0 e

iωt)

= |α0|
√

2~

mω
cos(ωt− φ) (2.49a)

p(t) = −i
√

~mω

2
(α0 e

−iωt − α∗
0 e

iωt)

= −|α0|
√

2~

mω
sin(ωt− φ) (2.49b)

where the phase φ of the complex amplitude α0 is set by the initial condition of the
oscillator. This demonstrates that coherent states reproduce the expected oscilla-
tions in x and p.

2.2.5 Quadrature operators

It is useful to decompose the annihilation operator into its real and imaginary parts.
To this end we define the quadrature operators as

X̂1 ≡
â+ â†

2
=

√

mω

2~
x̂ (2.50a)

X̂2 ≡
â− â†

2i
=

1√
2~mω

p̂. (2.50b)

They obey the commutation relation

[X̂1, X̂2] =
i

2
(2.51)

which imposes the constraint

(∆X̂1)
2(∆X̂2)

2 ≤ 1

16
. (2.52)

The usefulness of the quadrature operators relates to the phase-space representation
of a quantum state. Instead of using axes defined by 〈x̂〉 and 〈p̂〉, it is convenient to
use axes defined by 〈X̂1〉 and 〈X̂2〉, effectively changing to dimensionless position and
momentum variables. The advantage of this simple rescaling is the disappearance
of the factors of ~, m and ω that otherwise appear in the definitions of phase-space
distributions.

It is also useful to generalise the quadrature operators X̂1 and X̂2 by defining
the rotated quadrature operators Ŷ φ

1 and Ŷ φ
2 :

Ŷ φ
1 ≡

âe−iφ + â†eiφ

2
(2.53a)

Ŷ φ
2 ≡

âe−iφ − â†eiφ
2i

. (2.53b)

20



CHAPTER 2. BACKGROUND THEORY

The phase-space axes described by 〈Ŷ φ
1 〉 and 〈Ŷ φ

2 〉 are the 〈X̂1〉 and 〈X̂2〉 axes, ro-
tated clockwise through an angle φ.

Lastly, we introduce the scaled position and momentum variables

ξ ≡ 〈X̂1〉 =

√

mω

2~
x (2.54a)

µ ≡ 〈X̂2〉 =
1√

2~mω
p (2.54b)

which are defined so that α = ξ + iµ.

2.2.6 The displacement operator

The displacement operator is defined as

D(α) ≡ eαâ†−α∗â (2.55)

and can be thought of as an extension to two dimensions of the familiar translation

operator e
d

dx (or e−ip̂x/~). Its usefulness arises from the fact that a coherent state
can be created by applying the displacement operator to the ground state, which
can be seen explicitly:

D(α) |0〉 = eαâ
†−α∗â|0〉

= e−
1
2
|α|2 eαâ

†
e−α

∗â|0〉

= e−
1
2
|α|2

∞
∑

n=0

αn√
n!
|n〉

= |α〉, (2.56)

where we have used Eq. (2.30) and the coherent state expansion given by Eq. (2.43),
and the Baker-Hausdorff relation [6] has been used to put D(α) into the form found
on the second line.

The displacement operator is unitary, and its inverse amounts to an equal dis-
placement in the opposite direction:

D−1(α) = D†(α)

= D(−α). (2.57)

The ladder operators are transformed by the displacement operator as

D†(α) aD(α) = â+ α (2.58a)

D†(α) a†D(α) = â† + α∗ (2.58b)
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while the product of two displacement operators is

D(β)D(α) = e
1
2
(βα∗−β∗α)D(β + α). (2.59)

The prefactor βα∗ − β∗α is purely imaginary, so forming the coherent state |β + α〉
from the ground state in one fell swoop gives the same result, up to a global phase,
as displacing the coherent state |α〉 by β. The phase may often be neglected, but
proves important in situations such as the displacement of a superposition of states.

2.2.7 The squeezing operator

The coherent states are a collection of minimum-uncertainty states where the uncer-
tainty is shared equally between the X̂1 and X̂2 quadratures. While the uncertainty
principle sets a lower bound on the product of the quadrature variances, it says
nothing about the magnitude of each individual variance. It should, therefore, be
possible to create a minimum-uncertainty state with unequal quadrature variances.
These are known as squeezed states — states in which the uncertainty in one quadra-
ture is decreased at the expense of a greater uncertainty in the other. To describe
them, we introduce the squeezing operator

S(ε) ≡ e 1
2
(ε∗â2−εâ†2) (2.60)

where ε is the squeezing parameter. The squeezing operator is unitary, and its effect
can be reversed in the same way as the displacement operator:

S−1(ε) = S†(ε)

= S(−ε). (2.61)

Action on operators

Any unitary transformation can be viewed as acting on either the operators or the
states; these alternative methods applied to, for example, the time evolution op-
erator U(t), give rise to the Heisenberg and Schrödinger pictures. In studying the
effects of the squeezing operator, we consider its action on the operators â and â†.

The squeezing operator transforms the ladder operators as

S†(ε) â S(ε) = â cosh |ε| − â†eiθ sinh |ε| (2.62a)

S†(ε) â†S(ε) = â† cosh |ε| − â e−iθ sinh |ε| (2.62b)

where we have written the squeezing parameter as ε = |ε|eiθ. The effect of this
transformation is most clearly seen if we consider the rotated quadrature operators
defined in Eq. (2.53) for an angle φ = θ/2:

Ŷ
θ/2
1 ≡ â e−iθ/2 + â† eiθ/2

2
(2.63a)

Ŷ
θ/2
2 ≡ â e−iθ/2 − â† eiθ/2

2i
(2.63b)
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which transform as

S†(ε) Ŷ
θ/2
1 S(ε) = Ŷ

θ/2
1 e−|ε| (2.64a)

S†(ε) Ŷ
θ/2
2 S(ε) = Ŷ

θ/2
2 e|ε|. (2.64b)

The variances of the transformed operators obey

[

∆
(

S†(ε) Ŷ
θ/2
1 S(ε)

)]2
=
(

∆Ŷ
θ/2
1

)2
e−2|ε| (2.65a)

[

∆
(

S†(ε) Ŷ
θ/2
2 S(ε)

)]2
=
(

∆Ŷ
θ/2
2

)2
e2|ε|; (2.65b)

the effect of the squeezing operator is to reduce the variance in one quadrature and
increase it in the other, leaving the product unchanged. The size of the decrease
is governed by the magnitude of the complex squeezing parameter ε, while the
orientation of the quadrature axes along which the reduction in variance occurs is
dictated by the phase of ε. If ε is real, the squeezing takes place along the axes of
X̂1 and X̂2.

2.3 Interaction of a two-level atom with radiation

So far we have reviewed the main points of the theory of the quantised harmonic
oscillator, which provides us with the means to describe the motional state of a
particle held in an ion trap. The other aspect of the system which requires the
development of some formalism is the description of the atom and its interaction
with the incident laser beam; explicitly, we are interested in how this interaction
affects the internal atomic state. The sheer size of this topic means that only a
brief overview of the most relevant points can be given here; for further details and
discussion the reader is referred to the exemplary text of Loudon [43].

2.3.1 The two-level atom

An atom interacting with the electromagnetic field has essentially an infinite number
of energy levels between which electrons may make transitions, and so any theoreti-
cal treatment that attempts to describe the system in its entirety will be exceedingly
complex. However, the only transitions which have an appreciable chance of occur-
ring are those linking levels whose energy difference divided by ~ is comparable
to the frequency of the incident field. This greatly reduces the complexity of the
model, for if we assume that the properties of the incident field are such that just
one atomic transition is selected for, we can ignore all atomic energy levels except
the pair involved in this transition.

This two-level approximation is extremely common when considering the inter-
action between atoms and radiation, as it simplifies the problem to the point where
it becomes analytically tractable. In addition, approximating the atom as a two-
level entity makes the system mathematically equivalent to the study of a spin-1

2
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system interacting with a time-varying magnetic field, a problem which has been
extensively studied in the discipline of nuclear magnetic resonance.

The two-level approximation is of more than academic interest, though, as real
atoms can be made to behave as essentially perfect two-level systems by the judicious
selection of experimental parameters. The precise frequency and narrow bandwidth
provided by laser sources allows both the selection of individual atomic transitions
and the suppression of transitions to neighbouring states of similar energy. The
wealth of recent results in the field of trapped ions demonstrates the impressive
control exerted over the internal dynamics of an atom by experimental groups, the
recent use of trapped ions as qubits being a prime example of the ability to reduce
an atom to just a pair of energy levels.

The Hamiltonian of an atom in the two-level approximation is

ĤA = E+|+〉〈+|+ E−|−〉〈−| (2.66)

where |±〉 denote the ground and excited states, which have energies E±. It is con-
venient to recast this Hamiltonian into a form where the energy difference between
the states appears explicitly, which can be accomplished by setting the zero-point
of energy midway betwen the levels. The Hamiltonian becomes

ĤA =
~ωA
2
σ̂z (2.67)

where ωA ≡ (E+ −E−)/~ is the atomic transition frequency and the atomic energy
operator σ̂z is given by

σ̂z = |+〉〈+| − |−〉〈−|. (2.68)

We have also used the fact that |−〉〈−|+ |+〉〈+| = 1. The ground and excited atomic
states now have energies −~ωA/2 and ~ωA/2 respectively:

ĤA|±〉 = ±
~ωA
2
|±〉. (2.69)

In order to describe transitions between the ground and excited states, we introduce
the atomic raising and lowering operators

σ̂+ ≡ |+〉〈−| σ̂− ≡ |−〉〈+|. (2.70)

These operators do exactly what their names suggest:

σ̂±|∓〉 = |±〉 (2.71a)

σ̂±|±〉 = 0 (2.71b)

where the second line is a result of the orthogonality of the energy eigenstates.
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2.3.2 Semiclassical theory

The first method of describing the interaction between an atom and the electromag-
netic field involves treating the atom quantum-mechanically and the field classically,
and is thus known as the semiclassical theory. It is possible to formally derive a
semiclassical interaction Hamiltonian from first principles, using the invariance of
the Schrödinger equation under local gauge transformations to obtain the minimal-
coupling formulation of the Hamiltonian for an electron in an electromagnetic field
[7]. While this is an enlightening treatment, it is more rigorous than is required here,
and identical results can be obtained from a simpler, physically motivated derivation.

Consider an atom in the two-level approximation interacting with an incident
electromagnetic field of frequency ωL and wavevector k. The electric field can be
written as

E(t) =
1

2

(

αe−i(ωLt−k·r) + α∗ei(ωLt−k·r)
)

ê0 (2.72)

where α is the complex field amplitude, ê0 is a unit vector denoting the polarisation
direction, and r is the position at which the electric field is being evaluated; the factor
of one-half has simply been included for later convenience. The interaction of the
atom with this field is dependent on the distortion of the atomic charge distribution
it produces; if the electric field is constant on the length scale of the atom, the
electronic distortion is characterised by the dipole distribution. This is a good
approximation at optical frequencies, where the wavelengths (∼ 10−5 m) are several
orders of magnitude larger than the typical dimensions of an atom (∼ 10−10 m). We
thus make the dipole approximation, neglecting the spatial variation of the electric
field by evaluating Eq. (2.72) at the position of the atom, denoted by rA; the electric
field is then given by

E(t) =
1

2

(

αe−iωLteik·rA + α∗eiωLte−ik·rA
)

ê0. (2.73)

From classical electrostatics, we know that the interaction energy of an electric
dipole of dipole moment d = qr in a uniform electric field E is given by

U = −d ·E.

The dipolar interaction Hamiltonian for an atom interacting with the field described
by Eq. (2.73) is thus

ĤI = −1

2

(

αe−iωLt + α∗eiωLt
)

ê0 · d̂ (2.74)

where d̂ is the atomic dipole moment operator:

d̂ = −e
Z
∑

i=1

r̂i. (2.75)
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Here e is the electronic charge, r̂i is the position operator for the ith electron, and
the summation covers all the electrons in the atom. We now take advantage of the
two-state approximation to rewrite the dipole operator as

d̂ = −e
Z
∑

i=1

∑

m,n=±

|m〉〈m|r̂i|n〉〈n|

=
∑

m,n=±

µmn|m〉〈n| (2.76)

where we have defined the atomic dipole matrix elements

µmn ≡ −e
Z
∑

i=1

〈m|r̂i|n〉.

A further simplification can be made if we note that the energy eigenstates cannot
have a permanent dipole moment. This is due to symmetry considerations: the
energy eigenstates are of either even or odd parity; no matter which, |ψ(r)|2 is
an even function, while the dipole operator is odd. The integrand |ψn(r)|2

∑

i r̂i is
therefore an odd function and its integral over all space is zero. The diagonal matrix
elements of the dipole operator vanish and we have

d̂ = µ−+|−〉〈+|+ µ+−|+〉〈−|
= µ∓ σ̂− + µ± σ̂+ (2.77)

where the atomic raising and lowering operators have been introduced through
Eq. (2.70). Returning to the interaction Hamiltonian, we can finally write

HI = −1

2

(

αe−iωLt + α∗eiωLt
)

(µ± σ̂+ + µ∓ σ̂−) (2.78)

where µmn = µmn · ê0 and the constant e±ik·rA terms have been absorbed into the
phase of α.

The Rotating-Wave Approximation

Transforming Eq. (2.78) into the interaction picture with respect to the free atomic
Hamiltonian Eq. (2.67) yields

H̃I = −|µ|
2

(

αe−iωLt + α∗eiωLt
)

(

σ̂+e
i(ωAt+θ) + σ̂−e

−i(ωAt+θ)
)

(2.79)

where we have written µ±(= µ∗∓) = |µ|eiθ. Expanding the brackets, we see two
frequencies emerge: some terms oscillate at the difference frequency ωL − ωA, while
others go as ωL + ωA. These two frequencies are vastly different: the first can be
recognised as the detuning – typically ∼ 106 Hz, but with the possibility of being as
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small as zero at exact resonance – while the second is the sum of two optical frequen-
cies and is thus ∼ 1015 Hz. On integration to find the change in a state due to this
Hamiltonian these latter terms will be expected to have a much smaller contribu-
tion, and we are justified in neglecting them. We therefore make the rotating-wave

approximation and keep only the terms proportional to e±i(ωL−ωA)t, arriving at

H̃I = −|µ|
2

(

ασ̂+ e
−i(ωL−ωA)t + α∗σ̂−e

i(ωL−ωA)t
)

. (2.80)

Absorbing θ, the phase of α, and the overall negative sign into the definitions of σ̂±,
the interaction picture Hamiltonian becomes

H̃I =
~Ω

2

(

σ̂+e
−iδt + σ̂−e

iδt
)

(2.81)

where δ = ωL − ωA is the detuning of the laser from resonance, and the Rabi
frequency has been introduced as Ω ≡ |α||µ|/~.

Rabi Oscillations

Having presented a plausible, if not entirely rigorous, derivation of the Hamiltonian
governing the dominant interaction between a two-level atom and an electromagnetic
field, we now turn to the effect of this Hamiltonian on the internal state of the atom.
Expanding the atomic state as

|ψ(t)〉 = c̃− e
iωAt/2|−〉+ c̃+ e

−iωAt/2|+〉, (2.82)

the equations of motion for the slowly-varying expansion coefficients c̃± are found
to be

˙̃c− = − iΩ
2
eiδt c̃+ (2.83a)

˙̃c+ = − iΩ
2
e−iδt c̃−. (2.83b)

For the initial condition c̃−(0) = 1, c̃+(0) = 0 these have solutions

c̃− = eiδt/2
[

cos

(

Ω′

2
t

)

− i δ
Ω′

sin

(

Ω′

2
t

)]

(2.84a)

c̃+ = −i e−iδt/2 Ω

Ω′
sin

(

Ω′

2
t

)

(2.84b)

where Ω′ ≡
√

Ω2 + δ2. The probability of finding the atom in its excited state is

P+ = |c+(t)|2 =

(

Ω

Ω′

)2
[

1− cos(Ω′t)
]

. (2.85)

We see that the atom undergoes coherent oscillations between the ground and excited
states. These are known as Rabi oscillations, and their amplitude and frequency
depend on the magnitude of the detuning δ in comparison with the coupling strength,
as measured by Ω. At exact resonance, the probability oscillates between zero and
one, while for non-zero detunings the frequency of the oscillations increases and the
maximum excitation probability is reduced.
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Eigenstates of the interaction — the dressed atomic states

The full Hamiltonian for the interaction of an atom with the electromagnetic field
is explicitly time-dependent, and thus has no eigenstates. However, the time depen-
dence can be transformed away by moving to the interaction picture, which means
that it is possible to find eigenstates of the system in the interaction picture. These
eigenstates in the case of exact resonance (δ = 0) will prove useful later, so let us
solve for them now.

We can do this by using the equivalence of the algebra of the two-level atom
with that of a spin-1

2 system to write σ̂+ + σ̂− ∼ σ̂x. The energy eigenstates of the
interacting atom are the eigenstates of the σ̂x operator — which are not the same
as the eigenstates of σ̂z (which describes the free atom) because σ̂x and σ̂z do not
commute. However, the eigenstates of σ̂x can be written as linear combinations of
the eigenstates of σ̂z, which motivates the definition of the upper and lower dressed

states of the atom as

|U〉 ≡ 1√
2

(

|+〉+ |−〉
)

(2.86a)

|L〉 ≡ 1√
2

(

|+〉 − |−〉
)

. (2.86b)

Rewriting the interaction term shows explicitly that the interaction is diagonal in
the dressed state basis:

σ̂+ + σ̂− = |+〉〈−|+ |−〉〈+|
= |U〉〈U | − |L〉〈L|; (2.87)

the interaction Hamiltonian Eq. (2.81) for δ = 0 can thus be written as

H̃I =
~Ω

2

(

|U〉〈U | − |L〉〈L|
)

. (2.88)

2.3.3 Quantum theory

The semiclassical theory outlined above is both simple and successful. The assump-
tion of a classical field is valid in many situations, and provides an understanding
of the key elements of the interaction of an atom with the electromagnetic field.
However, there are several aspects of the atom-field interaction which can only be
understood if the electromagnetic field is treated quantum-mechanically, and so it
is in this direction that we now turn.

The quantisation of the electromagnetic field is covered in detail in many text-
books [8]; to reproduce it here would take us too far afield, and so we simply sketch
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the main results. The electric and magnetic field operators are expanded as

Ê(r, t) =
∑

k

êk

√

~ωk

2ε0V

(

âk e
ik·r + â†

k
e−ik·r

)

(2.89a)

B̂(r, t) =
∑

k

(k× êk)

√

~

2ε0V ωk

(

âk e
ik·r + â†

k
e−ik·r

)

. (2.89b)

Here the summation is assumed to run over the polarisation (described by the polar-
isation unit vector êk) as well as the wavevector index, and a mode with wavevector
k has frequency ωk. Each mode has photon annihilation and creation operators âk
and â†

k
, which obey the commutation relation

[âk, â
†
k′ ] = δk,k′ . (2.90)

Upon quantisation, the classical Hamiltonian describing the energy in an electro-
magnetic field

H =

∫

d3r
[ε0

2
E2(r, t) +

µ0

2
H2(r, t)

]

(2.91)

assumes the form

Ĥ = ~

∑

k

ωk(â†
k
âk + 1

2) (2.92)

and we see that each individual mode of the field behaves as a harmonic oscillator
with frequency ωk.

The Jaynes-Cummings model

The Jaynes-Cummings model describes the interaction between a two-level atom
and a single near-resonant mode of the quantised electromagnetic field. First pre-
sented in 1963, it has remained important in the field of quantum optics as it is fully
soluble and provides a simple, yet experimentally realisable model to which several
other systems are analogous or can be simplified. A comprehensive review of the
Jaynes-Cummings model and its properties is given in Ref. [57].

The Hamiltonian of the system is composed of three pieces:

Ĥ = ĤA + ĤF + ĤI . (2.93)

Here ĤA = ~ωA σ̂z/2 is the Hamiltonian for the free atom, ĤF is the Hamiltonian
for the free field, and ĤI is the term describing the atom-field interaction. The
Hamiltonian for the free field follows from the restriction of Eq. (2.92) to a single
mode:

ĤF = ~ω(â†â+ 1
2). (2.94)
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Turning to the interaction term, let us again consider the dipolar interaction Hamil-
tonian:

ĤI = −d̂ · Ê, (2.95)

where d̂ is the dipole operator for the atom in the two-level approximation, as
described by Eq. (2.77) and the electric field operator is given by

Ê(r, t) =

√

~ω

2ε0V

(

â eik·r + â†e−ik·r
)

ê0. (2.96)

This is very similar to the expression for the single-mode classical electric field given
by Eq. (2.73), with the mode operators â and â† replacing the classical field ampli-
tudes α and α∗. Although the electric field operator is not time dependent at this
point, it will gain the expected oscillatory time dependence upon transformation
into the interaction picture.

We again make the dipole approximation, evaluating the electric field at the
position of the atom (denoted by r0). The interaction Hamiltonian is therefore
given by

ĤI = −
√

~ω

2ε0V

(

âeik·r0 + â†e−ik·r0

)

(µ∓σ̂− + µ±σ̂+). (2.97)

This expression contains terms of the form â(†)σ̂±. Of these, âσ̂+ can be interpreted
as the absorption of a photon by the atom: a photon is removed from the field and
the raising operator is applied to the atom. Similarly, â†σ̂− represents emission of a
photon with simultaneous de-excitation of the atom. The remaining terms âσ̂− and
â†σ̂+ correspond to de-excitation of the atom with the destruction of a photon, and
excitation of the atom with the emission of a photon respectively. Unlike the first
two, the second two processes do not conserve energy, and thus we are justified in
neglecting them to first order.

This amounts to making the rotating-wave approximation, which can be seen by
converting the Hamiltonian into the interaction picture. Once again the sum and
difference of the field and atomic frequencies appear, with the rapid oscillations at
the sum frequency being attached to the energy-nonconserving terms â σ̂− and â†σ̂+.

Having made the dipole and rotating-wave approximations, we obtain the Jaynes-
Cummings Hamiltonian:

Ĥ = ~ω(â†â+ 1
2) +

~ωA
2
σ̂z + ~g (âσ̂+ + â†σ̂−) (2.98)

where the coupling constant g is defined as

g ≡ |µ|
√

ω

2ε0V ~
. (2.99)

Note that g is real, its phase having been absorbed into the operators σ̂±.
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Dressed states of the JCM

The eigenstates of the free system described by the Hamiltonian ĤA + ĤF are the
states |n〉|±〉. However, these are not eigenstates of the full Hamiltonian given by
Eq. (2.98), as can be seen explicitly:

Ĥ|n〉|+〉 =
(

~ω(n+ 1
2) +

~ωA
2

)

|n〉|+〉+ ~g
√
n+ 1 |n+ 1〉|−〉 (2.100a)

Ĥ|n〉|−〉 =
(

~ω(n+ 1
2)− ~ωA

2

)

|n〉|−〉+ ~g
√
n |n− 1〉|+〉; (2.100b)

the terms â σ̂+ and â† σ̂− couple the states |n〉|+〉 and |n+1〉|−〉. The only exception
to this pairing is the state |0〉|−〉, which has energy −~ωA/2 and is the ground state
of both the free and the interacting system.

Equations (2.100) suggest that the excited states of the interacting system are
linear combinations of |n〉|+〉 and |n + 1〉|−〉. They can be found by solving the
eigenvalue equation

Ĥ|En〉 = En|En〉 (2.101)

where

|En〉 = an|n〉|+〉+ bn|n+ 1〉|−〉. (2.102)

Taking for simplicity the case of exact resonance (ω = ωA), we find the dressed states
of the system to be

|Un〉 =
1√
2

(

|n〉|+〉+ |n+ 1〉|−〉
)

(2.103a)

|Ln〉 =
1√
2

(

|n〉|+〉 − |n+ 1〉|−〉
)

(2.103b)

with energies

EUn = ~ω(n+ 1
2) + ~g

√
n+ 1 (2.104a)

ELn = ~ω(n+ 1
2)− ~g

√
n+ 1. (2.104b)

In contrast to the eigenstates of the non-interacting system |n〉|±〉, the dressed states
described by Eq. (2.103) cannot be factorised into an atomic state multiplied by a
field state. In the presence of an interaction, neither the atom nor the field possess
energy eigenstates individually; the eigenstates belong to the coupled atom-field
system.
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Collapse and Revival Phenomena

Having developed a quantum-mechanical model of the atom-field interaction, it is
time to investigate the behaviour of a system governed by it. We expect the dynam-
ics to be richer than those of the semiclassical situation, since quantising the field
has provided us with an extra degree of freedom: in addition to the atomic state,
we can now select different states in which to prepare the field. We will see that the
choice of different field states results in quite different predictions for the internal
dynamics of the atom.

We assume that the atom is prepared in the ground state, and write the initial
state of the system as

|ψ〉 = c0|0〉|−〉+
∞
∑

n=0

dn|n+ 1〉|−〉. (2.105)

The time evolution of |ψ〉 can be found by rewriting |n+ 1〉|−〉 in terms of |Un〉 and
|Ln〉, which evolve trivally. We find that at some later time t, the state is given by

|ψ(t)〉 = c0|0〉|−〉+
∞
∑

n=0

dne
−iωt(n+1)

[

cos(κnt)|n+ 1〉|−〉 − i sin(κnt)|n〉|+〉
]

,

(2.106)

where κn ≡ g
√
n+ 1. If the field is prepared in the number state |m〉, the atomic

excitation probability is

P+(t) =
1

2

[

1− cos(2g
√
mt)

]

(2.107)

which shows the expected Rabi oscillations at a frequency Ω = 2g
√
m.

Let us instead consider a field prepared in a coherent state of amplitude α0. The
expansion coefficients dn are then given by Eq. (2.43), and we find for the excitation
probability

P+(t) =
e−|α0|2

2

∞
∑

m=0

|α0|2m
m!

[

1− cos(2g
√
mt)

]

(2.108)

The probability of finding the atom in the excited state is given by the sum of many
oscillations at different frequencies. For short times, the individual oscillations inter-
fere constructively and the excitation probability shows Rabi oscillations. As time
passes, the individual oscillations begin to dephase, the Rabi oscillations ‘wash out’
and the excitation probability stabilises at some approximately steady-state value
(0.5 for the resonant case).
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Figure 2.5: The behaviour of the atomic excitation probability in the Jaynes-
Cummings model (Eq. (2.108)) for an initial coherent state of ampli-
tude α0 = 5.

Up to this point, we have gained no information through quantising the field;
the same predictions can be made from the semiclassical model by noting that a
coherent state has some uncertainty in the electric field amplitude. For a classical
field this is effected by replacing the electric field amplitude by a statistical dis-
tribution with mean α0. Averaging over the resultant Rabi oscillations shows that
the atomic excitation probability undergoes a similar collapse to a steady-state value.

What happens next, however, is a unique prediction of the Jaynes-Cummings
model. The quantisation of the field means that the excitation probability Eq. (2.108)
is not the average over a distribution of continuously-varying frequencies, but a sum
over a range of discrete frequencies. After some sufficiently long time, the individual
terms rephase and oscillations reappear in the excitation probability – the atomic
excitation undergoes a revival. While the collapse can be understood using a classi-
cal field, the revival is due to the existence of discrete energy levels of the field and
so is a purely quantum phenomenon.

2.3.4 The anharmonic oscillator

Though the Jaynes-Cummings model provides the best-known example of collapse
and revival behaviour, it is not the only system which contains this feature. Collapses
and revivals also occur in the anharmonic oscillator, albeit in a slightly different form.

The anharmonic oscillator has Hamiltonian

Ĥ = Ĥ0 +
g

~ω
Ĥ2

0 (2.109)
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where Ĥ0 = ~ω â†â is the free Hamiltonian for a harmonic oscillator. Among other
things, this Hamiltonian can be used to describe the transmission of an optical field
state through an amplitude-dispersive medium [32, 72]. If we expand the state vector
|ψ〉 as

|ψ〉 =
∑

n

cn|n〉, (2.110)

we find that the state at some later time t is given by

|ψ(t)〉 = e−igt(â
†â)2

∑

n

cn|n〉

=
∑

n

cn(t)|n〉 (2.111)

where cn(t) = cn e
−igtn2

. The expansion coefficients are therefore periodic with a
period of t = 2π/(gn2).

This periodic evolution of the expansion coefficients is what gives rise to the
collapse and revival behaviour in the model. Since n2 is always an integer, each ex-
pansion cofficient returns to its original value cn whenever gt = 2kπ (k = 0, 1, 2 . . .),
and so the entire state vector is periodic with period 2π/g.

The key point of difference between the collapse and revival behaiour of the
anharmonic oscillator and the Jaynes-Cummings model is the extent to which the
original state is reproduced. Equation (2.106) shows that the oscillation frequencies
appearing in the Jaynes-Cummings model are irrational and thus incommensurate.
This means that the individual oscillations do not exactly rephase, a fact which is
reflected in the decay of the amplitude and quality of the revivals seen in Fig. 2.5.
In contrast, the oscillation frequencies appearing in Eq. (2.111) are rational; the co-
efficients thus rephase perfectly, and the state continues to recur completely forever.

2.4 Phase-space distributions

The typical method of visualising the state of a classical dynamical system is through
the use of phase-space. In this formalism, the state of the system is represented by
a point (or more generally, a probability distribution) that lives in a space spanned
by canonical coordinate and momentum axes. As the system evolves in time, the
distribution moves through the phase-space along a trajectory governed by the sys-
tem Hamiltonian.

A natural question to ask is whether a similar formalism can be used to describe
the state of a quantum mechanical system. The answer turns out to be yes, with one
important caveat. The central object in the phase space representation of a classical
system is a probability distribution in the canonical coordinate and momentum. In
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quantum mechanics, however, these observables are represented by non-commuting
operators, and so we may have a probability distribution for the coordinate, or for
the momentum, but never for the two at once. The phase-space representations that
have been developed for quantum systems are therefore commonly known as pseudo-
or quasi -probability distributions. Although they act similarly to true probability
distributions in many respects, in some cases they may take on negative values or
become highly singular.

2.4.1 The Q function

The Q function can be defined as the Fourier transform of the antinormally-ordered
characteristic function:

Q(α, α∗) ≡ 1

π2

∫ ∞

−∞
d2z χA(z, z∗) e−iz

∗α∗
e−izα, (2.112)

where χA(z, z∗) is defined as

χA(z, z∗) = tr
(

ρ̂ eizâeaz
∗â†
)

. (2.113)

It is proportional to the coherent state diagonal matrix element of the density op-
erator ρ̂ :

Q(α, α∗) =
1

π
〈α|ρ̂|α〉. (2.114)

The Q function is positive definite and normalised such that
∫ ∞

−∞
d2αQ(α, α∗) = 1. (2.115)

Integrating the Q function against powers of the phase-space variables α and α∗

gives the average of the same powers of the operators â and â†, with the operators
written in antinormal order (â to the left of â†):

∫ ∞

−∞
d2ααmα∗nQ(α, α∗) = tr

(

ρ̂ âmâ†n
)

. (2.116)

where ρ̂ is the density operator for the system.

Number state

The Q function for a number state can be found by using the expansion given by
Eq. (2.43):

Q|n〉(α, α
∗) =

1

π
|〈α|n〉|2

=
1

πn!
|α|2ne−|α|2 . (2.117)

This function is radially symmetric with a peak at |α| = √n, reflecting the precisely
defined amplitude and completely indeterminate phase of a number state. Figure
2.6 shows the Q function for the number state |n = 2〉.
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Coherent state

The Q function for a coherent state |α0〉 follows easily from the overlap between
coherent states (Eq. (2.45)):

Q|α0〉(α, α
∗) =

1

π
|〈α|α0〉|2

=
1

π
e−(ξ−ξ0)2e−(µ−µ0)2 , (2.118)

where ξ(0) and µ(0) are the real and imaginary parts of α(0). The Q function for a
coherent state is a two-dimensional Gaussian centred at (ξ0, µ0); the unit variance
in each direction reflects the equal uncertainties in the X̂1 and X̂2 quadratures.

2.4.2 The Wigner function

The Wigner function can be defined as the Fourier transform of the symmetrically-
ordered characteristic function:

W (α, α∗) ≡ 1

π2

∫ ∞

−∞
d2z χS(z, z∗) e−iz

∗α∗
e−izα, (2.119)

where χS(z, z∗) is defined as

χS(z, z∗) = tr
[

ρ̂ ei(zâ+z
∗â†)
]

. (2.120)

Integrating the Wigner function against powers of the phase-space variables α and
α∗ gives the average of all possible combinations of the same powers of the operators
â and â†, for example

∫ ∞

−∞
d2ααα∗W (α, α∗) =

1

2

[

〈â†â〉+ 〈ââ†〉
]

(2.121a)

∫ ∞

−∞
d2αα2α∗W (α, α∗) =

1

3

[

〈â†â2〉+ 〈ââ†â〉+ 〈â2â†〉
]

. (2.121b)

An alternative definition of the Wigner function involves the Fourier transform of
shifted position-space wavefunctions [9]:

W (x, p) ≡ 1

2π~

∫ ∞

−∞
dy 〈x+ y/2|ρ̂|x− y/2〉 e−ipy/~ (2.122)

where x and p are the standard position and momentum variables.

Number state

The Wigner function for a number state is

W|n〉(ξ, µ) =
2

π
(−1)ne−2(ξ2+µ2)Ln

(

4(µ2 + ξ2)
)

(2.123)

where Ln(x) is a Laguerre polynomial. Like the Q function, the Wigner function
for a number state is symmetric with respect to phase. The Wigner function for
a number state is negative in places (see Fig. 2.6), which reflects the fact that a
number state is not a classical state.
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Figure 2.6: A comparison of the Q (left) and Wigner (right) functions for the
number state |n = 2〉.
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Figure 2.7: A comparison of the Q (left) and Wigner (right) functions for the
coherent state |α0 = 2 + i〉.

Coherent state

The Wigner function for a coherent state is

W|α0〉(ξ, µ) =
2

π
e−2(ξ−ξ0)2e−2(µ−µ0)2 . (2.124)

This describes a two-dimensional Gaussian centred at (ξ0, µ0), similar to the Q
function for a coherent state. However, the Wigner function is narrower than the Q
function – the variance in each direction is smaller by a factor of two.

This difference in variance is related to the structure of the antinormally- and
symmetrically-ordered characteristic functions. If the â and â† operators in one of
the functions are reordered such that a direct comparison can be made, it becomes
clear that χA is narrower than χS , and so has a broader Fourier transform.

The Q and Wigner functions are also related by the fact that the Q function for a
given state can be obtained by taking the convolution of the relevant Wigner function
with a Gaussian. The Q function for a coherent state is therefore broader and shorter
than the corresponding Wigner function, as can be seen from the comparison in
Fig. 2.7.
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Chapter 3

A Numerical Investigation of

the System Dynamics

Having laid in place the theoretical background associated with each of its individual
components, we are now in a position to begin our analysis of the system at hand.
The first section of this chapter introduces the formalism used to describe the system
and discusses the validity of the approximations made, while the second outlines the
behaviour of various quantities of interest obtained from the numerical solution of
the system.

3.1 System outline

Illustrated in Fig. 3.1, the system consists of a harmonically trapped atom1 inter-
acting with a resonant standing-wave electromagnetic field. We treat the electro-
magnetic field classically, the motion of the atom quantum mechanically, and the
internal state of the atom as a two-level system.

3.1.1 State description

The state vector of the system can be written as

|ψ(t)〉 = |φ+(t)〉|+〉+ |φ−(t)〉|−〉 (3.1)

where |φ±(t)〉 describe the centre-of-mass of the atom and |±〉 are the atomic energy
eigenstates.2 The centre-of-mass wavepackets can be expanded in the number-state

1While the net charge of the trapped particle will dictate exactly how the trapping is imple-
mented, it has no bearing on the results obtained; ‘atom’ should thus be interpreted as being
synonymous with ‘ion’ for the remainder of this thesis.

2Since the motional and internal states belong to different Hilbert spaces, to be entirely correct
we should write |ψ(t)〉 = |φ+(t)〉 ⊗ |+〉+ |φ−(t)〉 ⊗ |−〉, where ⊗ denotes the tensor product. In the
same manner, that the operators only act on that piece of the state in the Hilbert space to which
they belong could be made explicit by writing, for example, â† = â† ⊗ 1̂A, where 1̂A is the identity
operator for the internal state of the atom. As physicists, however, we are allowed to be less than
rigorous at times, and we shall leave such pedantry behind the scenes.
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~ωT
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Harmonic trap

Two-level atom

Standing-wave laser

E(x, t) = E0 cos(ωLt) cos(kx)

Vtrap = 1
2
mω2

T x
2

Figure 3.1: The system studied in this thesis.

basis as

|φ±(t)〉 =
∑

n

c±n (t) |n〉. (3.2)

3.1.2 System Hamiltonian

The Hamiltonian of the system can be written as

Ĥ = ĤT + ĤA +HF + ĤI (3.3)

where ĤT and ĤA describe the motional and internal states, respectively, of the
trapped atom, HF describes the free electromagnetic field, and ĤI describes the
atom-field interaction.

The centre-of-mass motion of the atom.

The atom is assumed to be confined to move in one dimension only, with coor-
dinate x. Since the confining potential of an ion trap is well approximated by a
quadratic potential (see §2.1), the Hamiltonian for the atomic motion is that of a
quantised harmonic oscillator, as discussed in §2.2.2:

ĤT = ~ωT (â†â+ 1
2). (3.4)

Here ωT is the trap frequency, and â (â†) is a phonon annihilation (creation) operator
which acts to lower (raise) the motional state of the centre-of-mass of the atom.
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The internal state of the atom.

The atom is treated as a two-level system and spontaneous emission is neglected.
Making these approximations, the Hamiltonian describing the internal state of the
atom is given by

ĤA =
~ωA
2
σ̂z (3.5)

where ωA is the atomic transition frequency, and σ̂z is the atomic energy operator
in the two-level approximation.

The free electromagnetic field.

Treating the electromagnetic field classically means its Hamiltonian is a classical
function which commutes with all other pieces of the system Hamiltonian. It can
therefore be ignored, as the only effect it has on the system dynamics is to multiply
the states by a (fundamentally unobservable) global phase.

The atom-field interaction.

The atom-field interaction is described by a semiclassical interaction Hamiltonian,
which may be obtained by following a similar procedure to that outlined in §2.3.2.
The sole point of difference is the inclusion of an additional factor of cos kx̂, which
accounts for the standing-wave configuration of the electromagnetic field. Note that
the choice of a cosine corresponds to aligning the centre of the harmonic trap with
an antinode of the standing wave, an assumption which will be lifted in Chapter 5.
We find

ĤI =
~Ω

2

(

σ̂+ e
−iωLt + σ̂− e

iωLt
)

cos kx̂, (3.6)

where ωL and k = ωL/c are the frequency and wavenumber of the electromagnetic
field.

We have obtained the Hamiltonian for our system, but there remains one further
simplification which must be made before we set about analysing it. The cosine of
an operator is not a pleasant thing to work with, and we will not get very far in
our investigation of the Hamiltonian if this term is allowed to remain in its present
form. We thus replace the cosine by its Taylor expansion:

cos kx̂ = 1− (kx̂)2

2
+

(kx̂)4

24
− . . .

= 1− η2
LD

2
(â+ â†)2 +

η4
LD

24
(â+ â†)4 − . . . . (3.7)

where in the second line we have introduced the Lamb-Dicke parameter :

ηLD ≡ k
√

~

2mωT
= 2π

x0

λ
. (3.8)
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Here x0 ≡
(

〈0|x̂2|0〉
)1/2

=
√

~/2mωT is the spread of the ground-state wavefunction
of the atomic centre-of-mass. The Lamb-Dicke parameter measures the ratio of this
spread to the wavelength of the incident laser, providing a quantitative measure of
how tightly the particle is trapped.

Of particular interest to the field of trapped ions is the strong trapping limit,
where the ion is confined to an area which is small in comparison with the wave-
length of the exciting radiation. This corresponds to ηLD ≪ 1, a regime known as
the Lamb-Dicke limit.

The reason for the importance of this limit is essentially twofold. Experimentally,
we find that it is only in the strong trapping regime that the Doppler-induced side-
bands present in the absorption spectrum of the trapped ion are sufficiently clearly
resolved to allow sideband cooling on a dipole transition [10]. From a theoretical
point of view, the system Hamiltonian of a trapped ion interacting with a laser in-
variably contains some sort of power series in ηLD, the truncation of which at low
order simplifies things greatly.

Returning to the Hamiltonian, we take the Lamb-Dicke limit and neglect terms
of order η4

LD and higher. We arrive at

Ĥ = ~ωT (â†â+ 1
2) +

~ωA
2
σ̂z +

~Ω

2

(

σ̂+ e
−iωLt + σ̂− e

iωLt
)

[

1− χ(â+ â†)2
]

(3.9)

where, for the sake of notational simplicity, we have defined

χ ≡ η2
LD/2. (3.10)

This is the Hamiltonian which we shall use to investigate the system illustrated in
Fig. 3.1.

3.1.3 Validity of approximations

Before we continue, it is worthwhile reviewing and commenting on the validity of
the approximations that have been made in obtaining the Hamiltonian appearing in
Eq. (3.9).

The centre-of-mass motion of the atom.

A classical treatment of the atomic motion would require that the energy associ-
ated with the motion be large in comparison with the spacing of the energy levels of
the trap: a condition only fulfilled when the atom is high in the trapping potential.
Treating the atomic motion quantum-mechanically lifts this restriction, extending
the scope of the model to include occupation of the very lowest states of the trap.
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On the other hand, the expansion of the cosine is only valid when the argument
is small – that is, kx̂ ≪ 1. Assuming a coherent state of real amplitude α0, this
corresponds to

χα2
0 ≪ 0.25 (3.11)

which gives some idea of how highly the motional state of the atom may be excited
before the cosine approximation becomes a poor one.

Illustrations of system dynamics in this chapter are typically shown for two cases.
One of these has a comparatively large value of χα2

0 (= 0.16) which means that the
Lamb-Dicke approximation is not strictly justified. Nevertheless, it is interesting to
observe this case, as the features appearing in the dynamics are more clearly visible.
The second case typically has χα2 = 0.04, and is in a regime where the Lamb-Dicke
approximation is justified. These plots are intended to show that the features are
still present in the dynamics, although they may be more difficult to observe.

Numeric solutions of the system in the absence of the Lamb-Dicke approximation
are presented in Chapter 5, which also includes a discussion of the size of the errors
introduced by the approximation.

The internal dynamics of the atom.

Our treatment of the internal dynamics of the atom contains two key assumptions:
that the atom may be represented by a two-level system and that spontaneous emis-
sion by the atom can be neglected.

In contrast with the Lamb-Dicke approximation, which limits the range of ap-
plicability of the results, or the dipole and rotating-wave approximations, which are
justified simply by virtue of the fact that we treat an optical frequency transition,
the validity of these approximations depends heavily on our ability to engineer the
corresponding experimental situation – namely, an effectively two-state system with
a negligible spontaneous emission rate.

As it would happen, the ability to prepare systems with these characteristics has
steadily approached perfection over the past decade [41, 52], primarily because these
are the exact conditions required for experiments concerned with the trapped-ion
implementation of quantum information processing [28, 58]. The binary nature of a
qubit mandates the use of a two-level system, while the ability to perform a useful
number of bit operations before decoherence becomes a problem requires that the
time between spontaneous emission events be far longer than the time scale charac-
terising the coherent dynamics of the ion [11].

Impressive experimental achievements in this area indicate that the prepara-
tion of such systems is sufficiently common that our approximations are justifiable.
While the exact method by which the requisite conditions are attained depends on
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the details of the experiment, the basic premises are simple enough to mention here.
An atom can be made to behave as a two-level system by choosing the properties
of the incident light such that all transitions except the desired one are sufficiently
detuned or forbidden that they may be neglected, while the suppression of sponta-
neous emission is most commonly achieved in one of two ways, which are outlined
briefly in §3.1.4.

The atom-field interaction.

In the course of deriving the semiclassical atom-field interaction Hamiltonian, the
dipole and rotating-wave approximations were made. Though the use of these ap-
proximations is both common and well established in the field of quantum optics, it
is worth confirming their validity in the case at hand.

The dipole approximation assumes that the incident electromagnetic field is of
sufficiently long wavelength that its magnitude does not vary appreciably over the
width of the atom.3 In the current system, the incident field is assumed to be in the
optical region (λ ∼ 10−6 m), while the size of the trapped atom is characterised by
the Bohr radius (∼ 5 × 10−11 m). Even allowing for some variation in the species
of atom and transition frequency used, these length scales differ by 3 – 5 orders of
magnitude, making it clear that the dipole approximation is justified.

When the rotating-wave approximation (RWA) was made, the terms oscillating
at the sum frequency ωA+ωL were discarded on the basis that their contribution upon
integration would be negligible. While this captures the essence of the justification
for the RWA, the more accurate criterion for discarding these terms is that the
frequency at which they oscillate is large in comparison with all other frequencies

appearing in the system. In the current system, the terms with which ωL+ωA must
be compared are the laser detuning (typically ∼ MHz), the Rabi frequency (10 kHz
– 50 MHz), and the trap frequency (1 – 50 MHz). Noting that these terms are all
at least seven orders of magnitude below the optical frequency range (∼ 1014 Hz) to
which ωL and ωA belong confirms that the RWA is valid for the system at hand.

3.1.4 Experimental realisation

Lest we be accused of having our heads in the theoretical clouds, let us briefly out-
line a possible experimental realisation of this model.

A single ion held in a Paul trap (either linear or 3D) is the simplest realisation
of the harmonically trapped atom. The one-dimensional model outlined here could
be implemented by ‘freezing out’ the motion in the other two dimensions by making
the trapping potential strongly asymmetric and cooling the ion to the ground state
of the oscillator, while the standing-wave potential could be provided by a single

3Note that this is different from the Lamb-Dicke approximation, which deals with the amplitude
of oscillation of the atom, not the size of the atom itself.
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retro-reflected laser beam.

The choice of which atomic levels to use for the ‘excited’ and ‘ground’ states is
limited somewhat by the requirement that spontaneous emission be negligible (that
it take place on a much longer time scale than the internal and motional dynamics
of the atom). This effectively rules out the use of an excited state possessing a
dipole-allowed transition, leaving us with two ways of implementing the required
two-level system:

a) Use a Raman transition to link two stable states (for example, two magnetic
sublevels). Although an extra laser is required, this method has the advantage
of being able to use states with extremely long lifetimes.

b) Use levels linked by a dipole-forbidden transition. Many quadrupole transi-
tions have lifetimes of the order of seconds, easily long enough to observe the
atom dynamics taking place on the µs – ms time scale.

Both of these methods have been used to implement qubits with trapped ions; for
examples see Refs. [45] and [55] respectively.

It is worth noting that we may also borrow from experiments involving qubits an
efficient technique for ascertaining the internal state of the atom. This assumes the
existence of a dipole-allowed transition linking one of the two states (say |−〉) with
a third state (call it |aux〉). The atomic state readout is accomplished by irradiating
the atom with a laser tuned to the |−〉 → |aux〉 transition frequency. Observation
of a clear fluorescence signal (which could be & 106 counts s−1) indicates that the
atom was initially in |−〉, while a lack of fluorescence indicates that the atom was
initially in |+〉. This is known as the ‘electron shelving’ technique [18, 47], and due
to its high efficiency (≥ 90%), has become the standard method of state detection
in trapped ion experiments [64].

3.2 Numerical solutions

We begin our investigation of the system with a numeric simulation. Our starting
point is the Schrödinger equation:

d|ψ(t)〉
dt

=
1

i~
Ĥ |ψ(t)〉 (3.12)

where the state |ψ(t)〉 and the Hamiltonian Ĥ are given by Eq. (3.1) and Eq. (3.9) re-
spectively. In order to remove the rapid evolution produced by the free Hamiltonian,
we transform into the interaction picture by defining the state

|ψ(t)〉I ≡ eiĤ0t/~ |ψ(t)〉 (3.13)
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where Ĥ0 = ĤT + ĤA. The time evolution of |ψ(t)〉I is given by the interaction-
picture Schrödinger equation

d|ψ(t)〉I
dt

=
1

i~
H̃I(t) |ψ(t)〉I (3.14)

where

H̃I ≡ eiĤ0t/~ĤI e
−iĤ0t/~. (3.15)

Carrying out these transformations, we find

|ψ±(t)〉I =
∑

n

c̃+n (t) |n〉|+〉+ c̃−n (t)|n〉|−〉 (3.16)

and

H̃I =
~Ω

2

(

σ̂+e
−i∆t + σ̂−e

i∆t
)

[

1− χ
(

âe−iωT t + â†eiωT t
)2
]

, (3.17)

where to describe the state we have introduced the slowly-varying expansion coeffi-
cients

c̃±n (t) ≡ c±n (t) ei[ωT (n+ 1
2
)±ωA/2]t (3.18)

and ∆ ≡ ωL − ωA is the detuning of the laser from resonance with the atomic tran-
sition frequency. For the remainder of the thesis we will assume the laser is tuned
to exact resonance.

Equations of motion for the expansion coefficients c̃±n follow from Eq. (3.14) and
the orthogonality of the basis states. We find

dc̃±n
dt

=
iΩ

2

{

ei2ωT t
√

n(n− 1)χ c̃∓n−2 − [1− (2n+ 1)χ] c̃∓n

+e−i2ωT t
√

(n+ 1)(n+ 2)χ c̃∓n+2

}

. (3.19)

As seen earlier, the choice of atomic basis states means that the equations of motion
for c̃± are coupled together. If necessary, they could be decoupled by constructing
suitable linear combinations of c̃+ and c̃−, effectively moving to the dressed-state
basis discussed in §2.3.2.

As is often the case, the numeric solution of these equations is facilitated by
recasting them into dimensionless units. To this end, we work with the scaled time
τ ≡ ωT t; the parameters that govern the atom-field interaction are then χ and the
ratio Ω/ωT . It is the dependence of the system dynamics on these two parameters
that we wish to investigate.
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We select as an initial state a coherent motional state of amplitude α0, with the
atom in the ground state, i.e.

c−n (0) = e−
1
2
|α0|2 α

n
0√
n!

(3.20a)

c+n (0) = 0. (3.20b)

Details of the numerical solution of the system and relevant sections of computer
code are presented in Appendix E.

3.2.1 Complex amplitude of the oscillator

In order to analyse the effect of the atom-field interaction it is convenient to re-
move the free evolution of the oscillator by working in a rotating coordinate system.
This is accomplished by evaluating the expectation value of the Schrödinger-picture
operator â with respect to the interaction-picture states |ψ(t)〉I . We find

〈â〉I(t) = I〈ψ(t)| â|ψ(t)〉I
=
∑

n=0

√
n+ 1

[

(c̃+n+1)
∗c̃+n + (c̃−n+1)

∗c̃−n
]

(3.21)

where the second line follows on substitution of the state expansion given by Eq. (3.16).
Figure 3.2 shows the motion of 〈â〉 on the phase plane for various values of the system
parameters.

Starting from α0, 〈â〉I oscillates from one side of the phase plane to the other,
tracing out a series of bounces as it goes. The bounces have frequency

ωbounce ≃ 2

and an amplitude proportional to χΩ/ωT . The excursions across the phase plane
have frequency

ωrev ≃
χΩ

ωT

and precess anticlockwise around the origin, so that the extrema of the trajectory
move around the circumference of a circle of radius |α0|. The frequency of this
precession is

ωprec ≃
χ2Ω2

2ω2
T

.

The origin of these frequencies will become clear when the Hamiltonian is analyti-
cally diagonalised in Chapter 4, but we can make here some preliminary comments
on their form. Consider transforming the Hamiltonian Eq. (3.9) into the interac-
tion picture and neglecting the terms in â2 and â†2; the interaction then contains
only a term in â†â and a constant. If we use the atomic dressed states to write
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Figure 3.2: The motion of 〈â〉 on the phase plane for two choices of parameters;
note the difference in y-axis scales between the two figures. The initial
coherent state was |α0 = 2〉 in each case.
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the interaction in a diagonal form, the term in â†â combines with the free oscillator
term and modifies the oscillation frequency by an amount ±χΩ, dependent on the
internal state of the atom. The combination of the two pieces of 〈â〉 (which move
in opposite directions in the rotating frame) gives rise to the back-and-forth motion
of 〈â〉 on the phase plane. The precession frequency, however, cannot be explained
by this simple approach, which suggests that the precession of 〈â〉 is linked to the
quadratic terms in â and â†.

3.2.2 Average phonon number

The average occupation level of the trap is given by the expectation value of the
number operator:

〈â†â〉 = 〈ψ(t)|â†â|ψ(t)〉
=
∑

n

n
(

|c+n |2 + |c−n |2
)

. (3.22)

Figure 3.3 shows examples of the behaviour of 〈â†â〉 over time. We see that
the effect of the atom-field interaction is to introduce a periodic variation in the
mean phonon number about the expected value of |α0|2. The variation consists of
a high-frequency oscillation modulated by a low-frequency envelope, the magnitude
of which is proportional to χΩ/ωT . The high-frequency oscillations have frequency
2, while the envelope has frequency 2χΩ/ωT .

The variation in the average phonon number cannot be explained by the simple
interpretation of the Hamiltonian used above. This suggests that, like the precession
of 〈â〉, it is caused by the quadratic terms in â and â†.

3.2.3 Atomic excitation probability

The probability of finding the atom in the excited state is given by the expectation
value of the operator σ̂+σ̂−:

〈σ̂+σ̂−〉 = 〈ψ(t)|σ̂+σ̂−|ψ(t)〉
=
∑

n

|c+n |2. (3.23)

This is equal to the norm of |φ+(t)〉. As a consequence of the coupling of the atomic
states by the interaction Hamiltonian, the norm of each motional state does not
remain constant in time, but rather gives the probability of finding the atom in the
corresponding internal state;

〈φ±(t)|φ±(t)〉 =
∑

n

|c±n (t)|2 = P±(t).
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Figure 3.3: The average phonon number vs. time for two values of χ, for an initial
coherent state of amplitude α0 = 2. The frequency and amplitude
of the oscillations about the expected value of |α0|2 = 4 increase
significantly when χ is increased.
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Figure 3.4: The probability of finding the atom in the excited state as a function
of the dimensionless time τ . As χ is increased, the revivals become
more frequent and more abrupt.
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As illustrated by the plots in Figure 3.4, the atomic excitation probability shows
collapse and revival behaviour. The revivals are complete, and recur periodically
with frequency

ωrev ≃
χΩ

ωT
;

each revival coincides with the arrival of 〈â〉 at an extremum of its trajectory. In
the limit χ→ 0 (for finite Ω/ωT ) the time between revivals becomes infinite and the
behaviour of the excitation probability reduces to the usual Rabi cycling.

3.2.4 Motional state Q function

Constructing the Q function for the motional state gives a better understanding of
the behaviour of the operator moments, as well as providing a visual representation
of the dynamics of the centre-of-mass of the atom. It is given by

QCM(α, α∗) =
1

π
〈α|ρ̂CM|α〉

where ρ̂CM is the reduced density operator, obtained by taking the trace of the
system density operator over the internal atomic states:

ρ̂CM = trA(ρ̂) = 〈+|ρ̂|+〉+ 〈−|ρ̂|−〉
= |φ+〉〈φ+|+ |φ−〉〈φ−|. (3.24)

The Q function is thus the sum of two terms:

Q±
CM(α, α∗) =

1

π
|〈α|φ+〉|2 +

1

π
|〈α|φ−〉|2

≡ Q+
CM(α, α∗) +Q−

CM(α, α∗). (3.25)

The explicit form of each term can be found by expanding the coherent and motional
states in the number state basis; thus

Q±
CM(α, α∗) =

e−|α|2

π

∣

∣

∣

∣

∣

∑

n

c̃±n (α∗)n√
n!

∣

∣

∣

∣

∣

2

. (3.26)

Figure 3.5 illustrates the time evolution of the Q function. Owing to the choice
of initial state, the Q function starts off as a two-dimensional Gaussian centred at
(ξ0, µ0). It then splits into two pieces, which rotate about the origin in opposite
directions and eventually meet to form a single peak on the opposite side of the
phase plane; their recombination coincides with the appearance of the first revival
in the atomic excitation probability. This behaviour continues ad infinitum, with
two collisions occurring for every complete circuit performed by each piece of the Q
function.

The points at which these collisions occur do not remain stationary, but move
gradually anticlockwise about the origin in the same manner as the trajectory of
〈â〉. While we can do no more now than observe the existence of this precession and
make an empirical estimate of its frequency, the analytic solutions presented in the
next chapter will shed some light on its cause.
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Figure 3.5: The motional state Q function for χ = 0.04, Ω/ωT = 1. This figure is
representative of the Q function for a wide range of values of χ; the
only difference is the time scale on which the dynamics occur. The
rotation and precession slow down significantly as χ is reduced, and
disappear for χ = 0.
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3.2.5 Motional state Wigner function

The Wigner function for the centre-of-mass state of the atom is most easily eval-
uated from its definition as the Fourier transform of the product of shifted wave
functions. While there exist other methods of calculating the Wigner function, the
rapid evaluation of Fourier transforms offered by the various incarnations of the Fast
Fourier Transform (FFT) algorithm make this method highly efficient.

Working from the definition given by Eq. (2.122), we make a change of variables
to the dimensionless position and momentum defined by Eq. (2.54):

ξ =

√

mω

2~
x µ =

1√
2~mω

p (3.27)

and further define a dimensionless Fourier transform variable

ζ ≡ 1

π

√

mω

2~
y. (3.28)

Substituting the reduced density operator according to Eq. (3.24) and noting that
the phase-space volume transforms as

dξ dµ =
1

2~
dx dp, (3.29)

we find that the Wigner function is given by

WCM(ξ, µ) = W+
CM(ξ, µ) +W−

CM(ξ, µ) (3.30)

where

W±
CM(ξ, µ) =

∫ ∞

−∞
e−i2πµζ ψ∗

±(ξ − πζ/2)ψ±(ξ + πζ/2) dζ. (3.31)

Here ψ±(ξ) are the wave functions of the atomic centre-of-mass states |φ±〉. The
method used to calculate the Wigner function is discussed in Appendix E.3.

Since the Q function for a coherent state is simply a broadened version of the
Wigner function, the behaviour of the two in the system at hand are essentially
identical. Figure 3.6 illustrates the behaviour of the Wigner function.

The behaviour of the sum of the two pieces of the Wigner function is rather
mundane, but an interesting feature appears when we look at each piece individu-
ally. As illustrated in Fig. 3.7, the individual Wigner function W−

CM consists of two
lumps corresponding to the two dressed motional states and a set of interference
fringes between them. The presence of interference fringes shows that the system is
in a coherent superposition of the two dressed motional states. This is consistent
with the finding that the atomic centre-of-mass state collapses into a ‘Schrödinger
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Figure 3.6: The motional state Wigner function for χ = 0.04, Ω/ωT = 1. The
dynamics of the Wigner function are essentially identical to that of
the Q function.
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Figure 3.7: The Wigner function W−

CM
for χ = 0.04, Ω/ωT = 1, τ = 36.

cat’ state (that is, a superposition of two coherent states) after a measurement is
made on the internal state of the atom [40].

The other piece of the Wigner function W+
CM is identical, except that the in-

terference fringes are π out of phase. When the two pieces are summed (the trace
over the internal atom state taken), the interference fringes present in each piece
precisely cancel out, leaving the Wigner function looking as it does in Fig. 3.6.
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Chapter 4

An Analytic Approach to the

System

While the numeric solutions presented in the previous chapter provide a valuable
overview of the system dynamics, the insight they provide as to the cause of the
behaviour is limited. With a view to achieving a deeper understanding, we therefore
turn to an analytic investigation of the Hamiltonian.

The first section of this chapter outlines how the system Hamiltonian can be
put into a diagonal form by a Bogoliubov transformation. This makes possible the
derivation of analytic expressions for operator moments and phase space distribu-
tions, which are presented in the second part of the chapter.

4.1 Diagonalisation of the Hamiltonian

The starting point in our quest for analytic solutions is the Schrödinger picture
Hamiltonian discussed in §3.1.2:

Ĥ = ~ωT (â†â+ 1
2) +

~ωA
2
σ̂z +

~Ω

2

(

σ̂+ e
−iωAt + σ̂− e

iωAt
)

[

1− χ(â+ â†)2
]

,

where we have assumed that the laser is tuned to resonance with the atomic tran-
sition. In order to remove the time dependence from the interaction term, we make
the transformation

H̃ = eiĤAt/~ Ĥ e−iĤAt/~− ĤA (4.1)

where ĤA = 1
2~ωAσ̂z is the free Hamiltonian for the internal state of the atom; in

this way we move into the interaction picture with respect to the internal atomic
states only. We find

H̃ = ~ωT (â†â+ 1
2) +

~Ω

2
(σ̂+ + σ̂−)

[

1− χ(â+ â†)2
]

. (4.2)
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4.1. DIAGONALISATION OF THE HAMILTONIAN

4.1.1 A change of basis

To diagonalise the system Hamiltonian it is convenient to work in an atomic basis
in which the interaction term is diagonal. This motivates a switch from the energy
eigenstates |±〉 to the dressed atomic states discussed in §2.3.2:

|U〉 ≡ 1√
2

(

|+〉+ |−〉
)

(4.3a)

|L〉 ≡ 1√
2

(

|+〉 − |−〉
)

. (4.3b)

In this basis the system state vector can be written as

|ψ(t)〉 =
1√
2

(

|φU (t)〉|U〉+ |φL(t)〉|L〉
)

, (4.4)

where |φi(t)〉 (i ∈ {U,L}) are the dressed motional states:

|φU (t)〉 ≡ |φ+(t)〉+ |φ−(t)〉 (4.5a)

|φL(t)〉 ≡ |φ+(t)〉 − |φ−(t)〉. (4.5b)

4.1.2 H̃ separates into two pieces

Rewriting the Hamiltonian (Eq. (4.2)) in the dressed state basis gives

H̃ = ~ωT (â†â+ 1
2) +

~Ω

2

(

|U〉〈U | − |L〉〈L|
)

[

1− χ(â+ â†)2
]

=

[

~
(

ωT − χΩ)(â†â+ 1
2

)

− ~χΩ

2

(

â2 + â†2
)

+
~Ω

2

]

|U〉〈U |

+

[

~(ωT + χΩ)
(

â†â+ 1
2

)

+
~χΩ

2

(

â2 + â†2
)

− ~Ω

2

]

|L〉〈L|

≡ ĤU ⊗ |U〉〈U |+ ĤL ⊗ |L〉〈L|, (4.6)

where we have used the fact that the Hamiltonian for the free centre-of-mass mo-
tion is multiplied by the identity operator in the internal-state space, which can be
written as |U〉〈U | + |L〉〈L|. On the last line, the tensor product has been written
explicitly to make it clear that the Ĥi act on the motional states while |i〉〈i| act on
the internal states.

This separation of the Hamiltonian into two distinct pieces is a key step in
obtaining analytic solutions, as it means that the motional dressed states evolve
independently rather than being coupled together. This can be seen by considering
the time evolution of the overall state:

i~
d

dt

(

|φU (t)〉|U〉+ |φL(t)〉|L〉
)

= H̃
(

|φU (t)〉|U〉+ |φL(t)〉|L〉
)

= ĤU |φU (t)〉|U〉+ ĤL|φL(t)〉|L〉. (4.7)
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Multiplying from the left by 〈i| gives the equation of motion for each motional state,

i~
d

dt
|φi(t)〉 = Ĥi|φi(t)〉, (4.8)

which may be straightforwardly integrated to give

|φi(t)〉 = e−iĤit/~|φi(0)〉. (4.9)

It is clear from this equation that the norm of each dressed motional state is con-
stant. This contrasts with the behaviour of the norm of |φ±〉, which represents
the probability to find the atom in the corresponding internal state and therefore
oscillates between zero and one. It is interesting to note that

〈φU (t)|φU (t)〉 = const. = 1 + 2Re
{

〈φ+(t)|φ−(t)〉
}

(4.10a)

〈φL(t)|φL(t)〉 = const. = 1− 2Re
{

〈φ+(t)|φ−(t)〉
}

(4.10b)

and so although the norm of |φ±〉 changes, the real part of the overlap 〈φ+|φ−〉
remains constant.

For the initial condition of a coherent motional state and an unexcited atom (Eq. 3.20)
we find that

|φU (0)〉 = |α0〉, |φL(0)〉 = −|α0〉 (4.11)

so that each motional state is normalised to unity,

〈φi(t)|φi(t)〉 = 〈φi(0)|φi(0)〉 = 1. (4.12)

4.1.3 Diagonalising ĤU and ĤL

Consider the two pieces of the system Hamiltonian defined in Eq. (4.6):

ĤU = ~(ωT − χΩ)
(

â†â+ 1
2

)

− ~χΩ

2

(

â2 + â†2
)

+
~Ω

2
(4.13a)

ĤL = ~(ωT + χΩ)
(

â†â+ 1
2

)

+
~χΩ

2

(

â2 + â†2
)

− ~Ω

2
. (4.13b)

In addition to a term describing the free oscillator, each piece of the Hamiltonian
contains an interaction which is quadratic in â and â†. Hamiltonians of this form ap-
pear in quantum optics in the analysis of squeezed light, and can be generated from
a free oscillator Hamiltonian by applying a squeezing transformation (Eqs. (2.62))
to â and â†. Consequently, ĤU and ĤL can be put into a diagonal form by making
a Bogoliubov transformation of the system operators.
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4.1. DIAGONALISATION OF THE HAMILTONIAN

The details of the diagonalisation procedure are presented in Appendix D, and
we shall simply state the results here. We introduce new operators ĉi and ĉ†i , defined
as

(

ĉi
ĉ†i

)

=
1

√

1− η2
i

(

1 −ηi
−ηi 1

)(

â
â†

)

(4.14)

where

ηi =
−1 +

√

1− 4g2
i

2gi
(4.15a)

gU = − χΩ

2(ωT − χΩ)
, gL =

χΩ

2(ωT + χΩ)
. (4.15b)

These new operators are the result of the transformation

ĉ
(†)
i =S†(ξi) â

(†)S(ξi) (4.16)

where S(x) is the squeezing operator and ξi = tanh−1 ηi.

When written in terms of ĉ and ĉ† the two pieces of the system Hamiltonian become

ĤU = ~ωU (ĉ†U ĉU + 1
2) +

~Ω

2
(4.17a)

ĤL = ~ωL(ĉ†LĉL + 1
2)− ~Ω

2
(4.17b)

where ωU and ωL are effective mode frequencies, given by

ωU = ωT

√

1− 2
χΩ

ωT
(4.18a)

ωL = ωT

√

1 + 2
χΩ

ωT
. (4.18b)

The physical interpretation of this diagonalisation is that the atom-field interaction
makes the oscillation frequency of the centre-of-mass of the atom dependent on its

internal state. The magnitude of the frequency shift is governed by the strength of
the interaction relative to the free evolution, as measured by the ratio χΩ/ωT .

The dependence of the oscillation frequency on the internal state of the atom
is the central result of the analytic solution, and the root cause of the interesting
dynamics seen in the previous chapter. To see this, we note that the Rabi and
trap frequencies are typically of similar magnitude, while working in the Lamb-
Dicke regime means that χ is small; χΩ/ωT is therefore a small parameter, and the
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oscillation frequencies can be expanded as a series:

ωU = ωT − χΩ− (χΩ)2

2ωT
− (χΩ)3

6ω2
T

− · · · (4.19a)

ωL = ωT + χΩ− (χΩ)2

2ωT
+

(χΩ)3

6ω2
T

− · · · . (4.19b)

From these we define the sum and difference frequencies

ω+ ≡
ωL + ωU

2
≈ ωT −

χ2Ω2

2ωT
(4.20a)

ω− ≡
ωL − ωU

2
≈ χΩ +

χ3Ω3

6ω2
T

, (4.20b)

the relevance of which becomes clear when we recall the approximate frequencies
appearing in the numeric solutions of 〈â〉 and P+:

ωbounce ≈ 2, ωrev ≈
χΩ

ωT
, ωprec ≈

χ2Ω2

2ω2
T

. (4.21)

We see that, up to a factor of ωT , which reflects the fact that the numeric solutions
were evaluated with respect to the scaled time τ ≡ ωT t, the empirically-obtained
bounce, revival and precession frequencies are first-order approximations to ωT +ω+,
ω− and ωT − ω+, respectively.

We are now in a position to derive analytic expressions for the operator moments
and phase-space distributions investigated numerically in the previous chapter.

4.2 Operator moments

The analytic expressions for the operator moments turn out to be fairly complicated,
and to extract the key features of the solutions it is a good idea to make some
approximations. We can use the fact that χΩ≪ ωT to write

ηU = −ηL ≈
χΩ

2ωT
≡ η, η2

i ≈ 0. (4.22)

4.2.1 Complex amplitude of the oscillator

The expectation value of â is given by

〈â〉 = 〈ψ(t)|â|ψ(t)〉

=
1

2

[

〈φL(t)|â|φL(t)〉+ 〈φU (t)|â|φU (t)〉
]

≡ 1

2

[

〈â〉L + 〈â〉U
]

, (4.23)
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where we have expanded the state |ψ(t)〉 according to Eq. (4.4) and used the or-
thogonality of the atomic dressed states. To evaluate each term on the right hand
side, we invert the transformation described by Eq. (4.14) and write â in terms of ĉ
and ĉ†:

〈â〉i =
1

√

1− η2
i

[

〈φi(t)|ĉi|φi(t)〉+ ηi〈φi(t)|ĉ†i |φi(t)〉
]

. (4.24)

This is a useful step because the time evolution operators that take |φi(0)〉 to |φi(t)〉
(see Eq. (4.9)) act simply on ĉ and ĉ†, transforming them according to

eiωit ĉ
†
i ĉi ĉi e

−iωit ĉ
†
i ĉi = ĉi e

−iωit. (4.25)

Applying the initial conditions (Eq. (4.11)) and transforming back to â and â†, we
can evaluate Eq. (4.23) to find

〈â〉 =
1

2

[

1

1− η2
U

(

α0(e
−iωU t − η2

Ue
iωU t) + 2iηUα

∗
0 sinωU t

)

+
1

1− η2
L

(

α0(e
−iωLt − η2

Le
iωLt) + 2iηLα

∗
0 sinωLt

)

]

(4.26)

In order to compare this analytic solution with the numeric solution discussed earlier,
we must remove the free evolution by multiplying by eiωT t. Assuming for simplicity
a real value of α0 and applying the approximations of Eq. (4.22), we find

Re
{

〈â〉eiωT t
}

≈ α0 cos(ωrevt) cos(ωprect)

− α0η sin(ωrevt)
[

sin(ωprect) + sin(ωbouncet)
]

(4.27a)

Im
{

〈â〉eiωT t
}

≈ α0 cos(ωrevt) sin(ωprect)

+ α0η sin(ωrevt)
[

cos(ωprect) + cos(ωbouncet)
]

. (4.27b)

where we have introduced the frequencies (ordered from largest to smallest)

ωbounce ≡ ωT +
ωL + ωU

2
(4.28a)

ωrev ≡
ωL − ωU

2
(4.28b)

ωprec ≡ ωT −
ωL + ωU

2
. (4.28c)

The first term of the solution given by Eqs. (4.27) describes the gross motion of 〈â〉,
consisting of an oscillatory term representing the back and forth motion multiplied
by a slowly-varying term describing the precession. The second piece describes a
high-frequency oscillation, which represents the bounces traced out by 〈â〉 as it
moves from one side of the phase plane to the other; the amplitude of these bounces
changes on both the revival and precession time scales.
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4.2.2 Average phonon number

In finding the mean occupation level of the trap, it turns out to be convenient to work
with â†â+ 1

2 rather than with â†â, as the structure of the Bogoliubov transformation
means that the former is marginally simpler when written in terms of ĉ and ĉ†. We
find

〈â†â+ 1
2〉 = 〈ψ(t)|â†â+ 1

2 |ψ(t)〉

=
1

2

[

〈â†â+ 1
2〉U + 〈â†â+ 1

2〉L
]

. (4.29)

The technique used to evaluate each term is identical to that used in the calculation
of 〈â〉i; only the algebra is a little messier. We arrive at

〈â†â+ 1
2〉i =

1
(

1− η2
i

)2

{

[

|α0|2 + 1
2

] [

(1 + η2
i )

2 − 4η2
i cos 2ωit

]

− 4|α0|2ηi sinωit
[

η2
i sin(ωit+ 2φ0) + sin(ωit− 2φ0)

]

}

(4.30)

where the amplitude of the initial coherent state has been written as α0 = |α0|eiφ0 .

After making the approximations of Eq. (4.22) we find

〈â†â〉 = |α0|2
{

1− χΩ

ωT
sin(2ω+t) sin(2ω−t)

}

. (4.31)

The interpretation of this solution is straightforward; superimposed on the constant
|α0|2 term is a high-frequency oscillation with a slowly-varying amplitude. This is
precisely the behaviour seen in the numeric solutions in §3.2.2.

4.2.3 Atomic excitation probability

The atomic excitation probability is given by

P+(t) = 〈φ+(t)|φ+(t)〉

=
1

4

∑

i,j=U,L

〈φi(t)|φj(t)〉

=
1

2

[

1 + Re
{

〈φU (t)|φL(t)〉
}

]

(4.32)

where the normalisation of the dressed motional states has been used. The proba-
bility of finding the atom in the excited state depends on the overlap of the dressed
motional states.

To evaluate this overlap we use Eq. (4.9) to write

|φi(t)〉 = e∓iΩt/2 e−iωit(ĉ
†
i ĉi+

1
2
)|φi(0)〉

= e∓iΩt/2 S†(ξi)e
−iωit(â

†â+ 1
2
)S(ξi)|φi(0)〉, (4.33)
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where the second line follows because the squeezing operator is unitary. Equa-
tion (4.33) in conjunction with the initial conditions gives

〈φU (t)|φL(t)〉 = −eiΩt〈α0|S†(ξU ) eiωU t(â
†â+ 1

2
)S(ξU )

× S†(ξL)e−iωLt(â
†â+ 1

2
)S(ξL)|α0〉. (4.34)

In theory, there is nothing preventing us from evaluating this expression by the same
operator reordering process used to evaluate the Q function in §4.3.1 – it has twice
as many terms, but a very similar structure. In practice, however, we find that the
quantity of algebra scales in such a way that a two-fold increase in the number of
terms leads to a calculation which is several orders of magnitude messier.

Fortunately, we can evaluate the overlap by a somewhat simpler method. Insert-
ing the identity as an integral over coherent states (see Eq. (2.44)) between S(ξU )
and S†(ξL) in Eq. (4.34) puts the overlap into the form

〈φU (t)|φL(t)〉 =− 1

π
eiΩt

∫

d2β 〈α0|S†(ξU ) eiωU t(â
†â+ 1

2
)S(ξU )|β〉

× 〈β|S†(ξL)e−iωLt(â
†â+ 1

2
)S(ξL)|α0〉.

The advantage this provides is that each term on the right hand side has exactly the
same form as one arising in the calculation of the Q-function (see Eq. (4.38)), saving
us a lot of operator reordering. The obvious disadvantage is that we have to carry
out the integration over β. However, the trade turns out to be worthwhile, since al-
though the algebra is messy, the integrals are Gaussian and can be readily evaluated.

After rather a lot of algebra, we arrive at

〈φU (t)|φL(t)〉 = eiΩt
C0√
ab

exp

[

−
(

α∗
0e

−iωU tλU − α0e
iωLtλL

)2

4 + 2ηL(1− λL) + 2ηU (1− λU )

]

exp

[

c2

4b

]

(4.35)

where

C0 =
√

λUλL e
i(ωL−ωU )t/2 exp

[

−|α0|2 + α∗2
0

ηU
2

(1− λU ) + α2
0

ηL
2

(1− λL)
]

a ≡ 1 +
ηL
2

(1− λL) +
ηU
2

(1− λU )

b ≡ 1− ηL
2

(1− λL)− ηU
2

(1− λU ) +

(

ηU (1− λU )− ηL(1− λL)
)2

4 + 2ηL(1− λL) + 2ηU (1− λU )

and

c = α∗
0e

−iωU tλU + α0e
iωLtλL

−
(

ηU (1− λU )− ηL(1− λL)
)(

α∗
0e

−iωU tλU − α0e
iωLtλL

)

2 + ηL(1− λL) + ηU (1− λU )
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with

λL ≡
1− η2

L

e2iωLt − η2
L

, λU ≡
1− η2

U

e−2iωU t − η2
U

.

This formula is fairly impenetrable; even taking η2
i = 0 does not simplify it enough

to permit a straightforward interpretation. We must simply be content with stating
that it reproduces the collapse and revival behaviour seen in the numeric solutions.

4.3 Phase-space distributions

4.3.1 The Q function

Recall that the Q function for the motional state is given by

QCM(α, α∗) =
1

π
〈α|ρ̂CM|α〉 (4.36)

where ρ̂CM is the reduced density operator obtained by tracing over the internal
states of the atom. In the dressed state basis

ρ̂CM =
1

2

[

|φU (t)〉〈φU (t)|+ |φL(t)〉〈φL(t)|
]

,

and we find

QCM(α, α∗) =
1

2π

(

QUCM(α, α∗) +QLCM(α, α∗)
)

(4.37)

where

QiCM(α, α∗) = |〈α|φi(t)〉|2

= |〈α|e−iĤit/~|α0〉|2. (4.38)

The two pieces of the Q function correspond to the two peaks seen in the numeric
solutions (see Fig. 3.5), each peak being due to a single dressed motional state of
the atom.

In order to evaluate each piece of the Q function we need to rearrange the
exponential appearing in Eq. (4.38) so that all the â operators appear to the right of
the â† operators – that is, we must put the time-evolution operator into its normally

ordered form. We begin by writing the Hamiltonian in terms of â and â†:

e−iĤit/~ = e−iωit(ĉ
†
i ĉi+

1
2
)

= e−iωitS
†(ξi)(â

†â+ 1
2
)S(ξi)

= S†(ξi)e
−iωit(â

†â+ 1
2
)S(ξi), (4.39)
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where the last line follows because the squeezing operator is unitary, and we have
dropped the phase factor produced by the ±~Ω/2 terms in the Hamiltonian because
they contribute nothing to the magnitude of the expression. Writing the squeezing
operators out explicitly, we have

e−iĤit/~ = exp

[

−ξi
2

(â2 − â†2)
]

exp
[

−iωit(â†â+ 1
2)
]

exp

[

ξi
2

(â2 − â†2)
]

. (4.40)

To proceed any further, we need to unravel the squeezing operators and move the
resulting terms in â and â† to the correct side of the central exponential. To this
end, we state several useful operator ordering relationships; firstly

exp
[

κ(â2 − â†2)
]

= exp

[

−tanh 2κ

2
â†2
]

exp
[

−(â†â+ 1
2) ln(cosh 2κ)

]

× exp

[

tanh 2κ

2
â2

]

, (4.41)

secondly

exp
[

κâ2
]

exp
[

λâ†2
]

= exp

[

2λ

1− 4κλ
â†2
]

exp
[

− ln(1− 4κλ)(â†â+ 1
2)
]

× exp

[

− 2κ

1− 4κλ
â2

]

, (4.42)

and finally

exp
[

β â†â
]

= : exp
[

(eβ − 1) â†â
]

: (4.43)

where :f(â, â†) : indicates the normally-ordered form of f(â, â†). These relationships
are proved in Appendix B.

Returning to Eq. (4.40), we decompose the squeezing operators and find

e−iĤit/~ = exp
[ηi

2
â†2
]

exp
[

− ln(cosh ξi)
(

â†â+ 1
2

)]

exp
[

−ηi
2
â2
]

× exp
[

−iωit
(

â†â+ 1
2

)]

× exp
[

−ηi
2
â†2
]

exp
[

− ln(cosh ξi)
(

â†â+ 1
2

)]

exp
[ηi

2
â2
]

. (4.44)

Moving the exponentials of â2 and â†2 to the right and left respectively and normally-
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ordering the central exponential, we arrive at

e−iĤit/~ = e−iωit/2
1

cosh ξi

√

1− η2
i e

−2iωit

× exp

[

ηi
2

(

1− 1

cosh2 ξi(e2iωit − η2
i )

)

â†2
]

× : exp

[

−â†â
(

1− e−iωit

cosh2 ξi
(

1− η2
i e

−2iωit
)

)]

:

× exp

[

ηi
2

(

1− 1

cosh2 ξi(e2iωit − η2
i )

)

â2

]

. (4.45)

The matrix element in Eq. (4.38) can now be evaluated by acting the annihilation
operators to the right and the creation operators to the left. We obtain for each
piece of the Q function

QiCM(α, α∗) = e−|α−α0|2 |qi|2 (4.46)

with

qi =

√

1− η2
i

1− η2
i e

−2iωit
exp

[

ηi
2

(

1− 1− η2
i

e2iωit − η2
i

)

(

α∗2 + α2
0

)

]

× exp

[

−α0α
∗

(

1− eiωit(1− η2
i )

e2iωit − η2
i

)]

,

where we have used the fact that

cosh ξi = cosh(tanh−1 ηi) =
1

√

1− η2
i

.

We need not understand the details of Eq. (4.46) to be able to explain the behaviour
of the Q function seen in Fig. 3.5. The two peaks, each corresponding to a single
dressed motional state, rotate around the origin with different frequencies. QUCM

moves at a slightly lower frequency than ωT , while QLCM moves at a slightly higher
frequency. Working in the interaction picture corresponds to observing the motion
from a reference frame rotating at ωT ; from this frame the peaks appear to move
in opposite directions, meeting periodically on alternating sides of the phase plane.
The precession of this meeting point about the origin is due to the fact that ωU
and ωL are not symmetrically placed about ωT ; the margin separating ωU from ωT
is greater than the margin separating ωL from ωT (see Eqs. (4.19)). However, the
difference is small, appearing only at second order in χΩ/ωT .
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4.3.2 The Wigner function

Substituting the reduced density operator into the definition of the Wigner function
(Eq. (2.119)) gives

WCM(α, α∗) =
1

2

(

WU
CM(α, α∗) +WL

CM(α, α∗)
)

(4.47)

where

W i
CM(α, α∗) =

1

π2

∫

d2z 〈φi(t)|eiz
∗â†+izâ|φi(t)〉 e−iz

∗α∗
e−izα. (4.48)

The first step in evaluating this expression is to calculate the matrix element which
appears in the integrand. This can be written as

〈φi(t)|eiz
∗â†+izâ|φi(t)〉 = e−

1
2
|z|2〈α0|S†(ξi)e

iωit(â
†â+ 1

2
)S(ξi)e

iz∗â†

× eizâS†(ξi)e
−iωit(â

†â+ 1
2
)S(ξi)|α0〉 (4.49)

and can be evaluated by using the squeezing and time-evolution operators to trans-
form the â and â† operators which appear in the central exponentials. Making the
first transformation, we find

〈φi(t)|eiz
∗â†+izâ|φi(t)〉

= e−
1
2
|z|2〈α0|S†(ξi)e

iωit(â
†â+ 1

2
) exp





iz∗
√

1− η2
i

(â† + ηiâ)





× exp





iz
√

1− η2
i

(â+ ηiâ
†)



 e−iωit(â
†â+ 1

2
)S(ξi)|α0〉. (4.50)

Regrouping the central terms gives

〈φi(t)|eiz
∗â†+izâ|φi(t)〉

= exp

[

−ηi(z
2 + z∗2)

2(1− η2
i )

]

exp

[

−|z|
2

2

(

1 + η2
i

1− η2
i

)]

× 〈α0|S†(ξi)e
iωit(â

†â+ 1
2
) exp





i(z∗ + ηiz)
√

1− η2
i

â†





× exp





i(z + ηiz
∗)

√

1− η2
i

â



 e−iωit(â
†â+ 1

2
)S(ξi)|α0〉. (4.51)
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Evaluating the remaining transformations and applying â and â† to the states, we
arrive at

〈φi(t)|eiz
∗â†+izâ|φi(t)〉

= exp

[

−ηi(z
2 + z∗2)

2(1− η2
i )

]

exp

[

−|z|
2

2

(

1 + η2
i

1− η2
i

)]

exp

[

ηi(z
∗ + ηiz)

2e2iωit

2(1− η2
i )

2

]

× exp

[

ηi(z + ηiz
∗)2

2(1− η2
i )

2
e−2iωit

]

exp

[

−η2
i

(z∗ + ηiz)(z + ηiz
∗)

(1− η2
i )

2

]

× exp

[

iα0

1− η2
i

(

e−iωit(z + ηiz
∗)− ηieiωit(z∗ + ηiz)

)

]

× exp

[

iα∗
0

1− η2
i

(

eiωit(z∗ + ηiz)− ηie−iωit(z + ηiz
∗)
)

]

. (4.52)

As for the Q function, carrying out the integration proves to be messy but straight-
forward. We eventually find

W i
CM(α, α∗) =

1

π
√
ab

exp

[

d2

4b

]

exp

[

c2

4a

]

(4.53)

with

a =
1

2(1− η2
i )

2

[

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit
]

b =
1

2(1− η2
i )

2

[

(1− η2
i )

2 + 4ηi(1 + ηi)
2 sin2 ωit

]

− 2η2
i sin2 2ωit

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit

c = α− α∗ +
α∗

0

1− η2
i

[

eiωit − η2
i e

−iωit − 2iηi sinωit
]

− α0

1− η2
i

[

e−iωit − η2
i e
iωit + 2iηi sinωit

]

and

d = − i(α+ α∗ +D +D∗)

+
2ηi sin(2ωit)(1− η2

i )

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit

[

α− α∗ −D +D∗
]

where

D =
α0

1− η2
i

(

e−iωit − η2
i e
iωit − 2iηi sinωit

)

.

The behaviour of the Wigner function is similar to that of the Q-function, with
two peaks corresponding to the two motional dressed states rotating in opposite
directions about the origin.
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4.4 Summary

The most important points of this chapter can be summarised as follows.

• By switching to the atomic dressed state basis, the Hamiltonian can be sep-
arated into two pieces, each of which governs the evolution of an individual
motional state. The pieces each have the form of a squeezing Hamiltonian,
and can be diagonalised by making a Bogoliubov transformation of the â and
â† operators.

• The atom-field interaction makes the frequency of oscillation different for each
motional dressed state – one oscillates at a slightly higher frequency than ωT ,
the other at a slightly lower frequency. This state-dependent frequency shift
is the cause of the behaviour seen in the numerical solutions.

• Diagonalising the two pieces of the Hamiltonian makes it possible to find an-
alytic expressions for various quantities of interest. While some of these are
fairly convoluted, they reproduce the numerical solutions seen in the previous
chapter.
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Chapter 5

Extending the Model

The model analysed in this thesis is a fairly simple one, and it may easily be extended
in a number of ways. This chapter presents the results of two such extensions. In
the first section, the analytic solutions derived in the previous chapter are extended
to include an arbitrary trap position on the standing wave, while the second section
investigates the effect of retaining in the Hamiltonian the previously discarded higher
order terms in χ.

5.1 Varying the trap position

The analysis of the system up to this point has assumed that the minimum of the
trapping potential is aligned with an antinode of the standing wave. This restriction
can be lifted by making the replacement

cos kx̂→ cos(kx̂+ δ), (5.1)

where δ describes the offset of the trap centre from an antinode of the standing wave.
The symmetry of the situation means we need only consider values of δ between zero
(the trap is aligned with an antinode) and π/2 (the trap is aligned with a node); val-
ues of δ outside this range give solutions which are identical up to a phase factor of π.

Making this replacement, the system Hamiltonian in the Schrödinger picture is
given by (cf. Eq. (3.9))

Ĥ = ~ωT (â†â+ 1
2) +

~ωA
2
σ̂z +

~Ω

2

(

σ̂+ e
−iωAt + σ̂− e

iωAt
)

cos(kx̂+ δ), (5.2)

where we have assumed that the laser is tuned to resonance with the atomic tran-
sition. Transforming to the atomic interaction picture and the dressed-state basis,
the Hamiltonian becomes

H̃ = ~ωT (â†â+ 1
2) +

~Ω

2

(

|U〉〈U − |L〉〈L|
)

cos(kx̂+ δ). (5.3)
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We expand the cosine as

cos(kx̂+ δ) = cos kx̂ cos δ − sin kx̂ sin δ (5.4)

and assume that kx̂ is sufficiently small that cos kx̂ and sin kx̂ can be replaced by
their Taylor expansions to lowest order (i.e., 1 − (kx̂)2/2 and kx̂, respectively) to
arrive at

H̃ = ĤU ⊗ |U〉〈U |+ ĤL ⊗ |L〉〈L| (5.5)

with (cf. Eqs. (4.13))

ĤU = ~ (ωT − χΩcos δ) (â†â+ 1
2)− ~

√

χ

2
Ω sin δ (â+ â†)

− ~χΩ

2
cos δ

(

â2 + â†2
)

+
~Ω

2
cos δ (5.6a)

ĤL = ~ (ωT + χΩcos δ) (â†â+ 1
2) + ~

√

χ

2
Ω sin δ (â+ â†)

+
~χΩ

2
cos δ

(

â2 + â†2
)

− ~Ω

2
cos δ. (5.6b)

The effect of a nonzero value of δ is to introduce into each piece of the Hamiltonian
a term in â+ â†.

Just as a Hamiltonian containing a quadratic interaction term can be produced
by making a squeezing transformation on â and â†, a Hamiltonian with an interac-
tion term linear in â and â† is the result of transforming a free oscillator Hamiltonian
by the unitary displacement operator D(α). Hamiltonians of this type can therefore
be diagonalised by defining new operators which are related to â and â† through a
displacement transformation (Eqs. (2.58)).

In the case at hand, ĤU and ĤL contain both a displacement and a squeezing
term, and so we define

(

ĉi
ĉ†i

)

=
1

√

1− η2
i

[

(

1 −ηi
−ηi 1

)(

â
â†

)

+ (1− ηi)κi
]

, (5.7)

which corresponds to making the transformation

ĉi = D†(κi)S
†(ξi) âS(ξi)D(κi) (5.8a)

ĉ†i = D†(κi)S
†(ξi) â

†S(ξi)D(κi) (5.8b)

with ξi = tanh−1 ηi. If we set

κi =
λi

1 + 2gi
, ηi =

−1 +
√

1− 4g2
i

2gi
(5.9a)
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with

λU = −
√

χ

2

Ω sin δ

ωT − χΩcos δ
, λL =

√

χ

2

Ω sin δ

ωT + χΩcos δ
(5.9b)

gU = − χΩcos δ

2(ωT − χΩcos δ)
, gL =

χΩcos δ

2(ωT + χΩcos δ)
(5.9c)

ĤU and ĤL become

ĤU = ~ωU
(

ĉ†U ĉU + 1
2

)

− ~χΩ2 sin2 δ

2(ωT − 2χΩcos δ)
+

~Ω

2
cos δ (5.10a)

ĤL = ~ωL
(

ĉ†LĉL + 1
2

)

− ~χΩ2 sin2 δ

2(ωT + 2χΩcos δ)
− ~Ω

2
cos δ (5.10b)

where the effective mode frequencies are given by

ωU = ωT

√

1− 2
χΩcos δ

ωT
(5.11a)

ωL = ωT

√

1 + 2
χΩcos δ

ωT
. (5.11b)

We see that the state-dependent frequency shift becomes progressively smaller as
the trap is moved away from the antinode, disappearing completely when the trap
reaches a node. Since this frequency shift is the cause of much of the interesting
behaviour seen in the past two chapters, we expect the system dynamics to become
somewhat more mundane as δ is increased from zero.

5.1.1 Complex oscillator amplitude

The expectation value of â can be evaluated in the same way as in §4.2.1, the only
difference being that the relationship between ĉ(†) and â(†) is now given by Eq. (5.7).
We find

〈â〉i =
1

1− η2
i

[

(α0 + κi)
(

e−iωit − η2
i e
iωit
)

+ 2iηi(α
∗
0 + κi) sinωit

]

− κi. (5.12)

Figure 5.1 shows the motion of 〈â〉 on the phase plane for several values of δ. As
δ increases, the movement across the phase plane and the precession of 〈â〉 become
progressively slower, the trajectories become more open, and the bounces become
smaller and more irregular. All of these features disappear as δ → π/2 , consistent
with the observation that ωi → ωT and ηi → 0.

We can gain some understanding of the system at δ = π/2 by considering 〈â〉U
and 〈â〉L separately. Assuming a real value of α0 and writing κ ≡ κL = −κU , we
find from Eq. (5.12)

〈â〉U = (α0 − κ)e−iωT t + κ (5.13a)

〈â〉L = (α0 + κ)e−iωT t − κ. (5.13b)
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Figure 5.1: The changing behaviour of 〈â〉 as the trap is moved away from a node
of the standing wave. As δ is increased from zero, the trajectories
become more open, and the motion across the phase plane slows
down. Parameters are χ = 0.04, Ω/ωT = 1, τ = 0− 320.
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-2
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µ t = 0
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〈â〉U

〈â〉L

α0 − κ
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Figure 5.2: The motion of 〈â〉U and 〈â〉L on the phase plane for δ = π/2,
χ = 0.04, Ω/ωT = 1. The amplitude of oscillation of the trapped
atom depends on its internal state.

These solutions are illustrated in Figure 5.2. 〈â〉U and 〈â〉L each move with
frequency ωT around a circle, just as would be expected for a free oscillator. However,
the presence of the interaction term causes both the radius and the origin of the
circles to differ: 〈â〉U traces out a circle of radius α0−κ centred at κ, while 〈â〉L moves
around a circle of radius α0 +κ centred at −κ. Aligning the trap with a node rather
than an antinode of the standing wave has effectively replaced the state-dependent
frequency shift by a state-dependent trap origin and oscillation amplitude.
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5.1.2 Average phonon number

The expectation value 〈â†â + 1
2〉 can be evaluated by the same method as used in

§4.2.2. We find

〈â†â+ 1
2〉i =

(

|α0|2 + 1
2

)

[

(1 + η2
i )

2

(1− η2
i )

2
− 4η2

i

(1− η2
i )

2
cos 2ωit

]

+ α0

[

(1 + η2
i )(1− ηi)2κi

(1− η2
i )

2
− (1 + ηi)κi

(1− η2
i )

(

e−iωit − ηi eiωit
)

+
2κi(1− ηi)ηi

(1− η2
i )

2

(

e−2iωit − ηi e2iωit
)

]

+ α∗
0

[

(1 + η2
i )(1− ηi)2κi

(1− η2
i )

2
− (1 + ηi)κi

(1− η2
i )

(

eiωit − ηie−iωit
)

+
2κi(1− ηi)ηi

(1− η2
i )

2

(

e2iωit − ηie−2iωit
)

]

+ α2
0

[

ηi
(1− η2

i )
2

(

e−2iωit + η2
i e

2iωit
)

− ηi(1 + η2
i )

(1− η2
i )

2

]

+ α∗2
0

[

ηi
(1− η2

i )
2

(

e2iωit + η2
i e

−2iωit
)

− ηi(1 + η2
i )

(1− η2
i )

2

]

+ κ2
i

[

1 +
(1 + η2

i )(1− ηi)2
(1− η2

i )
2

− 2 cosωit+
2ηi(1− ηi)2
(1− η2

i )
2

cos 2ωit

]

.

(5.14)

Figure 5.3 illustrates how the average phonon number changes with increasing δ.
The periodic modulation about the average value of |α0|2 disappears, replaced by
an oscillation of unit frequency with a slowly-varying amplitude. For δ = π/2 we
find

〈â†â+ 1
2〉 = |α0|2 + 1

2 + 4κ2(1− cosωT t). (5.15)

The behaviour seen here is simply understood if we consider the different amplitudes
of oscillation of the motional dressed states. If α0 is real, at ωT t = π the upper and
lower dressed states are coherent states centred on −(α0 − 2κ) and −(α0 + 2κ)
respectively. Although these are equidistant from the point −α0, where they would
both be in the absence of any interaction, the dependence of 〈â†â+ 1

2〉 on the square

of the amplitude produces the extra term appearing in Eq. (5.15).

5.1.3 Atomic excitation probability

Recall that the probability of finding the atom in its excited state is given by

P+(t) =
1

2

[

1 + Re
{

〈φU (t)|φL(t)〉
}

]

.
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Figure 5.3: The behaviour of the average phonon number with increasing δ. The
parameters are χ = 0.04, Ω/ωT = 1.
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Extracting the time-evolution operator from each state and using Eq. (5.10) to write
each piece of the Hamiltonian in its diagonal form, we find

〈φU (t)|φL(t)〉 = −〈α0|D†(κU )S†(ξU ) eiωU t(â
†â+ 1

2
)S(ξU )D(κU )

×D†(κL)S†(ξL)e−iωLt(â
†â+ 1

2
)S(ξL)D(κL)|α0〉

× exp

[

iΩt cos δ

(

1− 2χ2Ω2 sin2 δ

ω2
T − 4χ2Ω2 cos2 δ

)]

. (5.16)

Following the procedure used in §4.2.3, we insert the identity as an expansion over
coherent states at the end of the first line. The displacement operator D(κU ) can
then be acted on the coherent state |β〉 by noting that

D(κU ) |β〉 = D(κU )D(β)|0〉

= D(β + κU ) exp

[

1

2
(β∗κU − βκ∗U )

]

|0〉

= exp
[κU

2
(β∗ − β)

]

|β + κU 〉, (5.17)

where Eq. (2.59) has been used to combine the two displacement operators, and we
have used the fact that κU is real. In a similar fashion, the D†(κL) operator can be
acted to the left, and thus we arrive at

〈φU (t)|φL(t)〉 =− 1

π

∫

d2β 〈α0 + κU |S†(ξU )eiωU t(â
†â+ 1

2
)S(ξU )|β + κU 〉

× 〈β + κL|S†(ξL)eiωLt(â
†â+ 1

2
)S(ξL)|α0 + κL〉

× exp

[

(κU − κL)

2
(α0 − α∗

0)

]

exp

[

(κU − κL)

2
(β∗ − β)

]

× exp

[

iΩt cos δ

(

1− 2χ2Ω2 sin2 δ

ω2
T − 4χ2Ω2 cos2 δ

)]

. (5.18)

The matrix elements that remain on the right-hand side are of the same form as
those which appear in the calculation of the Q function, and can be evaluated by
making use of Eq. (4.45). The last task is to perform the integration over β, which
once again proves to be straightforward but messy. We eventually arrive at

〈φU (t)|φL(t)〉 =
C0√
pr

exp

[

q2

4p

]

exp

[

(κU − κL)

2
(α0 − α∗

0)

]

× exp

[

iΩt cos δ

(

1− 2χ2Ω2 sin2 δ

ω2
T − 4χ2Ω2 cos2 δ

)]

× exp

[

−
[

AU −A∗
L

]2

4 + 2ηU (1− εU ) + 2ηL(1− ε∗L)

]
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with

C0 = ei(ωL−ωU )t/2
√

εUε∗L exp
[

κ2
U

ηU
2

(1− εU ) + κ2
L

ηL
2

(1− ε∗L)
]

× exp

[

(α∗
0 + κU )2ηU

2
(1− εU ) +

(α0 + κL)2ηL
2

(1− ε∗L)− |α0|2
]

× exp
[

−κU (α∗
0 + κU )(1− e−iωU tεU )− κL(α0 + κL)(1− eiωLtε∗L)

]

p = 1− ηU
2

(1− εU )− ηU
2

(1− ε∗L) +

[

ηU (1− εU )− ηL(1− ε∗L)
]2

4 + 2ηU (1− εU ) + 2ηL(1− ε∗L)

and

q = AU +A∗
L −

(

ηU (1− εU )− ηL(1− ε∗L)
)(

AU −A∗
L

)

2 + ηU (1− εU ) + ηL(1− ε∗L)

r = 1 +
ηU
2

(1− εU ) +
ηL
2

(1− ε∗L)

where

Ai = κi
[

ηi(1− εi)− (1− e−iωitεi)
]

+ α∗
0 εi e

−iωit,

εi =
1− η2

i

e−2iωit − η2
i

.

The behaviour of the atomic excitation probability is illustrated in Figure 5.4. The
revivals become less frequent as δ is increased, and disappear completely for δ = π/2;
at this point the excitation probability shows continuous small-amplitude oscillations
(see Fig. 5.5.)

5.1.4 Motional state Q function

We saw in §4.3.1 that finding the Q function amounts to calculating the magnitude

of the matrix element 〈α|e−iĤit/~|α0〉. We begin by using Eq. (5.10) to write

〈α|e−iĤit/~|α0〉 = 〈α|D†(κi)S
†(ξi)e

−iωit(â
†â+ 1

2
)S(ξi)D(κi)|α0〉

× exp

[

it

2

(

χΩ2 sin2 δ

ωT ∓ 2χΩcos δ
∓ Ωcos δ

)]

. (5.19)

The displacement operators can now be acted on the states in the manner outlined
in Eq. (5.17) above. We find

〈α|e−iĤit/~|α0〉 = 〈α+ κi|S†(ξi)e
−iωit(â

†â+ 1
2
)S(ξi)|α0 + κi〉

× exp

[

it

2

(

χΩ2 sin2 δ

ωT ∓ 2χΩcos δ
∓ Ωcos δ

)]

. (5.20)
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Figure 5.4: Plots of the atomic excitation probability for different values of δ.
The parameters are χ = 0.04, Ω/ωT = 1.
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Figure 5.5: A plot of the the atomic excitation probability for δ = π/2, with
χ = 0.04, Ω/ωT = 1. The collapse and revival behaviour has been
replaced by a regular small-amplitude oscillation.

This expression can be evaluated by an identical procedure to that used in §4.3.1; in
fact, the sole difference is that the coherent states have amplitude α+κi and α0 +κi
instead of α and α0. We arrive at

QiCM(α, α∗) = e−|α−α0|2 |qi|2 (5.21)

with

qi =

√

1− η2
i

e2iωit − η2
i

exp

[

(α∗ + κi)
2 ηi

2

(

1− 1− η2
i

e2iωit − η2
i

)]

× exp

[

−(α∗ + κi)(α0 + κi)

(

1− eiωit(1− η2
i )

e2iωit − η2
i

)]

× exp

[

(α0 + κi)
2 ηi

2

(

1− 1− η2
i

e2iωit − η2
i

)]

. (5.22)

As δ is increased from zero, the rotation of the two peaks of the Q-function slows
down and the bounces they trace out become more pronounced. If we move to the
interaction picture and set δ = π/2, we find that the peaks no longer rotate about
the origin, but instead move in circles of radius κ about the points α0 ± κ. This is
consistent with the behaviour of 〈â〉U and 〈â〉L described in §5.1.1.
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5.1.5 Motional state Wigner function

The Wigner function can be evaluated by the same method as that outlined in §4.3.2.
To evaluate the integral in Eq. (4.48), we write the matrix element as

〈φi(t)|eiz
∗â†+izâ|φi(t)〉 = e−

1
2
|z|2〈α0|D†(κi)S

†(ξi)e
iωit(â

†â+ 1
2
)S(ξi)D(κi)e

iz∗â†

× eizâD†(κi)S
†(ξi)e

−iωit(â
†â+ 1

2
)S(ξi)D(κi)|α0〉.

The displacement operators can be removed from this expression by acting the outer
two on the coherent states and using the inner two to transform the exponentials of
â and â† according to Eq. (2.58). The remaining expression can be evaluated by an
identical method to that used previously; we eventually arrive at

W i
CM(α, α∗) =

1

π
√
ab

exp

[

d2

4a

]

exp

[

c2

4b

]

with

a =
1

2(1− η2
i )

2

[

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit
]

b =
1

2(1− η2
i )

2

[

(1− η2
i )

2 + 4ηi(1 + ηi)
2 sin2 ωit

]

− 2η2
i sin2 2ωit

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit

and

c = 2iκi(cosωit− 1)− i(α+ α∗) +
iα0

1− η2
i

(

e−iωit − η2
i e
iωit − 2iηi sinωit

)

+
iα∗

0

1− η2
i

(

eiωit − η2
i e

−iωit + 2iηi sinωit
)

+
2ηi sin(2ωit)(1− η2

i )

(1− η2
i )

2 − 4ηi(1− ηi)2 sin2 ωit

{

α∗
0

1− η2
i

(

eiωit − η2
i e

−iωit − 2iηi sinωit
)

+ α− α∗ − α0

1− η2
i

(

e−iωit − η2
i e
iωit + 2iηi sinωit

)

+ 2iκi sinωit

(

1− ηi
1 + ηi

)

}

,

and

d =α− α∗ +
α∗

0

1− η2
i

[

eiωit − η2
i e

−iωit − 2iηi sinωit
]

+ κi

(

1− ηi
1 + ηi

)

2i sinωit

− α0

1− η2
i

[

e−iωit − η2
i e
iωit + 2iηi sinωit

]

.

The behaviour of the Wigner function is essentially identical to that of the Q func-
tion, consistent with the fact that for a coherent state the Q function is simply a
broadened version of the Wigner function.
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5.1.6 Comparison with the Jaynes-Cummings model

It has been known for some time that under certain conditions, a trapped ion with
quantised motion interacting with an incident electromagnetic field is mathemati-
cally equivalent to the Jaynes-Cummings model [26, 70]. In both cases, the formal
description is that of a two-level atom coupled to a quantised harmonic oscillator;
the only point of difference is the physical meaning assigned to the oscillator. In
the Jaynes-Cummings model, it represents a single mode of the quantised radiation
field, while in the case of a trapped ion it corresponds to the mechanical motion of
the centre of mass.

Although there is little to be gained from a lengthy discussion of this formal
equivalence and the connection between the fields of cavity QED and trapped ions
it entails, it is worthwhile demonstrating how the Jaynes-Cummings Hamiltonian
can be obtained from the current system, if only for the sake of interest. Our starting
point is the system Hamiltonian

Ĥ = ~ωT (â†â+ 1
2) +

~ωA
2
σ̂z +

~Ω

2

(

σ̂+ e
−iωLt + σ̂− e

iωLt
)

cos(kx̂+ δ). (5.23)

Aligning the trap with a node of the standing wave by setting δ = π/2 and making
the approximation sin kx̂ ≈ kx̂ gives

Ĥ = ~ωT (â†â+ 1
2) +

~ωA
2
σ̂z + ~Ω

√

χ

2

(

σ̂+ e
−iωLt + σ̂− e

iωLt
)

(â+ â†). (5.24)

Let us now move into the interaction picture by making the transformation

H̃ = eiĤ0t/~ Ĥ e−iĤ0t/~− Ĥ0 (5.25)

where Ĥ0 = ĤA + ĤT is the free Hamiltonian for the system. We find

H̃ = ~Ω

√

χ

2

(

σ̂+e
−i∆t + σ̂−e

i∆t
) (

âe−iωT t + â†eiωT t
)

, (5.26)

where ∆ ≡ ωL−ωA is the detuning of the laser from the atomic transition frequency.
Expanding the brackets, we arrive at

H̃ = ~Ω

√

χ

2

(

σ̂+ âe
−i(ωT +∆)t + σ̂+ â

†ei(ωT−∆)t

+ σ̂− âe
−i(ωT−∆)t + σ̂− â

†ei(ωT +∆)t
)

. (5.27)

The treatment up to this point is reminiscent of the development of the dipole
interaction Hamiltonian presented in §2.3.2 and §2.3.3, and it should come as no
surprise that the next step is to discard two of the terms appearing in Eq. (5.27)
on the grounds that they are rapidly oscillating. Precisely which two terms to
discard, however, is the key question, and it is here that the treatments diverge.
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In contrast to the circumstances motivating the rotating-wave approximation, the
form of the oscillation frequencies coupled with the fact that ∆ is an experimentally
controllable parameter means that we have the power to choose which terms are
resonant. Different choices of detuning lead to different Hamiltonians, raising the
possibility of engineering the Hamiltonian to suit our needs.

The Jaynes-Cummings model.

Consider the case of ∆ = −ωT ; that is, the laser is detuned to the red side of
the atomic transition by an amount equal to the trap frequency. The Hamiltonian
becomes

H̃ = ~Ω

√

χ

2

(

σ̂+ â+ σ̂− â
† + σ̂+ â

†ei2ωT t + σ̂− âe
−i2ωT t

)

. (5.28)

Discarding the oscillatory terms, we are left with a Hamiltonian of precisely the
same form as that of the Jaynes-Cummings model (Eq. (2.98)):

H̃ = ~Ω

√

χ

2

(

σ̂+ â+ σ̂− â
†
)

. (5.29)

Just as the Jaynes-Cummings Hamiltonian describes the absorption and emission of
photons by the atom, the terms appearing in this expression represent the excitation
of the atom with the simultaneous destruction of a phonon (i.e. a lowering of the
motional state of the atom in the trap) and the de-excitation of the atom with the
creation of a phonon. This Hamiltonian gives rise to transitions of the form

|−〉|n〉 ↔ |+〉|n− 1〉

which are the type of transitions required for the sideband cooling of a trapped ion
[39].

The ‘anti-Jaynes-Cummings’ model.

If we instead detune the laser to the blue side of the atomic transition such that
∆ = ωT , the Hamiltonian becomes

H̃ = ~Ω

√

χ

2

(

σ̂+ â
† + σ̂− â

)

. (5.30)

The terms appearing here represent the excitation of the atom with the simultaneous
creation of a phonon and the de-excitation of the atom with the destruction of a
phonon. They describe transitions of the form

|−〉|n〉 ↔ |+〉|n+ 1〉

and have thus been christened ‘anti-Jaynes-Cummings’ terms. Although this cou-
pling is realisable in a trapped ion system, the fact that the corresponding atom-
photon processes would violate energy conservation means that the anti-Jaynes-
Cummings model has no analogue in cavity QED.
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5.2 Exact solutions

The extent to which the solutions presented in the previous chapters describe what
takes place in the real physical system depends on the validity of the approxima-
tions made in moving from the system to the mathematical model used to describe it.

Of the approximations made in the theoretical treatment presented here, most
are well justified and need not be given a second thought. However, one which is
deserving of further scrutiny is the neglect of higher-order terms in the expansion
of cos kx̂ and sin kx̂ – the key question being, does the system exhibit the same
behaviour if the higher-order terms in ηLD are retained?

Since keeping the trigonometric expressions in their entirety precludes the ana-
lytic solution of the Hamiltonian, the impact these terms have on the system must
be investigated numerically. This section presents an analytic derivation of the exact
matrix elements which appear in the equations of motion for the state expansion
coefficients, and compares these results with the expressions that have been used
to approximate them. The solutions for operator moments which result from these
‘exact’ equations are investigated, and compared with the ‘approximate’ solutions
of Chapter 3.

5.2.1 Exact equations of motion

In the dressed-state basis and allowing for an arbitrary trap position, the system
Hamiltonian in the atomic interaction picture is

H̃ = ~ωT (â†â+ 1
2) +

~Ω

2

(

|U〉〈U | − |L〉〈L|
)

cos(kx̂+ δ). (5.31)

We use the state expansion given by Eq. (4.4), where the dressed motional states
|φi(t)〉 can be expanded in the number state basis as

|φi(t)〉 =
∑

n

c in(t)|n〉. (5.32)

Using the Schrödinger equation and the orthogonality of the dressed atomic basis
states, we find

i~
dc im(t)

dt
= 〈i|〈m|H̃|ψ(t)〉. (5.33)

Inserting the Hamiltonian (Eq. (5.31)) and expanding the motional dressed state
gives

i~
dc im(t)

dt
=
∑

n

c in(t) 〈m|
[

~ωT (â†â+
1

2
)± ~Ω

2
cos(kx̂+ δ)

]

|n〉

= ~ωT (m+ 1
2) c im(t) +

~Ω

2

∑

n

c in(t)〈m|
[

cos kx̂ cos δ − sin kx̂ sin δ
]

|n〉

(5.34)
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where the orthogonality of the number states has been used.

It is clear from this expression that the exact equations of motion for the expansion
coefficients involve matrix elements of the form

〈m| cos kx̂|n〉 and 〈m| sin kx̂|n〉 (5.35)

which have been approximated thus far by the matrix elements

〈m|
[

1− (kx̂)2

2

]

|n〉 and 〈m|kx̂|n〉 (5.36)

respectively. These, then, are the expressions we wish to compare.

5.2.2 Evaluation of 〈m| cos kx̂|n〉
We begin the evaluation of the matrix elements 〈m| cos kx̂|n〉 by inserting the identity
as

1̂ =

∫ ∞

−∞
dx′ |x′〉〈x′|. (5.37)

This allows the cosine term to be evaluated, giving

〈m| cos kx̂|n〉 =
∫ ∞

−∞
dx′ 〈m|x′〉〈x′|n〉 cos kx′. (5.38)

The terms appearing in the integral are the position-space wavefunctions of the mth

and nth number states, which are given by Eq. (2.41). Substituting for the wavefunc-
tions and converting from x′ to the dimensionless position variable y ≡ x′

√

mωT /~,
we find

〈m| cos kx̂|n〉 =
1√

π2m+nm!n!

∫ ∞

−∞
dy cos

(

k

√

~

mωT
y

)

e−y
2

Hm(y)Hn(y). (5.39)

This integral is only different from zero if the integrand is even. Since the parity of
Hk(y) is the same as that of k (see Eq. (A.3)), the matrix element vanishes unless
n and m are either both even or both odd; that is

〈m| cos kx̂|n〉 =
{

Eq. (5.39) n = m+ 2l, l ∈ Z

0 else.
(5.40)

The matrix representation of cos kx̂ thus has non-zero terms only on every second

off-diagonal, reflecting the fact that the series expansion of cos kx̂ contains only even
powers of â+ â†. Each line of non-zero entries is produced by terms describing the
creation (or annihilation) of an even number of phonons – for example, the second
off-diagonal elements result from â2 and â†2 terms.
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However, these terms are not the only ones which contribute to the second off-
diagonal matrix elements. Continuing the expansion of cos kx̂, we come across many
other operator combinations that result in a net gain or loss of two phonons: for
example, â†3â and â†3â5. Since these terms are of order χ3 and above, they are
not included in the approximation used in previous chapters. It is these corrections
arising from higher-order terms in the expansion of cos kx̂ that we wish to find.

Since x is an observable, the matrix representing cos kx̂ is Hermitian, and we
lose nothing by restricting our analysis to the half of the matrix lying above the
main diagonal. To evaluate Eq. (5.39) for this case we can use the integral [12]

∫ ∞

0
cos(bz)e−z

2

Hk(z)Hk+2l(z) = 2k
√
π

2
k!(−1)l b2le−

b2

4 L
(2l)
k

(

b2

2

)

, (5.41)

which holds for k, l ≥ 0. Here L
(m)
n (x) is an associated Laguerre polynomial.

After some algebra, we arrive at

〈m| cos kx̂|m+ 2l〉 = (−1)l 2l

√

m!

(m+ 2l)!
χl e−χL(2l)

m (2χ) l = 0, 1, 2, . . . . (5.42)

We could, if we wished, use this expression to find exact expressions for all the
off-diagonal elements to all orders of χ. However, in order to make our comparison
with the approximate solutions a valid one, we restrict ourselves to evaluating the
diagonal (l = 0) and second off-diagonal (l = 1) terms, which describe processes
resulting in a net change in phonon number of zero or two respectively.

Diagonal elements

Setting l = 0 in Eq. (5.42), we find that the diagonal matrix elements are given
by

〈m| cos kx̂|m〉 = e−χLm(2χ) (5.43)

where Lm(x) = L
(0)
m (x) is a Laguerre polynomial. We can now expand the Laguerre

polynomial (see Eq. (A.13)) and the exponential in powers of χ:

e−χ = 1− χ+
χ2

2
− χ3

6
+ . . . (5.44)

Lm(2χ) =
m
∑

i=0

1

i!

(

m

m− i

)

(−2χ)i

= 1− 2mχ+
1

2

(

m

m− 2

)

4χ2 − 1

6

(

m

m− 3

)

8χ3 + . . . , (5.45)
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giving

〈m| cos kx̂|m〉 =

(

1− χ+
χ2

2
− . . .

)

(

1− 2mχ+m(m− 1)χ2 + . . .
)

= 1− (2m+ 1)χ+ (m2 +m+ 1
2)χ2 +O(χ3). (5.46)

The matrix element by which this has been approximated is

〈m|
[

1− χ(â+ â†)2
]

|m〉 = 1− (2m+ 1)χ. (5.47)

The difference between the exact and approximate matrix elements is therefore of
order χ2m2. The diagonal matrix elements are of order 1, and so the fractional error
is also ∼ χ2m2.

Off-diagonal elements

The matrix elements appearing on the second off-diagonal can be found by setting
l = 1 in Eq. (5.42). We find

〈m| cos kx̂|m+ 2〉 = −2χ

√

m!

(m+ 2)!
e−χL(2)

m (2χ). (5.48)

Expanding the Laguerre polynomial and exponential as before yields

〈m| cos kx̂|m+ 2〉 =
−2χ

√

(m+ 1)(m+ 2)

(

1− χ+
χ2

2
− . . .

)

×
[

(m+ 1)(m+ 2)

2
− m(m+ 1)(m+ 2)

3
χ+ . . .

]

(5.49)

which can be simplified to give

〈m| cos kx̂|m+ 2〉 = −
√

(m+ 1)(m+ 2)

[

χ−
(

1 +
2m

3

)

χ2 +O(χ3)

]

. (5.50)

The approximate expression used for the second off-diagonal matrix elements is

〈m|
[

1− χ(â+ â†)2
]

|m+ 2〉 = −χ
√

(m+ 1)(m+ 2) (5.51)

and so the difference between the two is again of order χ2m2. However, the ma-
trix elements themselves are of order χm, and so the fractional error is ∼ χm –
significantly larger than for the diagonal elements.

5.2.3 Evaluation of 〈m| sin kx̂|n〉
The matrix elements of sin kx̂ can be evaluated in an identical manner to that
outlined above. We arrive at (cf. Eq. (5.39))

〈m| sin kx̂|n〉 = 1√
π 2m+nm!n!

∫ ∞

−∞
dy sin

(

k

√

~

mωT
y

)

e−y
2

Hm(y)Hn(y). (5.52)
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For the integrand of this expression to be even, precisely one of Hm(y) and Hn(y)
must be odd; thus we can write

〈m| sin kx̂|n〉 =
{

Eq. (5.52) n = m+ 2l + 1, l ∈ Z

0 else.
(5.53)

To evaluate this expression we require the integral [13]

∫ ∞

0
sin(bz)e−z

2

Hk(z)Hk+2l+1(z) = (−1)l2k−1√π k! b2l+1e−
b2

4 L
(2l+1)
k

(

b2

2

)

.

(5.54)

We are only interested in the elements appearing on the first off-diagonal of the
matrix. Setting l = 0 gives

〈m| sin kx̂|m+ 1〉 =
1√
m+ 1

√

2χ e−χ L(1)
m (2χ) (5.55)

which can be expanded to give

〈m| sin kx̂|m+ 1〉 =
1√
m+ 1

√

2χ

(

1− χ+
χ2

2
− . . .

)

×
[

m+ 1−m(m+ 1)χ+
(m− 1)m(m+ 1)

3
χ2 − . . .

]

=
√

2χ
√
m+ 1

[

1− (m+ 1)χ+O(χ2)
]

. (5.56)

This matrix element has been approximated by

〈m|kx̂|m+ 1〉 =
√

2χ
√
m+ 1. (5.57)

Comparing the two expressions, we find that the difference is of order (χm)3/2, while
the matrix elements themselves are of order (χm)1/2. The fractional error in the
first off-diagonal matrix elements is therefore ∼ χm.

5.2.4 Behaviour of operator moments

In order to determine the effect of the difference between the approximate and exact
matrix elements on the numeric solutions, we now turn to a direct comparison of
the behaviour of the operator moments for the two cases. Figures 5.6 – 5.8 show
the exact and approximate solutions for 〈â〉, 〈â†â〉 and P+ for the case of δ = 0.

For short times, the exact numeric solutions agree well with the approximate
solutions presented in Chapter 3. For longer times, however, the movement of 〈â〉
on the phase plane and the periodic oscillations seen in the average phonon number
become progressively smaller, while the revivals in the atomic excitation probabil-
ity decrease in amplitude, becoming partial rather than complete. Eventually, the
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Figure 5.6: A comparison of the exact (solid) and approximate (dotted) solutions
for the motion of 〈â〉 on the phase plane. Parameters are χ = 0.025,
Ω/ωT = 1, τ = 0− 2000.
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〈â†â〉

Figure 5.7: A comparison of the exact (solid) and approximate (dotted) solutions
for the average phonon number. Parameters are χ = 0.025, Ω/ωT =
1.

motion of 〈â〉 on phase plane ceases, the average phonon number stabilises at |α0|2,
and all traces of collapse and revival behaviour disappear from the atomic excitation
probability, which instead shows complicated oscillations about the mean value of
0.5.

One approach to understanding this change in behaviour is to consider the Rabi
oscillations of the individual number states. If we neglect the effect of the off-diagonal
terms (which are smaller by a factor of χΩ), we find that the state expansion coef-
ficients c±n execute Rabi oscillations with a frequency which depends on n. As seen
earlier, the revivals in the atomic excitation probability can be understood as being
caused by the periodic rephasing of the individual Rabi oscillations of the number
states, and thus occur every time the difference between two neighbouring Rabi fre-
quencies (i.e. χΩ) is an integer multiple of 2π.

In the exact case, the difference between neighbouring diagonal matrix elements
(and thus, the spacing of the individual Rabi frequencies) is given by the difference
of two Laguerre polynomials multiplied by an exponential (see Eq. (5.43)). The
exponential term means that – in contrast to the approximate case – the exact Rabi
frequencies are irrational and therefore cannot completely rephase; the revivals seen
in the atomic excitation probability thus gradually diminish in amplitude before
disappearing altogether. The dynamics seen in the exact solution to the system
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Figure 5.8: A comparison of the exact (solid) and approximate (dotted) solutions
for the atomic excitation probability. Note that in the exact solution,
the revivals are partial, becoming progressively smaller in amplitude.
Parameters are χ = 0.025, Ω/ωT = 1.
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are more closely related to the Jaynes-Cummings model than to the anharmonic
oscillator.
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Chapter 6

Conclusion

6.1 Summary

In this thesis we have presented the results of an investigation into the behaviour of
a harmonically trapped two-level atom with quantised centre-of-mass motion inter-
acting with a resonant standing wave electromagnetic field.

We investigated numerically the evolution of the motional and internal states of
the atom. These numeric solutions showed that the atomic excitation probability
exhibited collapse and revival behaviour. The revivals were found to be complete,
bearing more resemblance to those appearing in the anharmonic oscillator than
those of the Jaynes-Cummings model. We characterised the motional dynamics of
the atom by constructing the Q function for the atomic centre-of-mass state and
studying the behaviour of the mean atomic position. We found that the coupling
of the atom to the electromagnetic field led to a modulation of the amplitude of
oscillation of the atom in the trap. Empirical estimates showed that the frequency
and amplitude of the modulation were both governed by the dimensionless param-
eter χΩ/ωT , where χ is proportional to the Lamb-Dicke parameter, Ω is the Rabi
frequency of the two-level atom, and ωT is the frequency of the harmonic trap.

We then developed an analytic treatment of the system. A change in atomic basis
from the energy eigenstates to the atomic dressed states led to the separation of the
system Hamiltonian into two pieces, each of which governed the evolution of a single
dressed motional state and had the form of a squeezing Hamiltonian. We showed
that each piece could be put into a diagonal form by making a Bogoliubov trans-
formation of the ladder operators for the harmonic trap â and â†, then used these
diagonal forms to derive analytic expressions for the operator moments, atomic ex-
citation probability, and Q and Wigner functions for the atomic centre of mass state.

In addition to allowing the derivation of analytic solutions, the diagonalisation
of the Hamiltonian proved to be a crucial step in the physical interpretation of the
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effect of the atom-field interaction on the system. We used the diagonal form of
the Hamiltonian to show that the interaction of the atom with the electromagnetic
field produced a shift in the trap oscillation frequency which was dependent on the
internal state of the atom. This state-dependent frequency shift was shown to be
the root cause of the features seen in the system dynamics.

We then extended the analytic diagonalisation and solution of the system Hamil-
tonianto to include an arbitrary trap position on the standing wave. The results of
this extension showed that as the trap was moved away from the antinode, the
squeezing term gradually disappeared from the Hamiltonian and was replaced by a
displacement term. Consequently, the state-dependent frequency shift was replaced
by a state-dependent trap centre and oscillation amplitude, resulting in the disap-
pearance of much of the interesting behaviour seen in the system dynamics.

We also investigated the effect of retaining some of the higher-order terms that
were previously discarded from the Hamiltonian. We found that this ‘exact’ model
initially exhibited qualitatively similar behaviour to the ‘approximate’ model; how-
ever, as time passed, the movement of 〈â〉 on the phase plane ceased and the revivals
in the atomic excitation probability became progressively smaller. We showed that
this was a result of the higher-order terms making the individual Rabi frequencies
irrational (and hence incommensurate) in a similar manner to the Jaynes-Cummings
model.

6.2 Future directions

There are a number of directions in which the work presented in this thesis could
be profitably extended. One such continuation is to consider the behaviour of the
system outside the Lamb-Dicke regime. This was discussed in a limited way in
Chapter 5, where we found that the inclusion of two-phonon terms to all orders in
the Lamb-Dicke parameter changed the long-time behaviour of the system dynamics.

However, this particular extension is likely to be of interest more for the sake
of completeness than for the possibility of discovering anything particularly novel
about the system. Since the terms neglected in the treatment of §5.2 are of order
η4
LD and higher, as long as ηLD is restricted to physically reasonable values we might

expect that, at least for short- and medium- term dynamics, the effect of including
further terms would be small and quantitative (for example, minor adjustments to
the revival frequency) rather than qualitative.

Another extension of the current model is to allow for a non-zero detuning of the
laser from resonance with the atom. In this case, the transformation that removed
the time-dependence from the interaction term (cf. Eq. (4.1)) would be such that a
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term in σ̂z proportional to the detuning would remain in the Hamiltonian, i.e.

H̃ = ~∆ σ̂z + ~ωT
(

â†â+ 1
2

)

+
~Ω

2
(σ̂+ + σ̂−)

[

1− χ(â+ â†)2
]

. (6.1)

This model could be solved numerically by a similar method to that used in this
thesis. Alternatively, an analytical approach could be taken, although any attempt
to apply an identical procedure to that used in this thesis is immediately faced
with the difficulty that the dressed states (i.e. the interaction-picture eigenstates)
of the atom are no longer simply |U〉 and |L〉. To find the atomic eigenstates for an
arbitrary detuning requires solving the matrix equation

(

~ωT
(

â†â+ 1
2

)

+ ~∆ ~Ω
2

[

1− χ(â+ â†)2
]

~Ω
2

[

1− χ(â+ â†)2
]

~ωT
(

â†â+ 1
2

)

− ~∆

)(

|φ+〉
|φ−〉

)

= Eatom

(

|φ+〉
|φ−〉

)

(6.2)

where the eigenstate has been expanded as |φ+〉|+〉+ |φ−〉|−〉. Unfortunately, it is
not clear from this expression that finding analytic solutions to the model is possible.

An extension which is certainly feasible, however, is to include spontaneous emis-
sion by the atom. This model is currently being investigated by our group at the
University of Auckland. In this case the coherent evolution of the state vector is
sporadically interrupted by ‘measurements’ corresponding to spontaneous emission
events; the effect of each photon emission is to change the momentum of the atom by
an amount equal to the photon recoil and reset the atom to the ground state. Since
the timing of spontaneous emission events is inherently random, the mathematical
language required to describe the system is that of stochastic processes. The system
can be investigated numerically by use of a quantum trajectory method, the details
of which are described in Ref. [24].
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Appendix A

Special Functions

A.1 The Hermite polynomials

The Hermite polynomials are a set of orthogonal polynomials which are important
in several areas of physics and mathematics [14]. They can be defined as

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(A.1)

and are orthogonal on the interval (−∞,∞) with respect to the weighting function
e−x

2
:

∫ ∞

−∞
Hm(x)Hn(x) e

−x2

dx = δm,n 2n n!
√
π. (A.2)

They satisfy the symmetry condition

Hn(−x) = (−1)nHn(x) (A.3)

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−2(x). (A.4)

The first few Hermite polynomials are

H0(x) = 1 (A.5a)

H1(x) = 2x (A.5b)

H2(x) = 4x2 − 2 (A.5c)

H3(x) = 8x3 − 12x (A.5d)

H4(x) = 16x4 − 48x2 + 12. (A.5e)

A.2 The Laguerre polynomials

The Laguerre and associated Laguerre polynomials are useful in several areas of
physics and appear, for example, in the solution of the Schrödinger equation for the
hydrogen atom [15].
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A.2. THE LAGUERRE POLYNOMIALS

A.2.1 Laguerre polynomials

The Laguerre polynomials Ln(x) are solutions to the Laguerre differential equation

x
d2y

dx2
+ (1− x)dy

dx
+ ny = 0. (A.6)

They can be defined as

Ln(x) =
ex

n!

dn

dxn
(xne−x). (A.7)

and satisfy the recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x). (A.8)

The first few Laguerre polynomials are

L0(x) = 1 (A.9a)

L1(x) = 1− x (A.9b)

L2(x) = 1
2(2− 4x+ x2) (A.9c)

L3(x) = 1
6(6− 18x+ 9x2 − x3) (A.9d)

L4(x) = 1
24(24− 96x+ 72x2 − 16x3 + x4). (A.9e)

A.2.2 Associated Laguerre polynomials

The Laguerre differential equation can be generalised to the associated Laguerre
differential equation

x
d2y

dx2
+ (α+ 1− x)dy

dx
+ ny = 0. (A.10)

The solutions to the associated Laguerre differential equation are known as the as-

sociated Laguerre polynomials, L
(α)
n (x). The Laguerre polynomials are thus related

to the associated Laguerre polynomials by

Ln(x) = L(0)
n (x). (A.11)

The associated Laguerre polynomials can be defined as

L(α)
n (x) =

exx−α

n!

dn

dxn
(e−xxn+α) (A.12)

and are given explicitly by

L(α)
n (x) =

n
∑

i=0

1

i!

(

n+ α

n− i

)

(−x)i, (A.13)
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where
(

n+α
n+i

)

is a binomial coefficient.

They satisfy the recurrence relations

L(α−1)
n (x) = L(α)

n (x)− L(α)
n−1(x) (A.14a)

(n+ α)L(α−1)
n (x) = (n+ 1)L

(α)
n+1(x)− (n+ 1− x)L(α)

n (x) (A.14b)

which together imply

(n+ 1)L
(α)
n+1(x) = (2n+ 1 + α− x)L(α)

n (x)− (n+ α)L
(α)
n−1(x). (A.14c)

The first few associated Laguerre polynomials are

L
(α)
0 (x) = 1 (A.15a)

L
(α)
1 (x) = 1 + α− x (A.15b)

L
(α)
2 (x) = 1

2

[

(α+ 1)(α+ 2)− 4x+ x2
]

(A.15c)

L
(α)
3 (x) = 1

6

[

(α+ 1)(α+ 2)(α+ 3)− 3(α+ 2)(α+ 3)x+ 3(α+ 3)x2 − x3
]

.
(A.15d)
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Appendix B

Operator Ordering Relations

In the course of finding analytic solutions for this system it has frequently been
necessary to reorder various operator expressions. This section summarises some
of the operator relations used in deriving the results presented in Chapter 4. For
notational convenience, the operators will be written without hats.

B.1 Preliminaries

The starting point for any discussion of operator ordering is the Baker-Hausdorff
expansion [44]:

eλBAe−λB =
∑

n

λn

n!
(n)[B,A] (B.1)

where (n)[B,A] denotes the n-fold-nested commutator of B and A. Let us assume
the particular case of

[A,B] = kA (B.2)

and consider the operator product

F ≡ eλBAe−λB. (B.3)

We can apply the Baker-Hausdorff expansion directly, with the n-fold commutator
being given by

(n)[B,A] = (−k)nA; (B.4)

thus

F = A− λk

1!
A+

λ2k2

2!
A− λ3k3

3!
A+

λ4k4

4!
A− . . .

= A

(

1− λk

1!
+
λ2k2

2!
− λ3k3

3!
+
λ4k4

4!
− . . .

)

= Ae−kλ. (B.5)
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This is the most direct way of evaluating an operator expression such as Eq. (B.3),
and its success relies heavily on both the existence of a simple closed-form expression
for the n-fold commutator and the recognition of the ensuing expression as the
series representation of one or more common functions. Although in principle the
procedure is applicable to the disentangling of any operator expression subject to
arbitrary commutation relations, it is clear that in practice the algebra will render
intractable all but the simplest cases. It is as well, therefore, to have in our repertoire
a more powerful and general technique for evaluating operator expressions. To this
end, let us return to the definition of F , Eq. (B.3) – from which it is clear that F is
a function of λ – and find the form of this dependence by differentiating:

dF

dλ
= eλBBAe−λB − eλBAB e−λB

= eλB[B,A]e−λB

= −kF (B.6)

where we have used the commutation relation Eq. (B.2) and the definition of F .
Straightforward integration of Eq. (B.6), coupled with the boundary condition F |λ=0 =
A, gives the solution directly:

F = eλBAe−λB = Ae−kλ. (B.7)

This technique of differentiation, rearrangement and re-integration is simple and
powerful and will serve us well in our foray into the realm of operator disentangling.

B.2 Spin operator disentangling

Consider a set of operators σ±, σz obeying spin commutation relations

[σ+, σ−] = σz (B.8a)

[σz, σ±] = ±2σ±. (B.8b)

These operators need not describe an actual spin system; it only matters that they
satisfy the correct commutation relations. In particular, note that we can identify

−1

2
a2 ←→ σ−

1

2
a†2 ←→ σ+

a†a+ 1
2 ←→ σz

which provides the link between the proofs presented here and the operator disen-
tangling relations stated in Chapter 4. Note that σz and σ± satisfy Eq. (B.2) with
k = ∓2, and so

eβσzσ± e
−βσz = σ± e

±2β . (B.9)
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Using the technique outlined above, it is simple to show that

eασ±σz e
−ασ± = σz ∓ 2ασ± (B.10a)

and in a similar fashion we can derive

eβσ∓σ± e
−βσ∓ = σ± ∓ βσz − β2σ∓ (B.10b)

eκ(σ++σ−)σ− e
−κ(σ++σ−) = 1

2(σ+ + σ−) + 1
2σz sinh 2κ− 1

2(σ+ − σ−) cosh 2κ.
(B.10c)

The structure of the latter two operator products requires that the second and third
derivatives, respectively, be taken. The only departure from the usual procedure
imposed by this is the application of extra boundary conditions in order to find the
constants of integration.

We are now in a position to prove the main results of this section.

B.2.1 First result

The first result that we have use of is

eκ(σ++σ−) = eσ± tanhκ(coshκ)∓σzeσ∓ tanhκ. (B.11)

Consider the operator expression eκ(σ++σ−). We wish to reorder this product so that
the σ+ operators appear to the left of the σ− operators.1 Due to the commutation
relation given by Eq. (B.8a), this disentangling will produce some σz operators along
the way; we can therefore write

eκ(σ++σ−) = ef(κ)σ+eg(κ)σzeh(κ)σ− (B.12)

where f(κ), g(κ) and h(κ) are unknown functions of κ. Our goal is to find the
particular choice of f , g and h that makes Eq. (B.12) a true statement. We begin
by rewriting it as

eκ(σ++σ−)e−h(κ)σ− = ef(κ)σ+eg(κ)σz (B.13)

and differentiating with respect to κ :

d

dκ
[L.H.S] = (σ+ + σ−)eκ(σ++σ−)e−h(κ)σ− − h′(κ)eκ(σ++σ−)σ−e

−h(κ)σ− (B.14)

d

dκ
[R.H.S] = f ′(κ)σ+e

f(κ)σ+eg(κ)σz + g′(κ)ef(κ)σ+σze
g(κ)σz . (B.15)

1A largely identical procedure can, of course, be applied to derive the result for the opposite
case.
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Using Eq. (B.10) to move the exponentials to the right and gathering like terms
yields

d

dκ
[L.H.S] =

[

σ+

(

1− h′(κ)(1− cosh 2κ)

2

)

+ σ−

(

1− h′(κ)(1 + cosh 2κ)

2

)

−σz
h′(κ)

2
sinh 2κ

]

× eκ(σ++σ−)e−h(κ)σ−

d

dκ
[R.H.S] =

[

σ+

(

f ′(κ)− 2g′(κ)f(κ)
)

+ σzg
′(κ)

]

× ef(κ)σ+eg(κ)σz

To make Eq. (B.12) true, the coefficients of σ−, σ+ and σz must be equal, implying

1− h′(κ)

2
(1 + cosh 2κ) = 0 (B.16a)

1− h′(κ)

2
(1− cosh 2κ) = f ′(κ)− 2g′(κ)f(κ) (B.16b)

− sinh 2κ
h′(κ)

2
= g′(κ). (B.16c)

With the help of the relation cosh 2κ + 1 = sech2 κ, Eq. (B.16a) is trivial to solve,
giving

h(κ) = tanhκ (B.17)

where the boundary condition h(0) = 0 (see Eq. (B.12)) has been applied. Sub-
stitution of this result into Eq. (B.16c) and application of the boundary condition
g(0) = 0 gives immediately

g(κ) = − ln(coshκ). (B.18)

The differential equation for f(κ) is not as straightforward as the other two, but may
be solved by the method of integrating factors [16]. Alternatively, a relationship
between f(κ) and h(κ) can be deduced by considering the Hermitian conjugate
of Eq. (B.12). Assuming for a moment that κ is real, the operator eκ(σ++σ−) is
Hermitian; equating the right-hand side of Eq. (B.12) and its Hermitian conjugate
gives f(κ) = h∗(κ); thus we find

f(κ) = tanhκ. (B.19)

The assumption that κ is real can be lifted by applying a similar argument to the
real and imaginary parts of κ independently, but we need not concern ourselves with
this detail here.

B.2.2 Second result

The second result worthy of proof is

eκσ± eλσ∓ = eλσ∓/(1+κλ) (1 + κλ)±σz eκσ±/(1+κλ). (B.20)
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Along the same lines as above, let us write

eκσ+eλσ− = ef(κ,λ)σ−eg(κ,λ)σzeh(κ,λ)σ+ (B.21)

where f , g and h are now functions of both κ and λ. Treating λ as a constant
parameter, differentiating with respect to κ and shuffling the exponentials to the
right gives

d

dκ
[L.H.S] =

[

σ+

(

1− (1 + κλ)2
dh

dκ

)

+ σ−λ
2dh

dκ
+ σz

(

λ(1 + κλ)
dh

dκ

)]

× eκσ+eλσ−e−h(κ,λ)σ+

d

dκ
[R.H.S] =

[

σ−

(

df

dκ
+ 2f

dg

dκ

)

+ σ−
dg

dκ

]

ef(κ,λ)σ−eg(κ,λ)σz .

Equating coefficients of σ+, σ− and σz gives

dh

dκ
=

1

(1 + κλ)2
(B.22a)

dg

dκ
= λ(1 + κλ)

dh

dκ
(B.22b)

df

dκ
= λ2dh

dκ
− 2f

dg

dκ
(B.22c)

which, in conjunction with the boundary conditions f(0, λ) = λ, g(0, λ) = h(0, λ) =
0, give the solutions

f(κ, λ) =
λ

1 + κλ
(B.23a)

g(κ, λ) = ln(1 + κλ) (B.23b)

h(κ, λ) =
κ

1 + κλ
. (B.23c)

B.2.3 Third result

The third operator relationship used was

exp
[

β â†â
]

= : exp
[

(eβ − 1) â†â
]

: . (B.24)

To prove this it is sufficient to show that the expectation value taken with respect
to the coherent state |α〉 is the same on each side. The expectation value of the
quantity on the left-hand side is

〈α| exp
[

β â†â
]

〉α = e−|α|2
∞
∑

m,n=0

α∗mαn√
m!n!

〈m| exp
[

βâ†â
]

|n〉

= e−|α|2
∞
∑

n=0

|α|2neβn
n!

= exp
[

|α|2(eβ − 1)
]

. (B.25)
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This is identical to the expectation value of the right-hand side of Eq. (B.24) with
respect to a coherent state, which completes the proof.
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Appendix C

Fourier Transforms

The Fourier transform plays an important role in many branches of science and
mathematics and is an indispensable tool of the theoretical physicist, finding appli-
cations in areas ranging from optics and signal processing to quantum field theory.
This section discusses and summarises some of the properties of the Fourier trans-
form and its discrete counterpart.

The reader is assumed to be familiar with the basic theory of the continuous
Fourier transform and only a brief summary of its key properties is given here. On
the other hand, the discrete Fourier transform (DFT) is less commonly encountered,
and so a derivation of the DFT which highlights its relationship to the continuous
Fourier transform is included.

For a comprehensive development of the topics touched on here the reader is
referred to the excellent books of Bracewell [22] and Briggs & Henson [23].

C.1 The Fourier transform

The Fourier transform F (ν) of a function f(t) is defined as

F (ν) =

∫ ∞

−∞
f(t) e−i2πνtdt (C.1)

and exists as long as f(t) is absolutely integrable, i.e.

∫ ∞

−∞
|f(t)| dt <∞. (C.2)

The further condition that f(t) is of bounded variation allows f(t) to be recovered
via the inverse transform

f(t) =
1

2π

∫ ∞

−∞
F (ν)ei2πνtdν. (C.3)
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These conditions may be relaxed somewhat in order to extend the class of functions
for which the Fourier transform exists; however the functions encountered in physics
are almost invariably mathematically well-behaved and the current conditions will
suffice for our purposes.

In the definition Eq. (C.1), t and ν are an example of a conjugate variable pair
and show that the transform takes a function from the time domain into the fre-
quency domain. They could equally well be replaced by λ/(2π) and the wavenumber
k, which would give a Fourier transform from the spatial domain into momentum
space.

The Fourier transform has many useful properties, a full account of which can
be found in Chapter 6 of Bracewell [22]. A selection of a few of the more important
ones follows.

Linearity

af1(t) + bf2(t)↔ aF1(ν) + bF2(ν)a, b ∈ C (C.4)

Scaling

f(at)↔ 1

|a|F
(ν

a

)

a ∈ R (C.5)

Shift theorem

f(t− t0)↔ exp (−i2πνt0)F (ν) (C.6)

Symmetry

If f(t) is















even
odd
real

imaginary















, F (ν) is















even
odd

hermitian
antihermitian















(C.7)

where (anti)hermitian means F (−ν) = (−)F ∗(ν).

C.2 The discrete Fourier Transform

Given the discrete nature of digital information storage, a numerical implementa-
tion of the Fourier transform must deal not with a continuous function f(t), but
with a vector consisting of a set of values of the function f(t) at various instants of
time. This motivates the definition of the discrete Fourier transform, which we shall
explore here as an approximation to the continuous case.
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For the purposes of computation, let us assume that f(t) vanishes outside some
interval, i.e. f(t) = 0 for |t| > A/2.1 Then the Fourier transform of f(t) is given by

F (ν) =

∫ A
2

−A
2

f(t) e−i2πνtdt. (C.8)

We wish to approximate this integral in order to find a numerical implementation
of the Fourier transform. Let us divide the interval of integration up into N pieces
of length ∆t = A/N ; assuming N is even, this defines a grid of N + 1 points in the
time domain with values tn = n∆t (n = −N/2, . . . , N/2). As long as f(t) is known
at the grid points, the integral contained in Eq. (C.8) can be approximated by the
trapezoid rule. Defining the integrand

g(t) ≡ f(t)e−i2πνt (C.9)

we have

F (ν) =

∫ A
2

−A
2

g(t) dt ≈ ∆t

2






g

(

−A
2

)

+ 2

N
2 −1
∑

n=−
N
2 +1

g(tn) + g

(

A

2

)






. (C.10)

If we add the requirement that g(−A/2) = g(A/2) – trivially fulfilled if we have
chosen our interval A such that f(t) vanishes at the boundaries – the approximated
integral becomes

F (ν) =

∫ A
2

−A
2

g(t) dt ≈ ∆t

N
2 −1
∑

n=−
N
2

g(tn)

=
A

N

N
2 −1
∑

n=−
N
2

f(tn) e
−i2πνtn . (C.11)

Although this approximation to the Fourier transform may be evaluated at any value
of ν, the fact that we are working on a discrete grid leads us to choose a specific set
of points at which to approximate F (ν). It makes sense to choose N values of ν,
so that a vector of N samples in the time domain is mapped to a vector containing
the Fourier transform evaluated at N points in the frequency domain. The question
of which frequency values to use is intimately related to the structure of the grid
on which our function f(t) is defined — namely, a grid extending over [−A/2, A/2]
with grid spacing ∆t and grid points tn = n∆t. Associated with this is a similar
grid in frequency space, denoted [−Ω/2,Ω/2], with grid spacing ∆ν and grid points
νk = k∆ν, k = −N/2, . . . , N/2 − 1. We wish to find the relationship between the
four grid parameters ∆t,∆ν,A and Ω.

1This is a reasonable assumption to make for most physically sensible functions, but see Chapter
2 of Briggs & Henson [23] for further discussion.
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The reciprocity relations

Consider the family of sine and cosine waves which have an integer number of
periods on [−A/2, A/2] and so fit exactly on the interval in the time domain. The
lowest frequency among these is that of the wave with a single period on the interval
and a frequency νmin = 1/A. The frequencies of the other waves will be integer
multiples of this fundamental frequency, which makes it the logical choice for the
grid spacing in the frequency domain:

∆ν =
1

A
. (C.12)

There are N grid points in frequency space, each separated by ∆ν, and so we find
that

Ω = N∆ν =
N

A
or AΩ = N. (C.13)

We also know that the length of the interval in the time domain is related to the
grid spacing by A = N∆t. Combining this with our knowledge of ∆ν gives the
relationship between grid spacings in the two domains:

∆t∆ν =
1

N
. (C.14)

Equations (C.13) and (C.14) constitute the reciprocity relations, which describe the
inverse relationship between the grid parameters in time and frequency space.

Let us return to the approximation to the Fourier transform described by Eq. (C.11)
and evaluate it at the grid points νk = k∆ν = k/A. Our new-found knowledge of
the reciprocity relations allows us to write

tnνk = (n∆t)(k∆ν) =
nk

N
(C.15)

so that the approximation at the frequency grid points νk = k∆ν is given by

F (νk) = F

(

k

A

)

≈ A

N

N
2 −1
∑

n=−
N
2

f(tn) e
−i2πnk/N . (C.16)

Denoting by fn the sampled values f(tn), we now define the DFT to be

Fk ≡
1

N

N
2 −1
∑

n=−
N
2

fn e
−i2πnk/N . (C.17)

Thus for any vector of N sampled time values fn the DFT consists of the N coeffi-
cients Fk defined by Eq. (C.17). We can see from Eq. (C.16) that these coefficients
are related to the Fourier transform at certain points; in fact

F (k∆ν) ≈ AFk. (C.18)
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In general, the properties of the discrete Fourier transform (scaling, shifting, etc.)
are of the same form as for the continuous case.
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Appendix D

Bogoliubov Transformations

It is sometimes the case that a complicated Hamiltonian can be put into a simpler
form by rewriting it in terms of a new set of operators, defined as linear combi-
nations of the old ones. In the case of the harmonic oscillator operators â and
â†, the transformation linking the old and new operators is commonly known as a
Bogoliubov transformation [21]. This section presents an outline of a generic Bo-
goliubov transformation and shows how it can be applied to diagonalise a squeezing
Hamiltonian.

D.1 Formalism of the transformation

If we are transforming from â and â† to b̂ and b̂†, we could write
(

b̂

b̂†

)

=

(

µ −ν
−ν∗ µ∗

)(

â
â†

)

(D.1)

where the negative sign on ν has been included for later convenience. A restriction
on µ and ν is enforced by the fact that the new operators must obey the same
commutation rules as the old ones; i.e. that the transformation be canonical. This
imposes the requirement that

|µ|2 − |ν|2 =1 if [â, â†] = 1, or

|µ|2 + |ν|2 =1 if {â, â†} = 1.

It would appear at first glance that with two complex parameters, each having
a magnitude and a phase, we have four free variables. In reality, only two are
independently specifiable: the overall phase of b̂ and b̂† is arbitrary, meaning that
one of µ or ν can be chosen to be real, while the requirement that the transformation
be canonical means that the amplitudes of µ and ν cannot be specified independently.
These restrictions can be taken into account by writing

µ =

{

coshx

cosx

}

, ν =

{

eiφ sinhx

eiφ sinx

}

(D.2)
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where the top (bottom) line applies when b̂ and b̂† are required to obey bosonic
(fermionic) commutation relations. The two free variables are now the argument x
of the trigonometric functions and the phase φ, and the transformation described
by Eq. (D.1) can be written as

(

b̂

b̂†

)

=
1

√

1∓ |η|2

(

1 −η
−η∗ 1

)(

â
â†

)

(D.3)

where η ≡ eiφ tan(h)x.

As well as simplifying the transformation somewhat, writing µ and ν in terms
of trigonometric functions makes explicit the parallel between the squeezing trans-
formation (Eq. (2.62)) and the bosonic case of Eq. (D.1). Comparison of the two
gives

b̂(†) = S†(x) â(†)S(x); (D.4)

in the bosonic case, Bogoliubov transformations are produced by the unitary squeez-
ing operator.

D.2 Diagonalising a squeezing Hamiltonian

A squeezing Hamiltonian has the general form

Ĥ = ~ω(â†â+ 1
2) + ~g(â2 e2iθ + â†2 e−2iθ) (D.5)

where â and â† obey bosonic commutation relations. Since the θ dependence of
this Hamiltonian can be removed by making a rotation of the phase space (i.e. by
defining â′ = â eiθ) we can restrict our solution to the case of θ = 0.

We wish to find operators b̂ and b̂† which make the squeezing Hamiltonian diag-
onal:

Ĥ = ~ωb
(

b̂†b̂+ 1
2

)

(D.6)

for some effective mode frequency ωb. We begin by rescaling the Hamiltonian:

Ĥ ′ ≡ Ĥ

~ω
= â†â+ 1

2 + λ(â2 + â†2), (D.7)

where λ = g/ω. Next, we make use of the transformation relation given by Eq. (D.3)
to write

(

â
â†

)

=
1

√

1− |η|2

(

1 η
η∗ 1

)(

b̂

b̂†

)
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and substitute for â and â† in Eq. (D.7), giving

Ĥ ′ =
1

1− |η|2
[ (

b̂†b̂+ 1
2

)

(

|η|2 + 2λ(η + η∗) + 1
)

+b̂2
(

λη∗2 + η∗ + λ
)

+ b̂†2
(

λη2 + η + λ
)

]

. (D.8)

In order for this to be in the diagonal form of Eq. (D.6), we require the quadratic
terms in b̂ and b̂† to vanish. This is satisfied by choosing

η = η∗ =
−1± χ

2λ
, (D.9)

where χ ≡
√

1− 4λ2. We can now evaluate the remaining term in Eq. (D.8) to find

Ĥ ′ = ±χ
(

b̂†b̂+ 1
2

)

= ±χS†(x)
(

â†â+ 1
2

)

S(x) (D.10)

where x = tanh−1 η. The requirement that the Hamiltonian return positive definite
values for the energy means that only the upper sign in Eq. (D.9) is physically
sensible. Converting back to the original Hamiltonian gives

Ĥ =
√

ω2 − 4g2
(

b̂†b̂+ 1
2

)

(D.11)

which is the Hamiltonian for a single-mode harmonic oscillator with effective fre-
quency ωb =

√

ω2 − 4g2.
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Appendix E

Aspects of the Numerical

Solutions

The numerical solution of the system was carried out using FORTRAN 90. Here we
comment on several features of the program used to solve the equations of motion.

E.1 Numerical considerations

Evaluation of exponential terms

Repeatedly calling the intrinsic exponential function is an inefficient way to cal-
culate the values of the exponentials e±2iτ appearing in the equations of motion
Eq. (3.19).These factors can be calculated more efficiently by writing

e±2iτn = e±2iτn−1 × e±2i∆τ ,

where ∆τ is the size of the time step used in the numerical integration, and τn ≡ n∆τ
are the discrete times at which the exponentials must be evaluated. The values of
the exponentials at successive time steps are thus related by the constant factor
e±2i∆τ , which need only be calculated once at the beginning of the program. It can
then be used to evolve the exponentials through time without calling the exponential
function at each time step.

Evaluation of expansion cofficients of the state |α0〉
The appearance of

√
n! in the evaluation of the coherent-state coefficients (see

Eq. (3.20)) can pose a numerical problem if the coherent state is of sufficiently large
amplitude that high number states are involved in its expansion. If the näıve ap-
proach of evaluating n!, then finding its square-root is taken, problems with the size
of values able to be stored by FORTRAN data types can occur.

This problem can be avoided by defining quantities

An,α0
= ln

(

αn0√
n!

)

(E.1)
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where n = 0, 1, 2, . . . . These quantities obey the recursion relation

An,α0
= An−1,α0

+ lnα0 − 1
2 lnn, (E.2)

with initial condition A0,α0
= 0; the An,α0

can thus be constructed without ever
explicitly evaluating the factorials they contain. The state expansion coefficients
can then be found as

cn,α0
= e−

1
2
|α0|2 expAn,α0

. (E.3)

E.2 Exact matrix elements of cos kx̂ and sin kx̂

In the course of finding the ‘exact’ solutions presented in §5.2 it was necessary to
numerically evaluate matrix elements containing Laguerre polynomials. This section
outlines the procedure used to calculate these expressions; in all cases n denotes an
integer which ranges from zero to a value determined by the highest number state
included in the truncated Fock basis.

E.2.1 Elements of cos kx̂

Diagonal elements

Denoting by Dn the diagonal matrix elements of cos kx̂, we have from Eq. (5.43)

Dn = e−χLn(2χ). (E.4)

Since Ln(2χ) is related to Ln−1(2χ) and Ln−2(2χ) by way of Eq. (A.8), it is easy to
show that the Dn are related by

Dn+1 =
2n+ 1− 2χ

n+ 1
Dn −

n

n+ 1
Dn−1, (E.5)

with initial conditions

D0 = e−χ (E.6a)

D1 = (1− 2χ)e−χ. (E.6b)

Second off-diagonal elements

Using Un to denote the second off-diagonal matrix elements of the cosine, we have
from Eq. (5.48)

Un =
2χ

√

(n+ 1)(n+ 2)
e−χ L(2)

n (2χ). (E.7)

By making use of the recursion relation for associated Laguerre polynomials (Eq. (A.14c)),
it is easy to show that

Un+1 =
2n+ 3− 2χ

√

(n+ 1)(n+ 3)
Un −

√

n(n+ 2)

(n+ 1)(n+ 3)
Un−1, (E.8)
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with initial conditions

U0 =
√

2χe−χ (E.9a)

U1 =

√

2

3
χ e−χ(3− 2χ). (E.9b)

E.2.2 Elements of sin kx̂

We denote by Sn the elements appearing on the first off-diagonal of the matrix
representation of sin kx̂. From Eq. (5.55) we have

Sn ≡
√

2χ

n+ 1
e−χL(1)

n (2χ). (E.10)

Using the recursion relation given by Eq. (A.14c) we find that the elements Sn obey

Sn+1 =
2(n+ 1− χ)

√

(n+ 1)(n+ 2)
Sn −

√

n

n+ 2
Sn−1 (E.11)

with initial conditions

S0 =
√

2χ e−χ (E.12a)

S1 =
√
χ e−χ(2− 2χ). (E.12b)

E.3 Wigner function calculation

As mentioned in Chapter 3, the numerical evaluation of the Wigner function was
carried out by a Fourier transform method. This method has not previously been
used in our group at the University of Auckland, and it is worth summarising the
procedure.

We wish to calculate expressions of the form (see Eq. (3.31))

W (ξ, µ) =

∫ ∞

−∞
e−i2πµζ ψ∗(ξ − πζ/2)ψ(ξ + πζ/2) dζ (E.13)

where ψ(ξ) is the wave function of an arbitrary motional state, the expansion coef-
ficients of which in the Fock state basis are known.

E.3.1 Motional state wave functions

The wave function of the motional state is given by

ψ(ξ) =
∑

n

cnψn(ξ). (E.14)
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Here cn is the expansion coefficient of the nth number state, whose wave function
ψn(ξ) is given by (cf. Eq. (2.41))

ψn(ξ) =
1√

2nn!

(

2

π

)
1
4

e−ξ
2

Hn(
√

2ξ). (E.15)

With the help of Eq. (A.4), it can be shown that these basis state wave functions
satisfy

ψn+1(ξ) =
2ξ√
n+ 1

ψn(ξ)−
√

n

n+ 1
ψn−1(ξ) (E.16)

with initial conditions

ψ0(ξ) =

(

2

π

)
1
4

e−ξ
2

(E.17a)

ψ1(ξ) =

(

2

π

)
1
4

2ξ e−ξ
2

. (E.17b)

Equations (E.14) and (E.16) can be used to calculate the wave function of the
motional state.

E.3.2 Shifting the wave functions

The integrand in Eq. (E.13) contains the product of two wave functions that have
been shifted in space. Let us now think about how to construct this product.

For the remainder of this appendix, alphabetical subscripts are to be understood as
vector indices; for example, ξn means the nth entry of the vector ξ.

We begin by defining vectors ξ, ζ and ψ such that

ξn = n∆ξ (E.18a)

ζn = n∆ζ (E.18b)

ψn = ψ(ξ)|ξ=ξn=n∆ξ, (E.18c)

where ψ(ξ) is the motional state wave function, and n = [−N/2, . . . , N/2− 1], with
N a power of two.

With this discretisation of ξ and ζ, we may write the shifted wave functions
appearing in Eq. (E.13) as

ψ
(

ξ +
π

2
ζ
)

= ψ
(

k∆ξ +
π

2
n∆ζ

)

(E.19a)

ψ∗
(

ξ − π

2
ζ
)

= ψ∗
(

k∆ξ − π

2
n∆ζ

)

(E.19b)
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where k and n are varied over the range [−N/2 : N/2− 1].

Looking at these equations, it is clear that the arguments of the wave functions
on the right hand side will not, in general, be a multiple of ∆ξ. This presents a
minor problem, as we only have information about the wave function evaluated at
integer multiples of ∆ξ; the vector ψ does not contain, for example, ψ(ξ)|ξ=1.2∆ξ, or
ψ(ξ)|ξ=π∆ξ.

This problem may be solved in a number of ways, the simplest and most elegant
of which is to impose a constraint on ∆ζ that guarantees that the arguments of
Eqs. (E.19) evaluate to an integer multiple of ∆ξ. This is achieved by setting

∆ζ =
2

π
∆ξ (E.20)

so that

ψ
(

k∆ξ +
π

2
n∆ζ

)

= ψ
(

(k + n)∆ξ
)

= ψk+n (E.21a)

ψ∗
(

k∆ξ − π

2
n∆ζ

)

= ψ∗
(

(k − n)∆ξ
)

= ψ∗
k−n. (E.21b)

When ∆ξ and ∆ζ satisfy Eq. (E.20) the amount by which the wave functions are
shifted is always an integer multiple of ∆ξ, and so all the information we need about
the shifted wave functions is present in the vector ψ.

E.3.3 The Wigner function as a DFT

Let us define a function φ(ξ, ζ) such that

φ(ξ, ζ) = ψ∗(ξ − πζ/2)ψ(ξ + πζ/2) (E.22)

where ξ and ζ are continuous variables. The Wigner function is the Fourier transform
of this function with respect to ζ:

W (ξ, µ) =

∫ ∞

−∞
e−i2πµζ φ(ξ, ζ) dζ. (E.23)

After discretising ξ and µ, the function φ is represented by an N ×N matrix with
entries

φk,n ≡ φ(ξ, ζ)|ξ=k∆ξ,ζ=n∆ζ . (E.24)

The Wigner function is proportional to the discrete Fourier transform (see §C.2) of
this matrix:

Wk, : = (N∆ζ) DFT {φk, :} , (E.25)
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where φk, : means the kth row of φ. The Wigner function is an N ×N matrix, with
entries

Wk,n = W (ξ, µ)|ξ=k∆ξ,µ=n∆µ (E.26)

where ∆µ is given by

∆µ =
1

N∆ζ
. (E.27)

E.3.4 Constructing the matrix φ

It follows from Eqs. (E.22) and (E.24) that the elements of φ are given by

φk,n = ψ∗
k−n ψk+n, (E.28)

and so φ can be constructed simply by multiplying pairs of elements from the vector
ψ. In doing this, however, we must be careful not to overstep the ends of ψ. If
we consider constructing φ in a row-by-row fashion by fixing k, then the range over
which n can be varied is [−nmax, nmax], with

nmax =

{

N
2 − |k| k < 0,
N
2 − 1− k k ≥ 0.

(E.29)

The asymmetry between k < 0 and k ≥ 0 arises the fact that the vector ψ has N/2
points to the left of zero, but only N/2− 1 to the right.

Note that this restriction on n means that we have no knowledge of the matrix
φ outside a diamond-shaped region in the centre. However, this does not pose a
problem in practice, since if ξ is chosen in such a way that the wave function ψ
goes to zero long before the ends of the vector are reached, we can justifably set all
unknown entries in φ to zero.

E.3.5 FORTRAN code

The calculation of the Wigner function was carried out by a FORTRAN subroutine,
which we include here for completeness. The DFT itself is performed by a function
taken from Numerical Recipes in Fortran 90 [50] called fourrow_dp, which in turn
requires the nrtype and nrutil modules.

The subroutine takes two wave functions psi1 and psi2, which are assumed to
be defined over xivec, and calculates the corresponding Wigner function for each.

SUBROUTINE CalculateWignerFn(xivec,muvec,range,psi1,psi2,NumPoints,filename,writerangeX,writerangeP,Wnorm1,Wnorm2)

IMPLICIT NONE

INTEGER, INTENT(IN) :: NumPoints

COMPLEX*16, INTENT(IN), DIMENSION(-NumPoints/2:NumPoints/2-1) :: psi1,psi2

REAL*8, INTENT(IN) :: writerangeX,writerangeP,range

REAL*8, INTENT(IN), DIMENSION(-NumPoints/2:NumPoints/2-1) :: xivec,muvec
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CHARACTER(20), INTENT(IN) :: filename

COMPLEX*16, DIMENSION(-NumPoints/2:NumPoints/2-1,-NumPoints/2:NumPoints/2-1):: WignerFunction1, WignerFunction2

COMPLEX*16, DIMENSION(-NumPoints/2:NumPoints/2-1,-NumPoints/2:NumPoints/2-1):: phi11,phi22,swapper

INTEGER :: k,b,limit

REAL*8 :: Wnorm1,Wnorm2

CHARACTER(15) :: fn2

phi11=0;phi22=0;swapper=0; WignerFunction1=0;WignerFunction2=0; Wnorm1=0;Wnorm2=0;

fn2=trim(filename)

3 format(100F15.9)

open(40,status="replace",file=fn2)

do k=-NumPoints/2,NumPoints/2-1

if (k<0) then

limit=NumPoints/2-abs(k)

else

limit=NumPoints/2-1-k

end if

! construct the matrix phi

do b=-limit,limit

phi11(k,b)=psi1(k+b)*conjg(psi1(k-b))

phi22(k,b)=psi2(k+b)*conjg(psi2(k-b))

end do

end do

! The NR implementation of the FFT means that to avoid a phase factor appearing

! on the transformed data we must shift out input functions

swapper(:,-NumPoints/2:-1)=phi11(:,0:NumPoints/2-1)

swapper(:,0:NumPoints/2-1)=phi11(:,-NumPoints/2:-1)

phi11=swapper

swapper(:,-NumPoints/2:-1)=phi22(:,0:NumPoints/2-1)

swapper(:,0:NumPoints/2-1)=phi22(:,-NumPoints/2:-1)

phi22=swapper

! Call the FFT algorithm

CALL fourrow_dp(phi11,-1)

CALL fourrow_dp(phi22,-1)

swapper(:,-NumPoints/2:-1)=phi11(:,0:NumPoints/2-1)

swapper(:,0:NumPoints/2-1)=phi11(:,-NumPoints/2:-1)

WignerFunction1=swapper*real(range)/NumPoints ! Note the extra factor of 1/N appearing here

swapper(:,-NumPoints/2:-1)=phi22(:,0:NumPoints/2-1)

swapper(:,0:NumPoints/2-1)=phi22(:,-NumPoints/2:-1)

WignerFunction2=swapper*real(range)/NumPoints

! Write the Wigner functions to a file

do k=-NumPoints/2,NumPoints/2-1

if (abs(xivec(k))<writerangeX) then

do b=-NumPoints/2,NumPoints/2-1

if (abs(muvec(b))<writerangeP) then

write(40,3) xivec(k),muvec(b),WignerFunction1(k,b),WignerFunction2(k,b)

end if

end do

write(40,*)

end if

end do

! Check the norm of each Wigner function

do k=-NumPoints/2,NumPoints/2-1

do b=-NumPoints/2,NumPoints/2-1

Wnorm1=Wnorm1+WignerFunction1(k,b)*dxi*dmu

Wnorm2=Wnorm2+WignerFunction2(k,b)*dxi*dmu

end do

end do

close(40)

END SUBROUTINE CalculateWignerFn
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