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Abstract

We propose and analyze a number of schemes to deterministically entan-
gle pairs of atoms through their interaction with quantum-correlated reser-
voirs. These reservoirs are created using sources of squeezed light, such
as the degenerate or non-degenerate parametric amplifier, or by means of
quantum-reservoir engineering [1]. The atoms become entangled when the
phase-sensitive correlations present in the reservoir transfer to the atoms [2].

In a succession of models, we consider pairs of atoms that are either in
free space, or trapped in one or more high-finesse optical micro-cavities. For
atoms in a cavity QED situation, a variety of possible atomic level schemes
are investigated, in which coherent driving lasers and the quantized cavity
mode are used to initiate Raman transitions between two meta-stable atomic
ground states. In particular, we find a 4-level atomic configuration for an
atom in a cavity, which, in the appropriate limits, is shown to interact with
a single squeezed cavity mode in a manner that is entirely analogous to the
interaction of a single atom in free space with a broadband squeezed vacuum.

For each system we find the reduced master equation for the atomic
ground states and investigate the dynamics of this master equation using
the entropy-entanglement plane. Under appropriate conditions, we find that
the atoms may be modelled as a pair of two-level systems (qubits) for which
the amplitude and phase coupling to the quantum reservoir are indepen-
dently adjustable. Using local unitary transformations and appropriate ma-
nipulation of the amplitude and phase decay rates, we can then generate
non-maximally entangled mixed states covering the full range of the Linear
Entropy-Entanglement of Formation plane.

The most promising scheme we have developed uses quantum-reservoir
engineering to entangle two 5-level atoms trapped in a single optical cavity.
An effective squeezed reservoir is created without the need for non-classical
sources of light. The deleterious effects of spontaneous emission from the
excited atomic states during the Raman transition are investigated for this
model. Even in the presence of spontaneous emission we can generate states
covering a broad region of the Linear Entropy-Entanglement of Formation
plane, including areas above the line corresponding to the Werner states.
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Chapter 1

Introduction

In this introductory Chapter we explain the motivation behind attempts to
entangle separated atoms. This is done by means of a general discussion
about quantum information and entanglement, and of the recent drive to
understand and manipulate them.

Contents

1.1 Quantum information . . . . . . . . . . . . . . . . 1

1.1.1 The qubit . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Entanglement . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Creating entanglement . . . . . . . . . . . . . . . . 3

1.2.2 Using entanglement . . . . . . . . . . . . . . . . . 4

1.2.3 Quantifying entanglement . . . . . . . . . . . . . . 4

1.2.4 Bell states . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . 5

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Quantum information

The historic paper presented by Deutsch in 1985 [3] is credited with awak-
ening the scientific community to the unique possibilities offered by quantum
computing. Deutsch showed that the inherent parallelism of quantum com-
putation enables certain problems to be tackled efficiently by a quantum
computer in a manner which classical computers can not hope to emulate.

1



2 CHAPTER 1. INTRODUCTION

Deutsch’s ideas triggered an explosion of interest in the differences be-
tween quantum and classical information that continues unabated to the
current day. Quantum algorithms have been developed that are of consider-
able commercial interest, particularly the polynomial-time factorization algo-
rithm of Shor [4] and the improved linear database search due to Grover [5].
However, the experimental implementation of quantum logic gates and quan-
tum computers has generally lagged far behind the theoretical developments.

Quantum information may be distinguished from classical information by
the differing ways that the two types of information may be manipulated.
These differences may be summarized as follows:

1. Quantum states may not be copied. This is a statement of the no-
cloning theorem [6]. Classically it is always assumed that information
can be accurately and cheaply copied.

2. Quantum states exist in superpositions. It is the ability to perform
calculations on superpositions of states that give quantum computers
their power.

3. Quantum states are generally non-orthogonal and cannot be reliably
distinguished. Classically we assume that distinct states can be distin-
guished with certainty.

4. Quantum states can have a non-local aspect, as exemplified by the
Einstein-Podolsky-Rosen paradox and Bell’s inequalities [7].

1.1.1 The qubit

The simplest known system capable of storing information is the qubit [8].
It is the direct quantum-mechanical analog of the classical bit. A qubit is
a quantum-mechanical state in a two-dimensional Hilbert space. It has the
form

|ψ〉 = α |0〉 + β |1〉 , (1.1a)

where normalization of the state requires

|α|2 + |β|2 = 1. (1.1b)

The concept of quantum information is based on the qubit in the same way
that classical information is based on the bit.
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1.2 Entanglement

Entanglement is a property of composite quantum systems in which the
correlations between the subsystems cannot be explained classically. Entan-
glement is now appreciated as a resource that is necessary for the imple-
mentation of all specifically quantum information protocols such as quantum
computing, quantum teleportation and quantum cryptography.

The main difficulty in generating and manipulating entanglement is de-
coherence, the process in which the quantum correlations that lead to entan-
glement are destroyed by interactions with the environment. One solution to
the problem of decoherence is to generate an environment in which the quan-
tum correlations are generated rather than destroyed. This can be achieved
for atoms by strongly coupling them to a source of broadband squeezed light
or some other similar quantum reservoir. This concept is the central idea
behind the systems studied in this thesis.

1.2.1 Creating entanglement

There have been many different proposals for entangling objects. The major-
ity of the experiments on entanglement performed to date involve photons,
since they are readily produced and manipulated [9]. Thus far, the exper-
imental entanglement of up to four photons has been demonstrated [10].
However, photons are not easy to store, and have only a weak interaction
with each other (although see [11]), making them unsuitable for many pro-
posed experiments in the manipulation of quantum information.

In this Thesis we consider systems with the following characteristics:

1. The entangled objects are atoms and we entangle their electronic states
(rather than their motional or nuclear states).

2. Pairs of atoms are entangled rather than larger ensembles.

3. The atoms are trapped and therefore well-localized.

4. The atoms are separated sufficiently far from each other that they have
no direct interaction between them (e.g., no dipole interaction). The
interaction between the atoms is indirect, in that it is mediated by one
or more light fields.

There have been significant recent advances in the trapping of single
atoms in free space [12, 13] and in high-finesse optical cavities [14, 15, 16,
17, 18]. Atoms in such cavities can exhibit strong coupling to the light field
and, for the atomic transitions of interest, only a single mode of the cavity
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plays a significant role in the dynamics of the atom. An atom in such an
environment can be precisely controlled and it is a sufficiently simple system
that the theoretical techniques of quantum optics may be used to accurately
model its interaction with the incident light fields.

The work in this Thesis complements other theoretical proposals employ-
ing optical cavity QED to entangle atoms [19, 20]. To date, the experimental
entanglement of atoms in an optical cavity QED has not been achieved.
However, experiments have been performed that entangle Rydberg atoms in
microwave cavities [21, 22, 23] and that entangle trapped ions [24, 25, 26].

1.2.2 Using entanglement

In this Thesis we explore certain experimental possibilities for generating en-
tanglement between trapped, individually addressable atoms. Such systems
would enable exciting new experiments to be performed. Their uses include
the following:

1. Entangled atoms may be used as constituents of quantum computers,
such as quantum gates and quantum memories [27].

2. Entangled atoms are, at least in principle, long-lived objects (unlike
photons). They may be used to store and manipulate entanglement
over long time periods.

3. Entangled atoms may be used to perform tests on the fundamentals of
quantum mechanics, in particular to demonstrate violations of Bell’s
inequalities [7].

4. Investigations of the recently developed techniques for manipulating
entanglement. A controllable source of states of arbitrary entropy and
entanglement would allow protocols such as quantum teleportation [28]
and entanglement distillation [29] to be explored for mixed states.

When the electronic states of separated atoms are entangled the combined
system has a nonlocal aspect, describable as a quantum channel. This quan-
tum channel cannot be used to transmit information on its own, but it can
be used to demonstrate non-classical behaviour such as is seen in violations
of Bell’s inequalities.

1.2.3 Quantifying entanglement

Entanglement in general multi-partite quantum systems is still poorly un-
derstood. It is only in some special cases that methods of quantifying entan-
glement have been developed. In particular, there is a method to quantify
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the entanglement in mixed two-qubit systems [30]. Chapter 2 is devoted to
the question of mixed-state entanglement.

1.2.4 Bell states

A qubit has only one subsystem; it is too simple to demonstrate entangle-
ment. The simplest system in which an entangled state can exist is a pair
of qubits, i.e., a state in the Hilbert space 2⊗ 2. Throughout this Thesis we
will be concerned with states in this space.

The Bell states are maximally entangled pairs of qubits, normally denoted

∣
∣φ±〉 =

1√
2

(|00〉 ± |11〉) , (1.2a)

∣
∣ψ±〉 =

1√
2

(|01〉 ± |10〉) . (1.2b)

We shall call the states |φ±〉 correlated Bell states, and the states |ψ±〉 anti-
correlated Bell states. The Bell states form a basis for the space of two
qubits.

As maximally entangled states of the simplest possible system exhibiting
entanglement, the Bell states are considered, in some sense, to be fundamen-
tal units of entanglement. The ebit is a name coined for this fundamental
quantity of entanglement present in a single Bell state.

1.3 Outline of Thesis

This rest of this Thesis is structured as follows:
Chapter 2 introduces the concepts of separability and entanglement for

quantum systems in a mixed state. Necessary conditions for a system to be
separable and the varieties of entanglement and methods for their quantifi-
cation are discussed. The relationship between entanglement and the Bell
inequalities is explored. The entropy-entanglement plane is introduced as a
convenient visualization tool for states of two qubit systems.

Chapter 3 provides a short background on selected topics in quantum
optics.

Chapter 4 investigates the effect of squeezed light on two separated two-
level atoms, under a number of simplifying assumptions. Two methods of
generating the necessary spatially entangled light beams are considered. The
steady state of the atoms is solved, and their degree of entanglement is quan-
tified. Their relevance for investigating violations of Bell inequalities is ex-
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amined. Finally the dynamics of their evolution are investigated using the
entropy-entanglement plane.

Chapter 5 considers a single three-level atom trapped in a high-finesse
optical cavity with a view to determining whether it has the same effective
interaction with squeezed light as does a free two-level atom interacting with
broadband squeezed light. It is found that a 3-level configuration does not
have the desired interaction but, in the appropriate limit, a more complex
4-level system has the required interaction.

Chapter 6 investigates a scheme based on two atoms that each have the
4-level Λ-configuration developed in Chapter 5. This pair of 4-level atoms
are trapped in a high finesse optical cavity which is driven by quadrature-
squeezed light from a degenerate parametric amplifier. In another scenario,
two 4-level atoms are trapped in individual optical cavities each driven by a
different output field from a non-degenerate parametric amplifier. In both
cases we show that the correlations in the light fields are transferred to the
atoms and how atomic two-qubit states of arbitrary entanglement and en-
tropy may be generated.

Chapter 7 introduces quantum reservoir engineering and shows how it can
be used to entangle atoms. The scheme investigated in this Chapter is con-
siderably easier to implement experimentally than the scheme in Chapter 6
because non-classical light fields are not required. The effects of spontaneous
emission during the Raman transitions are also investigated.

The final Chapter of conclusions summarizes the results obtained in this
thesis and suggests some areas that might be of interest in future research.

1.4 Notation

Throughout this thesis the following notation is used.

• Acute marks are not usually added to indicate operators, except in the
rare situations when confusion may arise between an operator and it’s
eigenvalue.

• The Dirac ket-bra notation is used for elements of a Hilbert space and
their dual transformations.

• Tilde marks are occasionally used to indicate an operator that is in the
interaction picture, e.g. ρ̃.

• The complex conjugate is indicated with a superscript asterisk, e.g. z∗.

• The adjoint operator is indicated with a superscript dagger, e.g. a†.
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• The transpose of a matrix is indicated with a superscript T, e.g. AT .

• Vector quantities are denoted in bold type, e.g. x.

• In an equation, H.c. is used to represent the Hermitian conjugate op-
erator of the previous term.

In Chapter 3, which presents some background material on Quantum
Optics, we retain the constant � in our equations. However, elsewhere in
this Thesis we always use units such that � = 1.

This Thesis has been typeset using LATEX c©. All numerical simulations
were performed using the quantum toolbox designed by Sze Tan of the Uni-
versity of Auckland [31] running on the mathematics package MATLAB c©.
Some analytical work was performed using the symbolic mathematics pack-
age Mathematica c©.





Chapter 2

Mixed-State Entanglement

This Chapter introduces the concepts of separability and entanglement in
mixed quantum systems. Necessary conditions for a system to be separable
are discussed, as are the varieties of entanglement and methods for their
quantification. The relationship between entanglement and the Bell
inequalities is explored. Finally, the entropy-entanglement plane is
introduced as a convenient visualization tool for mixed states of two-qubit
systems.
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2.1 Introduction

Entanglement is a property of composite quantum systems in which the corre-
lations between the subsystems cannot be explained classically. The essence
of entanglement is obtained from the statement: If two systems interacted in
the past it is, in general, not possible to assign a single state vector to either
of the subsystems. In other words, maximal knowledge of the entire system
does not necessarily include maximal knowledge of its parts.

All experimentally realistic systems produce mixed states due to the un-
avoidable effects of environmentally induced noise. Therefore, we do not
even have maximal knowledge of the entire system. In this Chapter, we
are interested in understanding the meaning of entanglement for such mixed
states.

In recent times, the entanglement of mixed states has been investigated
vigorously, and it is now much better understood (for an excellent review
see [32]). Some surprising discoveries have been made, such as the differ-
ence between the entanglement required to create a given state, and that
which may be obtained from a given state (see Section 2.3.3). This may
lead to a description of entanglement that is analogous to the principles of
thermodynamics [33, 34, 35, 36].

2.2 Separability

A general mixed quantum system consisting of two subsystems A and B is
defined to be separable if the density operator describing it can be written
in the form

ρ =
∑

i

Pi ρi
A ⊗ ρi

B, (2.1a)

where the Pi are real and positive and satisfy

∑

i

Pi = 1. (2.1b)

This definition was given by Werner in 1989 [37] who called it a classically-
correlated state. A state is called entangled if it is not separable. In general,
the decomposition of a separable state into a mixture of product states is not
unique. A good review paper on separability is [38].

A test for separability in general multi-dimensional Hilbert spaces has
not yet been found. However, some progress has been made. Peres has
shown [39] that a necessary condition for separability of a bipartite state is
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that the partial transposition of ρ has only non-negative eigenvalues. The
partial transposition of a state may be defined using its matrix elements in
a basis created from the tensor product of an orthonormal basis for each
subsystem

ρmµ,nν = 〈m| ⊗ 〈µ| ρ |n〉 ⊗ |ν〉 . (2.2)

The partial transposition of ρ, with respect to the first subsystem A, is then

ρTA
mµ,nν = ρnµ,mν . (2.3)

Horodecki et al. [40] have shown that non-negativity of the eigenvalues of the
partial transpose is also a sufficient condition for separability in 2 ⊗ 2 and
2 ⊗ 3 systems, but not for higher dimensions.

Other necessary criteria are known to exist [32]. For instance, a sep-
arable system always satisfies any Bell inequality, but not vice versa (see
Section 2.4).

2.3 Entanglement

In this section we consider some numerical measures of entanglement. At
the present time these can only be calculated for a few special cases such as
bipartite qubit systems - not for the general case of a mixed multi-partite
system of arbitrary dimension.

2.3.1 Entropy of entanglement

A unique measure of the entanglement exists for pure bipartite systems [35].
This is the entropy of entanglement [29], denoted by E(ψAB). It is the
von Neumann entropy of the reduced density matrix

E(ψAB) ≡ −Tr (ρA log2 ρA) , (2.4a)

where

ρA ≡ TrB {|ψAB〉 〈ψAB|} . (2.4b)

For mixed-state entanglement the situation is less clear and several en-
tanglement monotones have been proposed. The most important of these
are:

1. The entanglement of formation, EF (ρ).
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2. The distillable entanglement, ED(ρ).

3. The relative entropy of entanglement, ER(ρ).

4. The negativity, N (ρ).

It is not known how to calculate EF , ED or ER for general mixed states
of systems of arbitrary dimensions, because they are all defined variation-
ally. The negativity is a measure that is designed to be computable. These
entanglement measures are described in the following Subsections.

2.3.2 Entanglement of formation

The entanglement of formation, EF (ρ), quantifies the asymptotic pure-state
entanglement required to produce ρ. The entanglement of formation is de-
fined as the minimum entanglement of any ensemble of pure states realiz-
ing ρ [41]. Recall that the unique entanglement measure for a pure state is
the entropy of entanglement as defined in Equation (2.4a). Using that result,
the entanglement of formation for a mixed state is

EF (ρ) = min
∑

i

PiE(ψi), (2.5a)

where the minimization is over all decompositions

ρ =
∑

i

Pi |ψi〉 〈ψi| . (2.5b)

Two qubits

An analytic expression found by Wootters for the entanglement of formation
of two qubits [30] was an important advance. It may be calculated as follows:

Define the spin-flipped state for two qubits to be

ρ̃ = (σy ⊗ σy) ρ∗ (σy ⊗ σy) , (2.6a)

where the conjugation of ρ is taken in the computational basis and

σy =

(

0 −i
i 0

)

. (2.6b)

The concurrence is defined to be

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} , (2.7a)
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where λi are the eigenvalues in decreasing order of

R =
√√

ρρ̃
√

ρ. (2.7b)

The tangle, denoted τ(ρ), is related to the concurrence by

τ(ρ) = C(ρ)2. (2.8)

Finally, the entanglement of formation is calculated as

EF (ρ) = h

(

1 +
√

1 − τ(ρ)

2

)

, (2.9)

where

h(x) = −x log2 x − (1 − x) log2(1 − x) (2.10)

is the Shannon entropy.
We may note that if ρ = |ψ〉 〈ψ| is a pure state, then a simpler formula

applies for the concurrence,

C(ψ) =
∣
∣
∣

〈

ψ|ψ̃
〉∣
∣
∣ . (2.11)

In this Thesis we commonly calculate the degree of entanglement for
the two-qubit states we produce. Since the entanglement of formation, the
tangle, and the concurrence are monotonically related to each other, we are
free to choose whichever measure is more convenient. We normally use the
tangle or the concurrence since they are easier to calculate analytically.

2.3.3 Entanglement of distillation

The distillable entanglement, ED(ρ), quantifies the asymptotic pure state
entanglement that can be distilled from ρ by means of local operations and
classical communication (LOCC) only [42]. A state ρ is said to be distillable
if two parties sharing ρ can obtain singlets (pure Bell states of two qubits)
from the initial state ρ⊗n.

It is known that all pure entangled states [29], and all entangled states of
two qubits [43], can be distilled. Nevertheless, there are entangled states that
cannot be distilled; these states are said to have bound entanglement [42]. In
this Thesis we will only be concerned with two-qubit states, which do not ex-
hibit bound entanglement. It is not known how to calculate the entanglement
of distillation for any mixed system.
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2.3.4 Relative entropy of entanglement

The relative entropy of entanglement of a mixed state is defined as

ER(ρ) = min
σ∈D

S (ρ||σ) , (2.12a)

where

S (ρ||σ) = Tr (ρ ln ρ − ρ ln σ) (2.12b)

is the quantum relative entropy [44]. The minimum is taken over the set D
of separable states. The relative entropy of entanglement is known to be
bounded above by EF (ρ) and below by ED(ρ) [45], i.e.,

ED(ρ) ≤ ER(ρ) ≤ EF (ρ). (2.13)

2.3.5 Negativity

Vidal et al. introduced a measure of entanglement, designed specifically to
be computable, called the negativity [46]. This is defined in terms of the trace
norm (sum of the absolute values of the eigenvalues) of the partial transpose
of a bipartite mixed state,

N (ρ) ≡
∥
∥ρTA

∥
∥

1
− 1

2
. (2.14)

The negativity corresponds to the absolute value of the sum of the negative
eigenvalues of ρTA, and it vanishes for separable states.

The quantity N (ρ) does not increase under LOCC and hence is an en-
tanglement monotone. It is also known that, for an entangled mixed state of
two qubits, the negativity never exceeds the concurrence [47].

2.4 Bell inequalities

It was Bell [7] who first realized that local realism gives rise to inequalities
that can be violated by quantum mechanical systems. Many different Bell
inequalities have now been proposed [48, 49, 50, 51] and experiments have
been performed that demonstrate the violation of these inequalities [52, 53,
9].

The strongest known Bell inequality for two qubits [32] is due to Clauser,
Horne, Shimony and Holt (the CHSH inequality) [48],

B = Tr (ρB) ≤ 2, (2.15)
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where the Bell-CHSH observable B is given by

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b− b′) · σ. (2.16)

Here a, a′, b and b′ are unit vectors in R
3 and σ is the standard vector of

Pauli matrices,

σ =





σ1

σ2

σ3



 , (2.17a)

where

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

. (2.17b)

A convenient expression for the maximum value of B (2.15) allowed by
quantum mechanics for any given two-qubit state ρ, was found by Horodecki
et al. in 1995 [54]. It amounts to maximising the CHSH inequality (2.15)
over all possible vectors a, a′, b and b′. To calculate the maximum value
of B the density matrix ρ should be first expressed in the Hilbert-Schmidt
basis by finding r, s and T such that

ρ =
1

4

(

12 ⊗ 12 + r · σ ⊗ 12 + 12 ⊗ s · σ +

3∑

n,m=1

Tnmσn ⊗ σm

)

. (2.18)

Then the maximum violation is

Bmax(ρ) = 2
√

M(ρ), (2.19a)

where M(ρ) is the sum of the two largest eigenvalues of T †T , and where T
is the 3 × 3 matrix whose (n, m)-element is

Tnm = Tr {ρ (σn ⊗ σm)} . (2.19b)

The condition M(ρ) ≤ 1 is equivalent to satisfying all possible CHSH in-
equalities simultaneously and its violation is thus a sufficient condition for
entanglement. It is known that any entangled pure state of two qubits vio-
lates some Bell inequality.

In a surprising result, Popescu showed in 1994 [55] that there are entan-
gled states that do not violate any standard Bell inequality. Thus, violation
of a Bell inequality is a sufficient condition for entanglement, but not a nec-
essary condition (see also recent results in [56]). Popescu further showed in
1995 [57] that there are states for which a single measurement satisfies the
standard Bell inequalities, but for which a sequence of measurements violates
the Bell inequality. Further information on Bell inequalities may be found
in [58, 32].
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2.5 The entropy-entanglement plane

The entropy-entanglement plane [59] is a useful tool for representing the state
of an entangled mixed system. Entanglement is invariant under local unitary
transformations and entropy is invariant under all unitary transformations.
Therefore, plotting sequences of states in this plane emphasizes changes due
to global non-unitary transformations such as dissipative damping into a
reservoir.

There is flexibility in the choice of measures we use for the entropy and
entanglement. We commonly use the linear entropy,

SL =
4

3

{

1 − Tr
(

ρ2
)}

,

as our measure of the purity of the system [60], because it is easier to apply
analytically. Alternatively, the von-Neumann entropy may be used,

Sv = −Tr (ρ log2 ρ) . (2.20)

As our measure of entanglement, we usually plot the concurrence or tangle
(defined in Section 2.3.2), since these are calculable for mixed two-qubit
systems. We use a minor variation of the concurrence (2.7a) and call it the
free concurrence,

Cfree = λ1 − λ2 − λ3 − λ4, (2.21)

with λi as defined in Section 2.3.2. The free concurrence reduces to the
concurrence for entangled states. For separable states the concurrence is
always 0, whereas the free concurrence can take on negative values. In some
sense, the more negative the free concurrence, the further the state is from
being non-classical. Thus, using the free concurrence allows us to better
distinguish separable states. Also, using the definition of the free concurrence
we can define the equivalent variation of the tangle (2.8), calling it the free
tangle,

τfree = |Cfree| Cfree. (2.22)

2.5.1 Structure of the LEFT plane

The structure of the linear entropy-free tangle (LEFT) plane for a two-qubit
system is shown in Figure 2.1. All physically possible two-qubit states are
believed to lie in the shaded region, but the boundaries of this area have not
been proved analytically when τfree < 0.

Three ranges of states are plotted:
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Figure 2.1: The structure of the linear entropy-free tangle (LEFT) plane
for a two-qubit system. All entangled states lie on or below the line of
MEMS states. All physically possible two-qubit states are believed to lie
in the shaded area, but the boundaries of this area have not been proved
analytically when τfree < 0.
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1. The maximally entangled mixed states (MEMS), as recently charac-
terized in [59]. These are the states having the maximum possible
entanglement for any given entropy (as measured by the tangle and
linear entropy respectively). They are defined by

ρMEMS(q) =







g(q) 0 0 q/2
0 1 − 2g(q) 0 0
0 0 0 0

q/2 0 0 g(q)







, (2.23a)

where

g(q) =

{

1/3, 0 ≤ q < 2/3
q/2, 2/3 ≤ q ≤ 1

. (2.23b)

All valid two-qubit states lie on or below the MEMS line.

2. The Werner states [37]. For two qubits, these very important states
are mixtures of a maximally entangled Bell state (1.2) and the totally
mixed state, e.g.,

ρW (q) = (1 − q)
∣
∣φ+

〉

+
q

4
(12 ⊗ 12) , 0 ≤ q ≤ 1. (2.24)

3. The thermal states given by

ρTH(n̄) =
1

(1 + 2n̄)2







n̄2 0 0 0
0 n̄(1 + n̄) 0 0
0 0 n̄(1 + n̄) 0
0 0 0 (1 + n̄)2







,

0 ≤ n̄ < ∞. (2.25)

These are states obtained when a two-qubit system is driven by thermal
light characterized by a mean photon number of n̄.

The point where the MEMS line and the Werner line meet (at SL = 8/9)
represents the maximally mixed state that has τfree = 0. There is a discon-
tinuity of the structure of the MEMS states which occurs at τfree = 4/9, as
seen from Equation (2.23). It should be noted that the lower boundaries of
the LEFT plane for non-separable states are only a conjecture.

2.5.2 Various mixtures

In Figure 2.2 we use the LEFT plane to show a variety of other interesting
mixed two-qubit states. The following mixtures are plotted:
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Figure 2.2: Various incoherent mixtures of two-qubit states in the LEFT
plane. See the text for a description of the states plotted in this Figure.

1. The crosses are mixtures of a correlated Bell state (i.e. |φ+〉 or |φ−〉)
and the ground state |00〉.

2. The pluses are mixtures of an anti-correlated Bell state (i.e. |ψ+〉 or
|ψ−〉) and the ground state |00〉.

3. The asterisks are mixtures of the ground state |00〉 and the totally
mixed state 1

4
(12 ⊗ 12).

4. The dots are mixtures of any two different Bell states.

It should be noted that mixtures of |00〉 and one of the anti-correlated
Bell states |ψ±〉 coincide with a portion of the MEMS line. This observation
becomes relevant in later Chapters where we try to generate states above the
Werner line.

2.5.3 Other entropy-entanglement planes

It is informative to consider the structure of the entropy-entanglement plane
for different combinations of entropy and entanglement measures. Six differ-
ent combinations are plotted in Figure 2.3.
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Figure 2.3: The structure of the two-qubit entropy-entanglement plane for
different measures. The MEMS states, Werner states and thermal states are
plotted using the same symbols as in Figure 2.2. Points on the dotted line
are mixtures of the ground state |00〉 and the totally mixed state 1

4
(12 ⊗ 12).
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We may make some observations from these graphs. The MEMS states
(plotted with a dashed line) are the maximally entangled states only when
the free tangle or free concurrence is plotted against linear entropy. It is
interesting that the thermal states are not the states with the least possible
negativity. We also see that the free concurrence is, in some sense, a more
suitable measure to plot than the free tangle, because it scales in a more
appropriate manner, thus making the Werner line a “smoother” curve. Recall
that the free tangle is a quadratic function of the free concurrence (2.22).
In later Chapters we will choose to plot linear entropy against either free
concurrence or free tangle.

2.5.4 Ishizaka states

Ishizaka and Hiroshima have recently characterized the two-qubit states
whose entanglement of formation (and negativity) cannot be increased by
any unitary transformation [61]. These unusual states are given by any local
unitary transformation of

ρISH = p1

∣
∣ψ−〉 〈ψ−∣∣+ p2 |00〉 〈00| + p3

∣
∣ψ+

〉 〈

ψ+
∣
∣+ p4 |11〉 〈11| , (2.26a)

where pi are the eigenvalues of ρISH in decreasing order so that

p1 ≥ p2 ≥ p3 ≥ p4, (2.26b)

and

p1 + p2 + p3 + p4 = 1. (2.26c)

These states include the Werner states. We have randomly generated 2000 of
these states and plotted them in Figure 2.4. The Ishizaka states must include
the states of maximum entanglement for any given entropy, as measured by
any of the 6 combinations of measures plotted in this Figure. Thus we
see that the MEMS states (2.23) are not the states of maximum tangle (or
concurrence) when plotted against the entropy (as opposed to the linear
entropy), as noted in [59].
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Figure 2.4: 2000 random Ishizaka states, plotted using a variety of entropy
and entanglement measures.



Chapter 3

Quantum Optics

This Chapter provides a short background on selected topics in quantum
optics that are of relevance to this Thesis.
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3.1 Quantization of the electromagnetic field

In this Thesis we will investigate systems in which single atoms are trapped
in optical cavities. In such environments we must use quantum electrody-
namics to describe the quantum-mechanical properties of the light field in the

23
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cavity. The quantization of the electromagnetic field is the starting point for
quantum optics and there are many text books covering this topic [62, 63, 64].

3.1.1 Maxwell’s equations

The canonical quantization of the electromagnetic field starts from Maxwell’s
equations in free space:

∇ · B = 0, (3.1a)

∇× E = −∂B

∂t
, (3.1b)

∇ · E = 0, (3.1c)

∇× H =
∂D

∂t
. (3.1d)

where also

B = µ0H, (3.1e)

D = ε0E, (3.1f)

and µ0 and ε0 are the permeability and permittivity of free space, obeying

µ0ε0c
2 = 1. (3.1g)

The vector valued fields B, H, E and D are all functions of position r and
time t.

In the Coulomb gauge,

∇ · A = 0, (3.2)

the magnetic and electric fields may be expressed in terms of the vector
potential as

B = ∇× A, (3.3a)

E = −∂A

∂t
. (3.3b)

From (3.3) and (3.1d) we obtain the wave equation for the vector potential

∇2A =
1

c2

∂2A

∂t2
. (3.4)

Using separation of variables, and for any particular bounded volume, we
may solve Equation (3.4) and express A as a Fourier decomposition over a
complete set of orthonormal complex-valued vector mode functions um(r),

A =
∑

m

(
�

2ωmε0

) 1
2 {

amum(r)e−iωmt + a†
mu∗

m(r)eiωmt
}

, (3.5)
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where the summation is over a discrete set of modes (including polariza-
tion states) and the normalization constant is chosen to make am and a†

m

dimensionless. From Equation (3.3b), we find for the electric field,

E = i
∑

m

(
�ωm

2ε0

) 1
2 {

amum(r)e−iωmt − a†
mu∗

m(r)eiωmt
}

. (3.6)

3.1.2 Canonical quantization

The canonical quantization proceeds by taking the complex amplitudes a
and a† in (3.5) to be mutually adjoint operators, â and â†, obeying the
bosonic commutation relations

[âm, âm′] = 0, (3.7a)
[

â†
m, â†

m′

]

= 0, (3.7b)
[

âm, â†
m′

]

= δm,m′ . (3.7c)

The Hamiltonian for the free electromagnetic field can then be calculated
to be

Ĥ =
∑

m

�ωm

(

â†
mâm +

1

2

)

. (3.8)

This leads naturally to the interpretation of the electromagnetic field as an
ensemble of independent quantized harmonic oscillators with annihilation
(creation) operators âm (â†

m).

3.2 States of the electromagnetic field

In this Section we state some of the properties of the quantized harmonic
oscillator. We deal here with a single harmonic oscillator (or mode of the
electromagnetic field) with annihilation (creation) operator a (a†). The use of
operators is now assumed and we omit the “hat” notation (e.g., we denote â
by a, etc.). The Hamiltonian for a single mode is then

H = �ω

(

a†a +
1

2

)

, (3.9)
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and the commutation relations for the annihilation and creation operators
are

[a, a] = 0, (3.10a)
[

a†, a†] = 0, (3.10b)
[

a, a†] = 1. (3.10c)

3.2.1 Fock states

The Fock states (or number states) are eigenstates of the number operator
for the harmonic oscillator, n̂ = a†a, and may be defined by

|n〉 =
a†n
√

n!
|0〉 , n = 0, 1, 2, . . . , (3.11)

where |0〉 is the ground (vacuum) state such that a |0〉 = 0. The number
states are orthogonal,

〈m|n〉 = δmn, (3.12)

and form a complete set

∑

n

|n〉 〈n| = 1. (3.13)

The annihilation and creation operators act on the number states as

a |n〉 =
√

n |n − 1〉 , (3.14a)

a† |n〉 =
√

n + 1 |n + 1〉 , (3.14b)

and have commutation relations with the number operator

[a, n] = a, (3.15a)
[

a†, n
]

= −a†. (3.15b)

The number states are useful from a theoretical point of view, but difficult
to produce in practice for the electromagnetic field.

3.2.2 Coherent states

The coherent states are an alternative basis for representing states of the
harmonic oscillator. They allow an accurate description of the phase at
the expense of precise knowledge of the photon number. They provide a
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particularly suitable description for the electromagnetic field because they
are the quantum-mechanical field that is the closest analog to a classical
electromagnetic field of known complex amplitude. The name “coherent
state” is due to Glauber [65].

The coherent states are eigenstates of the annihilation operator, and are
defined, for any complex α, by

a |α〉 = α |α〉 . (3.16)

They may be generated from the vacuum state, |0〉, by a unitary displacement

D(α) = exp
{

αa† − α∗a
}

, (3.17a)

|α〉 = D(α) |0〉 . (3.17b)

The coherent states are an example of a class of states known as the min-
imum uncertainty states (MUS), for which the product of the uncertainties
in canonically conjugate variables takes the minimum value allowed by the
Heisenberg uncertainty relation.

3.2.3 Squeezed states

The squeezed states are another general class of minimum uncertainty states.
The squeeze operator is defined as

S(ε) = exp

{
1

2
ε∗aa − 1

2
εa†a†

}

. (3.18)

The squeezed states are obtained by squeezing the vacuum and then displac-
ing it

|α, ε〉 = D(α)S(ε) |0〉 . (3.19)

We may define quadrature phase operators by

X1 = a + a†, (3.20a)

X2 = −i
(

a − a†) , (3.20b)

so that

a =
1

2
(X1 + iX2) , (3.21a)

a† =
1

2
(X1 − iX2) . (3.21b)
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The commutation relation for the quadrature phase operators is then

[X1, X2] = 2i, (3.22)

so we find that the Heisenberg uncertainty principle specifies a minimum
allowed product

√
〈

(∆X1)
2〉
√
〈

(∆X2)
2〉 ≥ 1, (3.23a)

where the variance is given by

〈

(∆Xi)
2〉 =

〈

X2
i

〉− 〈Xi〉2 . (3.23b)

A state is said to be squeezed if either of the variances is less than 1 and
said to be ideally squeezed if, in addition, the product of the variances is 1.
The coherent states are states where the variances satisfy

〈

(∆X1)
2〉 =

〈

(∆X2)
2〉 = 1. (3.24)

3.2.4 Multi-mode squeezed states

For some of the systems investigated in this Thesis we employ a source of
multi-mode squeezed light, in which the correlations occur between two dis-
tinct modes that differ in frequency or polarization. To model light of this
nature we may use the two-mode squeezed state, which is the appropriate
generalization of (3.19),

|α1, α2, G〉 = D(α1)D(α2)S(G) |01, 02〉 , (3.25)

S(G) = exp
{

G∗a1a2 − Ga†
1a

†
2

}

, (3.26)

G = reiφ. (3.27)

Here we perform a two-mode squeezing operation S(G) between modes 1
and 2, and then make a coherent displacement of each system in turn.

In the general case, the modes a1 and a2 have different frequencies ω1

and ω2. The squeezing occurs with respect to generalized quadrature phase
amplitudes

Xθ(t) =
1√
2

{

a1(t)e
i(θ+εt) + a†

2(t)e
−i(θ−εt) + H.c.

}

, (3.28a)

Xθ+π/2(t) =
−i√

2

{

a1(t)e
i(θ+εt) + a†

2(t)e
−i(θ−εt) − H.c.

}

, (3.28b)
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where

ε =
ω1 − ω2

2
, (3.29)

and θ is an arbitrary phase [62]. The electric field may be expressed in terms
of the two phase quadratures as

E(t) = Xθ(t) cos (ωt + θ) + Xθ+π/2(t) sin (ωt + θ) , (3.30)

where

ω =
ω1 + ω2

2
(3.31)

is the average frequency of the modes. Mutli-mode squeezing occurs when
the variance of either of these quadratures is reduced below unity.

It should be stressed that, in multi-mode squeezed light, the squeezing
arises from the correlations between the two modes and that neither mode
is individually squeezed.

3.3 The parametric amplifier

In Chapters 4 and 6, we will employ non-classical squeezed light sources
to entangle atoms. The parametric amplifier is the usual source for such
squeezed light. A parametric amplifier consists of a non-linear crystal in a
cavity which is pumped by a strong coherent laser field. The laser field may
be assumed not to be depleted by its interaction in the crystal and may be
modelled classically.

The degenerate parametric amplifier (DPA) has only one intracavity mode,
denoted by the annihilation operator a. The interaction picture Hamiltonian
for the DPA is

H =
i�

2

(

Ea†2 − E∗a2
)

, (3.32)

where E is a parameter describing the pump strength and interaction in the
parametric amplifier. Broad bandwidth ideal squeezed light centred on the
cavity frequency is produced in the output from the cavity [66].

The non-degenerate parametric amplifier (NDPA) has two intracavity
modes, denoted by the annihilation operators a and b. It generates multi-
mode squeezed light as described in Section 3.2.4. For the NDPA, the inter-
action picture Hamiltonian is

H = i�
(

Ea†b† − E∗ab
)

. (3.33)
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The two output fields from these modes are quantum correlated as described
in Section 3.2.4.

Detailed input-output models of both these parametric systems are given
in Appendix A, where they are used as sources of quantum-correlated light
to drive and entangle pairs of atoms.

3.4 Interaction of radiation and atoms

In this Thesis we will be concerned with the interaction of single atoms
with the electromagnetic field. It is appropriate therefore to make some
explanatory comments about the interaction of radiation and atoms.

In our model for an atom we may assume that only two atomic energy
levels play a part in any transition. We denote the excited level by |e〉 and
the ground level by |g〉. When employing a two-level description of the atom,
we have occasion to use the Pauli matrices which are, in the basis {|e〉 , |g〉},

σx =

(
0 1
1 0

)

, σy =

(
0 −i
i 0

)

, σz =

(
1 0
0 −1

)

, (3.34a)

σ+ =

(
0 1
0 0

)

, σ− =

(
0 0
1 0

)

. (3.34b)

The Hamiltonian describing the systematic motion of the atomic levels,
relative to the average energy of the levels, may then be written

Hatom =
1

2
�ωσz, (3.35)

where ω is the frequency difference of the two levels.
The electromagnetic field may interact with atoms via the electric dipole

interaction

Hatom/field = −e r̂ · Ê, (3.36a)

where e is the electronic charge and r̂ is the position operator for the electron.
Here we have made the dipole approximation - that the electric field does not
vary significantly over the extent of the atom. The electric dipole moment
operator of the atoms is given by

e r̂ = e
∑

n∈{e,g}

∑

m∈{e,g}
|n〉 〈n| r̂ |m〉 〈m|

= deeσ
+σ− + dgeσ

− + d∗
geσ

+ + dggσ
−σ+, (3.36b)
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where we have introduced atomic dipole matrix elements

dnm = e 〈n|̂r|m〉 = e

∫

d3r φ∗
m(r)r̂φn(r). (3.36c)

Here φn(r) is the electron wave function, for an electron in state n, assuming
that the wavefunction is unperturbed by the electric field. We may assume
that the ground and excited states of the atoms are symmetric and have no
permanent dipole moment, so that

dgg = dee = 0. (3.36d)

Then, the dipole moment of the atoms may be written as

er̂ = dgeσ
− + d∗

geσ
+. (3.36e)

With E as given in (3.6), and making the rotating-wave approximation
whereby energy non-conserving terms of the form a†

mσ+ and amσ− are ne-
glected, we obtain for our total Hamiltonian,

H = Hatom + Hfield + Hatom/field, (3.37a)

Hatom =
1

2
�ωσz, (3.37b)

Hfield = �

∑

m

ωma†
mam, (3.37c)

Hatom/field = �

∑

m

(

κ∗
ma†

mσ− + κmamσ+
)

, (3.37d)

with

κm = −i

(
ωm

2�ε0

) 1
2

u(r) · dge. (3.37e)

We have dropped the zero point energy of the electromagnetic field in (3.37c).

3.4.1 Cavity quantum electro-dynamics

Experiments are now possible where single atoms are trapped in high-finesse
optical cavities in the strong coupling regime [14, 15, 16], where the coupling
strength g of an atomic transition to a single cavity mode a dominates both
the decay rate κ of the cavity and the spontaneous emission rate γ of the
atom, i.e.,

g 
 κ, γ. (3.38)
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In such a situation the interaction between the two-level atom and the
electromagnetic field may be modelled by its interaction with just a single
mode. This is the Jaynes-Cummings model. From (3.37) we obtain the
Hamiltonian for the combined cavity/atom system

H = �a†a +
1

2
�ωσz + g

(

a†σ− + aσ+
)

. (3.39)

We will use this Hamiltonian for the coupling between trapped atoms and
single field modes that we require in later Chapters.

A good review of cavity quantum electro-dynamics, as used for possible
implementations of quantum computers, may be found in [67].



Chapter 4

Entangling atoms with
squeezed light

This Chapter investigates the effect of squeezed light on two separated
two-level atoms, under a number of simplifying assumptions. We consider
two methods of generating spatially entangled light beams. The steady state
of the atoms is solved, and their degree of entanglement is quantified. The
relevance of these systems for investigating violations of Bell inequalities is
examined. Finally, the dynamics of their evolution are investigated using
the entropy-entanglement plane.
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4.1 Introduction

Palma and Knight showed in 1989 [2] (see also [68]) that two closely spaced
atoms bathed in a broadband squeezed vacuum exhibit population decay
that is sensitive to the squeezing. They noted that, in a two-atom system,
the populations can change through a two-photon absorption or emission,
in a manner that is not possible for a single atom. They also showed that
the atoms relax to a pure equilibrium state in which the two atoms are
either both excited or both in their ground states. This state is far from
thermal equilibrium because phase-sensitive correlations are transferred from
the reservoir to the atomic system.

In their paper they calculated the steady state interatomic dipole correla-
tion function, for two atoms interacting with squeezed vacuum characterized
by the degree and purity of squeezing N and M , to be

S (∞) =
2M

2N + 1
, (4.1a)

where

S (t) =
〈

σ+
1 (t)σ+

2 (t) + σ−
1 (t)σ−

2 (t)
〉

. (4.1b)

This shows that the final atomic state contains internal correlations for non-
zero M . They found the steady state to be pure, and of the form

|ψss〉 = cos θ |00〉 + sin θ |11〉 , (4.2a)

where

cos θ =

√

N + 1

2N + 1
, (4.2b)

sin θ =

√

N

2N + 1
. (4.2c)
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Here |0〉 and |1〉 refer to the ground and excited states, respectively, of each
atom.

This effect was explored further by Ekert et al. [69] who showed that
dissipative relaxation into a squeezed reservoir by more general systems such
as atoms or harmonic oscillators leads to a pure final state. Also, a system
of N identical two-level atoms interacting with broadband squeezed radiation
was investigated by Agarwal and Puri [70]. They found that, when N is even,
the atoms relax into a pure, highly correlated state.

In this Chapter, we investigate the generation of such atomic spin-squeezed
states in a pair of separated atoms. We consider two different methods to
generate light fields that exhibit quantum correlations between the two spa-
tially distinct modes that are incident on the atoms. The first method is to
produce multi-mode squeezed light using a non-degenerate parametric am-
plifier (NDPA), where the spatially distinct output modes already contain
correlated photon pairs. Alternatively, we may take the output field from a
degenerate parametric amplifier (DPA) and pass it through a beam-splitter.
This will produce two spatially distinct fields with the correlations between
them weakened by the introduction of vacuum noise.

In both models we assume a resonant coupling between two relevant
atomic states and the squeezed light field incident on each atom. Two major
assumptions are made:

1. The squeezing bandwidth of the incident light fields is large compared
to the linewidth of the excited states of the atoms.

2. The atoms couple only to their specified input fields.

A practical method of satisfying these conditions will be considered in Chap-
ter 5.

4.2 Model for atoms driven by the NDPA

In this Section we consider the effect on the atoms of squeezed light as pro-
duced by the NDPA. The related system, where we pass the output of the
DPA through a beamsplitter to drive the atoms, is considered in Section 4.3.

The cascaded quantum systems are defined such that system 1 is the DPA
or NDPA and systems 2 and 3 are the two two-level atoms. The subscripts 1,
2 and 3 are used to refer to operators in the spaces of the above systems.
The identifiers f and g are used to refer to input and output fields and h is
used for vacuum fields introduced by a beam splitter.
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Figure 4.1: Driving two atoms with the NDPA. See the text for the definitions
of the identifiers.

4.2.1 Schematic

A schematic of the setup for the NDPA is shown in Figure 4.1. The squeezed
output modes from an NDPA are distributed to two spatially separated
atoms. Faraday isolators are used to create a uni-directional coupling to
the atoms, so that we have a cascaded quantum system. Imperfect coupling
between the squeezed modes and the atoms is modelled by two beam split-
ters. The effect of the imperfect coupling is to introduce a vacuum component
into the squeezing seen by the atoms.

The definitions used in Figure 4.1 are:

1. E is a parameter describing the pump strength and interaction in the
parametric amplifier.

2. h2 and h3 are vacuum input fields introduced by inefficient coupling to
the atoms.

3. γ2 and γ3 are the linewidths of the atomic transitions for atoms 2 and 3.
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4. ω2 and ω3 are the frequencies of the atomic transitions for atoms 2
and 3.

5. f2 and f3 are the input fields that interact with atoms 2 and 3.

6. ε2 and ε3 are the efficiencies of the couplings of the input fields to
atoms 2 and 3.

7. a and b are the signal and idler modes of the NDPA.

8. f1a and g1a are the input and output fields that interact with mode a.

9. f1b and g1b are the input and output fields that interact with mode b.

10. κa and κb are the decay rates of the NDPA signal and idler modes.

4.2.2 Reduced master equation

The steps required to derive a master equation for the atomic systems alone
are:

1. Write quantum Langevin equations for the 3 systems (QLEs).

2. Combine them into one QLE for the combined system.

3. Convert the QLE to a quantum Ito equation.

4. Convert the quantum Ito equation to a master equation for the com-
bined system comprising the parametric amplifier and the atoms.

5. By using a generalized positive-P representation for the modes of the
parametric amplifier, reduce the master equation to the atomic systems
alone, but with stochastic noise terms.

6. Use a cumulant expansion to second order to average over the noise
terms.

The derivation of the master equation is detailed in Appendix A.
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The reduced master equation for the atomic systems alone is

dρ

dt
=

1

2
γ2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ3

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

2
γ2ε2N

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ2ε2N

(

2σ+
2 ρσ−

2 − σ−
2 σ+

2 ρ − ρσ−
2 σ+

2

)

+
1

2
γ3ε3N

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

2
γ3ε3N

(

2σ+
3 ρσ−

3 − σ−
3 σ+

3 ρ − ρσ−
3 σ+

3

)

−1

2

√
γ2γ3ε2ε3M

(

2σ+
2 ρσ+

3 − σ+
3 σ+

2 ρ − ρσ+
3 σ+

2

)

−1

2

√
γ2γ3ε2ε3M

(

2σ+
3 ρσ+

2 − σ+
2 σ+

3 ρ − ρσ+
2 σ+

3

)

−1

2

√
γ2γ3ε2ε3M

(

2σ−
2 ρσ−

3 − σ−
3 σ−

2 ρ − ρσ−
3 σ−

2

)

−1

2

√
γ2γ3ε2ε3M

(

2σ−
3 ρσ−

2 − σ−
2 σ−

3 ρ − ρσ−
2 σ−

3

)

, (4.3a)

where

N =

(
E2κaκb

λ1
2λ2

2

)

, (4.3b)

M =
√

κaκb E

(
E2 + κaκb

4

λ1
2λ2

2

)

, (4.3c)

λ1,2 =
1

2

{

−1

2
(κa + κb) ±

√

1

4
(κa − κb)2 + 4E2

}

. (4.3d)

We have taken E and M to be real.

4.2.3 Symmetric case

For all subsequent work based on Equation (4.3a) we will consider the sym-
metrical situation where

γ ≡ γ2 = γ3, (4.4a)

ε ≡ ε2 = ε3. (4.4b)



4.2. MODEL FOR ATOMS DRIVEN BY THE NDPA 39

These simplifications allow us to write the master equation more compactly
as

dρ

dt
= +

γ

2
(N ′ + 1)

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ

2
N ′ (2σ+

2 ρσ−
2 − σ−

2 σ+
2 ρ − ρσ−

2 σ+
2

)

+
γ

2
(N ′ + 1)

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
γ

2
N ′ (2σ+

3 ρσ−
3 − σ−

3 σ+
3 ρ − ρσ−

3 σ+
3

)

−γ

2
M ′ (2σ+

2 ρσ+
3 − σ+

3 σ+
2 ρ − ρσ+

3 σ+
2

)

−γ

2
M ′ (2σ+

3 ρσ+
2 − σ+

2 σ+
3 ρ − ρσ+

2 σ+
3

)

−γ

2
M ′ (2σ−

2 ρσ−
3 − σ−

3 σ−
2 ρ − ρσ−

3 σ−
2

)

−γ

2
M ′ (2σ−

3 ρσ−
2 − σ−

2 σ−
3 ρ − ρσ−

2 σ−
3

)

. (4.5a)

We have defined rescaled squeezing parameters which include the inefficient
coupling:

N ′ = εN, (4.5b)

M ′ = εM. (4.5c)

The first four lines of Equation (4.5a) describe the interaction of each
atom individually with a thermal field characterized by a mean photon num-
ber N ′. The last four lines describe a two-photon interaction with correlated
photons from the two output modes of the NDPA.

4.2.4 Steady state solution

We are interested in examining the steady state of the atoms with a view
to establishing whether they become entangled, and whether they are suit-
able for experiments demonstrating violations of Bell inequalities. In this
Thesis we find the steady state for a number of two-qubit master equations
so the steps in this process have been automated (see Appendix B for de-
tails). We find that the steady state solution of Equation (4.5), in the basis
{|11〉 , |10〉 , |01〉 , |00〉}, is

ρss =







a 0 0 d
0 b 0 0
0 0 b 0
d 0 0 c







, (4.6a)
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where

a =
M ′2(1 − 2N ′) + N ′2(1 + 2N ′)
(1 + 2N ′)

(

(1 + 2N ′)2 − 4M ′2) , (4.6b)

b =
N ′(1 + N ′) − M ′2

(1 + 2N ′)2 − 4M ′2 , (4.6c)

c = 1 − a − 2b, (4.6d)

d =
M ′

(1 + 2N ′)
(

(1 + 2N ′)2 − 4M ′2) . (4.6e)

The single off-diagonal term d is responsible for any entanglement in the
steady state. It is significant that it is (approximately) proportional to M ′,
thus the greater the purity of squeezing the more entangled we expect the
state to be. The range of steady states produced is graphically examined in
Section 4.6.

When we have ε = 1 and ideal squeezing, i.e., M2 = N(1+N), we obtain
the pure state

a =
N

1 + 2N
, (4.7a)

b = 0, (4.7b)

c = 1 − a − 2b =
1 + N

1 + 2N
, (4.7c)

d =

√

N(1 + N)

1 + 2N
, (4.7d)

with corresponding density matrix

ρss =
1

1 + 2N







N 0 0 M
0 0 0 0
0 0 0 0
M 0 0 1 + N







. (4.7e)

We may write ρss as the pure state |ψ〉 〈ψ| where

|ψ〉 =

√

N

1 + 2N
|11〉 +

√

N + 1

1 + 2N
|00〉 . (4.8)

This is the identical state to that found by Palma and Knight for two closely
spaced atoms (Dicke system) in a broadband squeezed vacuum (4.2). It is
significant that a pure state still arises in our model which does not have
a collective coupling of the atoms to the squeezed reservoir. The state |ψ〉
approximates the Bell state |φ+〉 (1.2) as N becomes large.
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In the case of ε = 1 and no squeezing (M = 0) we obtain the mixed
diagonal state

a =
N2

(1 + 2N)2
, (4.9a)

b =
N(1 + N)

(1 + 2N)2
, (4.9b)

c = 1 − a − 2b, (4.9c)

d = 0, (4.9d)

with corresponding density matrix

ρss =
1

(1 + 2N)2







N2 0 0 0
0 N(1 + N) 0 0
0 0 N(1 + N) 0
0 0 0 (1 + N)2







. (4.9e)

This is the state we would expect to obtain when driving the atoms with
thermal light characterized by a mean photon number N .

4.3 Model for atoms driven by the DPA

In this Section we model the effect on two separated atoms of the entangled
light that is produced by a DPA after passage through a beam splitter. With
this method of generating entangled light beams, the quantum correlations
are degraded by mixing with ordinary vacuum, but are still of interest. It is
known that a single-mode squeezed state (such as is produced by the DPA)
incident on a beam-splitter yields a bipartite entangled state, and that a
single-mode squeezed state, distributed among N parties using linear optics,
can generate N -partite entanglement [71]. Since the light remains entangled
we can hope that it will still remain useful for entangling atoms.

4.3.1 Schematic

A schematic of the setup for the DPA is shown in Figure 4.2. A beam splitter
is used to split the output mode of the DPA into two modes with non-classical
correlations between them. Faraday isolators are again used to create a uni-
directional coupling to the atoms. Inefficient coupling between the squeezed
modes and the atoms is modelled by a further two beam splitters.

The definitions used in Figure 4.2 are:
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Figure 4.2: Driving two atoms with a DPA. See the text for the definitions
of the identifiers.

1. E is a parameter describing the pump strength and interaction in the
parametric amplifier.

2. h2 and h3 are vacuum input fields introduced by inefficient coupling to
the atoms.

3. γ2 and γ3 are the linewidths of the atomic transitions for atoms 2 and 3.

4. ω2 and ω3 are the frequencies of the atomic transitions for atoms 2
and 3.

5. f2 and f3 are the input fields that interact with atoms 2 and 3.

6. ε2 and ε3 are the efficiencies of the couplings of the input fields to
atoms 2 and 3.

7. a is the output mode of the DPA.

8. f1 and g1 are the input and output fields that interact with mode a.

9. κa is the decay rate of the DPA signal mode.

10. h1 is a vacuum input field introduced by the first beam splitter.
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4.3.2 Reduced master equation

We follow the same steps as described in Section 4.2.2 to obtain a master
equation for the atomic systems alone. The details of the derivation of this
master equation may be found in Appendix A.

The master equation is

dρ

dt
=

1

2
γ2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ3

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

4
γ2ε2N

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

4
γ2ε2N

(

2σ+
2 ρσ−

2 − σ−
2 σ+

2 ρ − ρσ−
2 σ+

2

)

+
1

4
γ3ε3N

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

4
γ3ε3N

(

2σ+
3 ρσ−

3 − σ−
3 σ+

3 ρ − ρσ−
3 σ+

3

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ−
2 ρσ+

3 − σ+
3 σ−

2 ρ − ρσ+
3 σ−

2

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ+
2 ρσ−

3 − σ−
3 σ+

2 ρ − ρσ−
3 σ+

2

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ−
3 ρσ+

2 − σ+
2 σ−

3 ρ − ρσ+
2 σ−

3

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ+
3 ρσ−

2 − σ−
2 σ+

3 ρ − ρσ−
2 σ+

3

)

−1

4
γ2ε2M

(

2σ+
2 ρσ+

2 − σ+
2 σ+

2 ρ − ρσ+
2 σ+

2

)

−1

4
γ2ε2M

(

2σ−
2 ρσ−

2 − σ−
2 σ−

2 ρ − ρσ−
2 σ−

2

)

−1

4
γ3ε3M

(

2σ+
3 ρσ+

3 − σ+
3 σ+

3 ρ − ρσ+
3 σ+

3

)

−1

4
γ3ε3M

(

2σ−
3 ρσ−

3 − σ−
3 σ−

3 ρ − ρσ−
3 σ−

3

)

−1

4

√
γ2γ3ε2ε3M

(

2σ+
2 ρσ+

3 − σ+
3 σ+

2 ρ − ρσ+
3 σ+

2

)

−1

4

√
γ2γ3ε2ε3M

(

2σ+
3 ρσ+

2 − σ+
2 σ+

3 ρ − ρσ+
2 σ+

3

)

−1

4

√
γ2γ3ε2ε3M

(

2σ−
2 ρσ−

3 − σ−
3 σ−

2 ρ − ρσ−
3 σ−

2

)

−1

4

√
γ2γ3ε2ε3M

(

2σ−
3 ρσ−

2 − σ−
2 σ−

3 ρ − ρσ−
2 σ−

3

)

, (4.10a)
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where

N =

(
E2κ2

a

λ1
2λ2

2

)

, (4.10b)

M = κaE

(

E2 + κ2
a

4

λ1
2λ2

2

)

, (4.10c)

λ1,2 = −κa

2
± E. (4.10d)

In this model, E and M are again taken to be real.

4.3.3 Symmetric case

Consider the symmetrical situation where

γ ≡ γ2 = γ3, (4.11a)

ε ≡ ε2 = ε3. (4.11b)

Then the master equation (4.10) can be written compactly as

dρ

dt
= +

γ

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
γ

2
N ′ (2SρS† − S†Sρ − ρS†S

)

+
γ

2
N ′ (2S†ρS − SS†ρ − ρSS†)

−γ

2
M ′ (2S†ρS† − S†S†ρ − ρS†S†)

−γ

2
M ′ (2SρS − SSρ − ρSS) . (4.12a)

We have defined rescaled parameters which incorporate the inefficient cou-
pling

N ′ = εN, (4.12b)

M ′ = εM, (4.12c)

and collective operators

S =
1√
2

(

σ−
2 + σ−

3

)

, (4.12d)

S† =
1√
2

(

σ+
2 + σ+

3

)

. (4.12e)
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The first two lines of Equation (4.12) represent non-collective spontaneous
emission by each atom into distinct reservoirs. The stimulated emission and
absorption terms in N ′ and M ′ show a collective interaction with the squeezed
light field.

4.3.4 Steady state solution

The steady state solution, in the basis {|11〉 , |10〉 , |01〉 , |00〉}, is

ρss =







a 0 0 d
0 b e 0
0 e b 0
d 0 0 c







, (4.13a)

where

a =
M ′2(1 − 2N ′) + 2N ′2(1 + N ′)

4 (1 + N ′)
(

1 − 2M ′2 + 3N ′ + 2N ′2) , (4.13b)

b =
2N ′(1 + N ′)2 − M ′2(1 + 2N ′)

4 (1 + N ′)
(

1 − 2M ′2 + 3N ′ + 2N ′2) , (4.13c)

c = 1 − a − 2b, (4.13d)

d =
2M ′

4 (1 + N ′)
(

1 − 2M ′2 + 3N ′ + 2N ′2) , (4.13e)

e =
2N ′ (N ′ + 1) − 2M ′2

4 (1 + N ′)
(

1 − 2M ′2 + 3N ′ + 2N ′2) . (4.13f)

When we have ε = 1 and ideal squeezing, i.e., M2 = N(1+N), we obtain

a = b =
N

4(1 + N)
, (4.14a)

c =
4 + N

4(1 + N)
, (4.14b)

d =

√

N(1 + N)

2(1 + N)2
, (4.14c)

e = 0. (4.14d)

As we may expect, this is not a pure state due to the vacuum noise admitted
to the system by the initial beamsplitter.
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4.4 Entanglement

We now have calculated the steady state solutions for both of our models.
In this Section we investigate the degree of entanglement that is present in
the atoms.

4.4.1 Regime of separability

It is of interest to calculate the parameter regime in N ′ and M ′ for which
the steady state density matrix is entangled. The separability criterion of
Peres [39] is that the state is separable when the smallest eigenvalue of the
partial transpose of the density matrix is non-negative (see Section 2.2). For
the NDPA, separability occurs whenever

M ≤ Msep =
−1 +

√

1 + 4N ′ (1 + N ′) (1 + 2N ′)2

2ε (1 + 2N ′)
, (4.15)

and, for the DPA, separability occurs whenever

M ≤ Msep =
−1 +

√

1 + 2N ′ (1 + N ′)2 (1 + 2N ′)

ε (1 + 2N ′)
. (4.16)

A graph of Msep versus N was plotted for ε = 1 (see Figure 4.3). It should
be kept in mind when examining this Figure, that values of M greater than

Mideal =
√

N (N + 1) (4.17)

are not physically possible. The area between the Msep and Mideal lines
represents that part of the parameter space where the steady state density
matrix is non-separable. With the NDPA it is always possible to generate
entangled states, for any value of N . For the DPA, however, a maximum
value for N exists (≈ 1.6) above which it is not possible to generate entangled
states.

4.4.2 Entanglement for ideal squeezing

With the NDPA, and for ideal squeezing (M2 = N(N +1)), the steady state
density matrix is

ρss =
1

1 + 2N







N 0 0 M
0 0 0 0
0 0 0 0
M 0 0 1 + N







. (4.18)
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Figure 4.3: Msep as a function of N , for ε = 1, plotted for both the NDPA
and DPA models. The upper solid line represents the maximum possible
value of M for any given N , defined as Mideal =

√

N (N + 1).
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As we have seen, this corresponds to the pure state

|ψ〉 =

√

N

1 + 2N
|11〉 +

√

N + 1

1 + 2N
|00〉 . (4.19)

As a measure of the entanglement in the system we may calculate the
concurrence (see Section 2.3.2). For a pure state this is easily done using the
spin-flipped state

∣
∣
∣ψ̃
〉

= (σy ⊗ σy) |ψ∗〉 . (4.20)

The concurrence is then

C(ψ) =
∣
∣
∣

〈

ψ|ψ̃
〉∣
∣
∣ . (4.21)

For the NDPA, with ideal squeezing, we obtain for the concurrence

C(ψ) =
2M

1 + 2N
. (4.22)

Note that in the situation of strong ideal squeezing, we have M → N + 1
2
,

and so the concurrence tends to C(ψ) = 1. This is the value which we expect
for the resulting Bell state.

4.4.3 Entanglement for general squeezing

For general squeezing, in models using both the DPA and NDPA, we do
not have a pure state so the concurrence is calculated from the steady state
following the approach of Wootters [30] (see Section 2.3.2). From our solution
for the steady state density matrix, which may be written in the same form
for both the NDPA and DPA cases,

ρss =







a 0 0 d
0 b e 0
0 e b 0
d 0 0 c







, (4.23)

we obtain for the NDPA (for which e = 0),

C(ρss) = max {0, 2d − 2b} , (4.24)

and for the DPA,

C(ρss) =

{

max {0, 2d − 2b} , d +
√

ac > b + e
0, d +

√
ac ≤ b + e

. (4.25)
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Figure 4.4: The entanglement of formation, EF , as a function of N for ideal
squeezing and ε = 1. Results for both the NDPA and DPA are plotted.

The entanglement of formation may be calculated from the concurrence
using (2.9)

EF (C) = h

(
1 +

√
1 − C2

2

)

. (4.26)

A graph of the entanglement of formation versus N was plotted for ε = 1
(see Figure 4.4). This graph shows how the NDPA can produce strong en-
tanglement in the atoms, tending asymptotically to 1 in the limit of large N ,
whereas the DPA produces only weak entanglement, and only for a limited
range of N .

4.5 Bell’s inequality

We have found conditions for the two atoms to be entangled. We may also
consider the (different) regime in which they violate the standard Bell’s in-
equality. An alternative description of the CHSH inequality to that given in
Section 2.4 is

−2 ≤ B ≤ 2, (4.27a)
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with the definitions

Si(φi) = cos(φi) {|0〉 〈0|i − |1〉 〈1|i}
+ sin(φi) {|0〉 〈1|i + |1〉 〈0|i} , (4.27b)

E(φ1, φ2) = 〈S1(φ1) ⊗ S2(φ2)〉 , (4.27c)

and

B(φ1, φ2, θ1, θ2) = E(φ1, φ2) − E(φ1, θ2)

+E(θ1, φ2) + E(θ1, θ2). (4.27d)

The angles φ1, φ2, θ1 and θ2 are the analyzer angles of the detection appara-
tus.

Again using our notation for the steady state density matrix, which ap-
plies for both the NDPA and DPA cases,

ρss =







a 0 0 d
0 b e 0
0 e b 0
d 0 0 c







, (4.28)

we obtain the expression

〈S1(φ1) ⊗ S2(φ2)〉 = (1 − 4b) cos(φ1) cos(φ2)

+2(d + e) sin(φ1) sin(φ2). (4.29)

Stationary points of B are found when the following are satisfied,

tan(θ1) tan(φ1) =
4(d + e)2

(1 − 4b)2
, (4.30a)

tan(φ2) =
2(d + e)

1 − 4b
tan

(
φ1 + θ1

2

)

, (4.30b)

tan(θ2) tan(φ2) = −4(d + e)2

(1 − 4b)2
, (4.30c)

tan(φ1) =
2(d + e)

1 − 4b
cot

(
φ2 + θ2

2

)

, (4.30d)

and a stationary point Bmax (maximum taken over all analyzer angles) occurs
when

φ1 = −π/2, (4.31a)

φ2 = tan−1

(−2(d + e)

1 − 4b

)

, (4.31b)

θ1 = 0, (4.31c)

θ2 = −φ2. (4.31d)
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We obtain the general solution for the maximum violation of the CHSH
inequality

Bmax(ρss) = 2
[

(1 − 4b)2 + 4(d + e)2
]1/2

. (4.32)

We see immediately that large values of b (it has a maximum possible
value of 1/4) reduce Bmax as expected for a highly mixed state. Also, with b
small and d+e large (i.e., significant off-diagonal terms) we obtain |Bmax| > 2
and a violation of the CHSH inequality.

In an alternative derivation, we have calculated Bmax(ρ) using the tech-
nique described in Section 2.4. We can express our general steady state
density matrix (4.28) as the simple form

4ρss = 12 ⊗ 12

+(2a + 2b − 1) σz ⊗ 12

+(2a + 2b − 1) 12 ⊗ σz

+2(d + e) σx ⊗ σx

−2(d + e) σy ⊗ σy

+(1 − 4b) σz ⊗ σz. (4.33)

This alternative approach leads immediately to the result (4.32).
From Equation (4.32) we may calculate explicit expressions for the value

of Bmax in terms of the squeezing parameters N ′ and M ′. For the NDPA we
have

Bmax(N
′, M ′) =

2
[

(1 + 2N ′)2 + 4M ′2]1/2

(1 + 2N ′)
[

(1 + 2N ′)2 − 4M ′2] , (4.34)

and for the DPA

Bmax(N
′, M ′) =

2(1 + N ′ − M ′) [(1 + N ′ + M ′)2 + (N ′ + M ′)2]
1/2

(1 + N ′)
[

(1 + N ′)(1 + 2N ′) − 2M ′2] . (4.35)

With these expressions we can identify the behaviour in selected regimes.
For the NDPA, in the case of ε = 1 and ideal squeezing, we have

Bmax(N) =
2(1 + 8N + 8N2)1/2

1 + 2N
≥ 2. (4.36)

For N > 0 we find Bmax is always greater than 2 so the CHSH inequality is
always violated. As N → ∞ we find Bmax → 2

√
2 - the maximal violation

possible.
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Figure 4.5: Bmax as a function of N for ε = 1 and ideal squeezing. The
NDPA always creates states that violate the CHSH inequality, whereas the
DPA never does.

For the DPA, in the case of ε = 1 and ideal squeezing, we have,

Bmax(N) = 2

(
1 + 2N

(1 + N)3

)1/2

≤ 2. (4.37)

This tends to 2 from below as N tends to 0 from above, showing that the
DPA never creates a state that violates the CHSH inequality, even though it is
capable of producing entangled states. That this is possible has only recently
been realized (see Section 2.4 for a discussion). A graph has been plotted of
Bmax as a function of N for ideal squeezing (see Figure 4.5) that demonstrates
the behaviour of Equations (4.36) and (4.37). Another way to visualize the
regime in which the CHSH inequality is violated, is to make contour plots of
Bmax (N, M, ε), with one of the parameters N , M or ε held constant. Two of
these plots are shown for the NDPA in Figures 4.6 and 4.7. As N increases,
we see that the parameters ε and M must have values correspondingly closer
to their maxima in order to violate the inequality.

In Figure 4.8, we explore the relationship between the violation of the
CHSH inequality and entanglement. For the NDPA, with ε = 1, we may
define the limiting value MCHSH such that the CHSH inequality is violated
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Figure 4.6: Contour plot of Bmax as a function of N and ε, for atoms driven
with an NDPA, in the case of ideal squeezing for which M2 = N (N + 1).

when M > MCHSH . We plot both Msep and MCHSH against N . This shows
again that violation of the CHSH inequality and entanglement are not equiv-
alent for this system.

4.6 Entropy-entanglement plane

In this Section, the relationship between the purity and entanglement is
explored for the two models. The steady state for each model (see Equa-
tion (4.6) and Equation (4.13)) are plotted in the LEFT plane as defined in
Section 2.5 (see Figure 4.9). Each curve represents a particular value of N
and the corresponding range of possible M values, 0 ≤ M2 ≤ N (N + 1).
We have chosen ε = 1.

With the NDPA, by varying N and M , we may generate steady states of
the atoms which access all points in the LEFT plane up to and including the
line of the Werner states. In general, the greater M , the greater the correla-
tions in the squeezed light, and the greater the purity and entanglement of
the steady state of the atoms. It can be shown, in the limit of large N , that
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,

for atoms driven with the NDPA, in the case where ε = 1. The value Mratio

is plotted, rather than M , to emphasize the region of interest.
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atoms driven by the NDPA.
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the Werner states are obtained, defined as

ρW (q) =
q

4
(12 ⊗ 12) +

(1 − q)

2
{|00〉 + |11〉} {〈00| + 〈11|} ,

0 ≤ q ≤ 1. (4.38)

Using the DPA, however, only a very small proportion of the LEFT plane
may be accessed. For comparison, the steady states are also shown in the
LEFC plane (see Figure 4.10). The LEFC plane appears a more suitable rep-
resentation for these states (the entanglement measure scales more naturally
against entropy as M changes).

The steady states, for the NDPA, are also shown plotted for the 6 combi-
nations of entropy and entanglement measures that were used in Section 2.5.3
(see Figure 4.11). When the negativity is used as the measure of entan-
glement, the NDPA is capable of accessing all the entangled region of the
entropy-entanglement plane.

Our simple model proves to be unexpectedly powerful in terms of the
range of two-qubit states that can be created. In later Chapters we will find
methods to generate states that lie above the Werner line.

4.7 Conclusions

We have seen that both schemes considered in this Chapter can lead to
entangled atomic steady states. When using the DPA we always have a
significant degree of vacuum incident on the atoms. This prevents them
from attaining a pure state and from becoming highly entangled. With the
NDPA the situation is better - in the case of ideal coupling between the
squeezed light and the atoms we obtain pure maximally entangled states.
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Figure 4.10: Steady states for the NDPA (top) and DPA (bottom), plotted in
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Figure 4.11: Steady states, for the NDPA, in the entropy-entanglement plane
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Chapter 5

An effective one-dimensional
system

A single atom, trapped in a high-finesse optical cavity and with a three-level
Λ-configuration, is known to be a possible implementation of a qubit. It is
this system that we investigate in this Chapter. We are interested in
determining whether it has the same effective interaction with squeezed light
as a free two-level atom. We will see that the 3-level Λ-configuration does
not have the desired interaction but that a slightly more complicated system
employing 4 atomic levels is suitable.
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5.1 Introduction

The previous Chapter investigated the effects of squeezed light on a pair of
two-level atoms. Two major assumptions made in that Chapter were:

1. The squeezing bandwidth is large compared to the linewidths of the
excited states of the atoms.

2. The atoms couple only to input channels through which the nonclassical
light is incident.

In this Chapter we investigate a technique to validate these assumptions.
We consider a single 3-level atom in the Λ-configuration trapped in a high-
finesse optical cavity, with a Raman transition between the ground states
that is driven by a coupling laser and by the cavity mode. Such a system is
a possible implementation of a qubit (see, e.g., [72]).

In this scenario, we require the characteristic correlation time of the
squeezed light to be greater than the decay rate of the cavity. Such broad-
band squeezed light sources are available [73]. The second requirement, that
the atoms couple only to squeezed channels, can be satisfied by engineer-
ing an effective Jaynes-Cummings interaction (see Section 3.4.1), where the
coupling strength of the two-level system to the cavity mode dominates the
effective atomic spontaneous emission rate. This ensures that the damped
cavity provides the dominant input and output channel to the atom.

5.2 Scheme

In this Section we describe the system we wish to investigate. We consider
an atom that is trapped in a high-finesse optical cavity of (field) decay rate
κ and frequency ω (see Figure 5.1). The annihilation (creation) operator for
the quantized cavity mode is denoted a (a†). The cavity is driven by squeezed
light characterized by the parameters N (real) and M (complex). The atom
has two meta-stable ground states, |0〉 and |1〉, which are degenerate (or
nearly so) in energy. A third state |r〉, at an energy of ωr, enables a Raman
transition between the two ground states. In particular, the transition |1〉 ↔
|r〉 is driven by a highly detuned laser of frequency ωLr (detuning ∆r =
ωLr−ωr), phase φ and Rabi frequency Ωr, while the other transition |0〉 ↔ |r〉
is driven by the cavity mode. The total spontaneous emission rate from the
excited atomic state |r〉 is γr. The driving laser is detuned from the cavity by
an amount δ = ωLr − ω. The squeezed light driving the cavity has a central
(or carrier) squeezing frequency of ωLr , i.e., the same as the driving laser.
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|1〉 |0〉

|r〉

δ

∆r

Cavity

ω, gr
Laser

ωLr , Ωr, φ

ωr

Figure 5.1: Level scheme for a 3-level Λ-atom in a cavity. The non-resonant
Raman transition is driven by a coupling laser and the cavity mode. See the
text for a description of the variables.

At this point, it is appropriate to describe the naming conventions for the
variables which are used here and in the next two Chapters (all of which deal
with multi-level atomic schemes undergoing Raman transitions). The excited
states of the atoms are named |r〉, |s〉 or |t〉 as required (we shall consider up
to 3 excited states), and the ground states are always named |0〉 and |1〉 to
emphasize their interpretation as qubits. Detunings are denoted by ∆, Ω is
used for the Rabi frequency of the coupling lasers and g for the coupling of
an atomic transition to the cavity mode. For our laser fields, cavity coupling
constants, frequencies and detunings, we use subscripts relating to the excited
state of the atoms with which they are involved. Thus, Ωr refers to the Rabi
frequency of a laser field coupling to a particular atomic transition involving
the excited state |r〉.

5.3 Master equation

Setting the zero of energy to be the energy of the (degenerate) ground states
|1〉 and |0〉, we may write the master equation for this system, in a non-
rotating frame, as

ρ̇ = −i [H, ρ] + Lcavρ + Lsponρ, (5.1a)
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where

H = Hcav + Hatom + Hatom/laser + Hatom/cav , (5.1b)

Hcav = ωa†a, (5.1c)

Hatom = ωr |r〉 〈r| , (5.1d)

Hatom/laser =
Ωr

2

(

e−iφe−iωLr t |r〉 〈1| + H.c.
)

, (5.1e)

Hatom/cav = gr |r〉 〈0| a + H.c., (5.1f)

and

Lcavρ = κ(1 + N)
(

2aρa† − a†aρ − ρa†a
)

+κN
(

2a†ρa − aa†ρ − ρaa†)

+κMe−2iωLr t
(

2a†ρa† − a†a†ρ − ρa†a†)

+κM∗e2iωLr t (2aρa − aaρ − ρaa) . (5.1g)

Here we assume that the squeezing bandwidth dominates the decay rate κ
of the cavity, enabling us to write the damping of the cavity in the standard
form (5.1g). The term Lsponρ describes atomic spontaneous emission.

5.3.1 Adiabatic elimination of excited states

To isolate the essential dynamics of this system, we assume that the detuning
of the light field from the excited atomic state is very large, i.e.,

|∆r| 
 κ, Ωr, gr, γr, (5.2)

so that spontaneous emission from the excited state |r〉 during the Raman
transition is negligible and the state |r〉 may be adiabatically eliminated.
We obtain a Hamiltonian (with the cavity in a frame rotating at the laser
frequency) of

ρ̇ = −i [H, ρ] + Lcavρ, (5.3a)

where

H = Hatom + Hcav + Hatom/cav , (5.3b)

Hatom =
Ω2

r

4∆r
σ+σ−, (5.3c)

Hcav = −δa†a, (5.3d)

Hatom/cav =
g2

r

∆r
σ−σ+a†a +

grΩr

2∆r

(

eiφσ+a + H.c.
)

, (5.3e)
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and

Lcavρ = κ(1 + N)
(

2aρa† − a†aρ − ρa†a
)

+κN
(

2a†ρa − aa†ρ − ρaa†)

+κM
(

2a†ρa† − a†a†ρ − ρa†a†)

+κM∗ (2aρa − aaρ − ρaa) . (5.3f)

We have defined raising and lowering operators between the atomic ground
states as

σ+ = |1〉 〈0| , (5.4a)

σ− = |0〉 〈1| . (5.4b)

With the excited state eliminated we have an effective two-level system
whose interaction with the cavity mode is characterized by the parameters

βr =
grΩr

2∆r
, (5.5a)

ηr =
g2

r

∆r
. (5.5b)

Here βr is the coupling constant of the effective two-level system to the cavity
mode and ηr is the ac-Stark shift induced in |0〉 per cavity photon.

5.3.2 Adiabatic elimination of cavity

Examining Equation (5.3e) we now see that the interaction between the
cavity mode and the atom is nearly in the desired Jaynes-Cummings form,
except for the presence of an extra term ηrσ

−σ+a†a. To understand the
effect of this term on the atomic ground states we adiabatically eliminate
the cavity mode by assuming that its decay rate κ is larger than its coupling
to the atomic system. The method used follows that used by Parkins and
Kimble in [74]. The time-scale assumptions we have made are now

|∆r| 
 κ, Ωr, gr, γr, (5.6a)

κ 
 βr, ηr. (5.6b)

Before performing the adiabatic elimination we ensure that all of the
cavity operators coupling to the atom have zero mean by defining a new
operator

n̆ = a†a − N. (5.7)
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In order to eliminate systematic motion of the cavity mode at frequency δ,
and also of the atomic ground states due to their effective level shifts, we
make a further transformation to a new interaction picture relative to the
Hamiltonian term:

H0 = −δa†a +
Ω2

r

4∆r
σ+σ− + ηrNσ−σ+. (5.8)

After these minor transformations, the new master equation becomes

ρ̇ = −i
[

Hatom/cav, ρ
]

+ Lcavρ, (5.9a)

where

Hatom/cav = ηrσ
−σ+n̆ + βr

(

eiφeiδteiαtσ+a + H.c.
)

, (5.9b)

and

Lcavρ = κ(1 + N)
(

2aρa† − a†aρ − ρa†a
)

+κN
(

2a†ρa − aa†ρ − ρaa†)

+κMe−2iδt
(

2a†ρa† − a†a†ρ − ρa†a†)

+κM∗e2iδt (2aρa − aaρ − ρaa) . (5.9c)

After performing the adiabatic elimination of the cavity, we obtain a
master equation for the atomic ground states alone:

ρ̇ = +β2
r

(
N + 1

κ − iα − iδ

)
{

σ−ρσ+ − σ+σ−ρ
}

+β2
r

(
N + 1

κ + iα + iδ

)
{

σ−ρσ+ − ρσ+σ−}

+β2
r

(
N

κ + iα + iδ

)
{

σ+ρσ− − σ−σ+ρ
}

+β2
r

(
N

κ − iα − iδ

)
{

σ+ρσ− − ρσ−σ+
}

+β2
r

(−κM

κ − iδ

)
e2iφe2iαt

κ + iα − iδ

{

2σ+ρσ+
}

+β2
r

(−κM∗

κ + iδ

)
e−2iφe−2iαt

κ − iα + iδ

{

2σ−ρσ−}

+η2
r

(
1

2κ

)(

N(N + 1) +
κ2MM∗

κ2 + δ2

)

{

2σ−σ+ρσ−σ+ − σ−σ+ρ − ρσ−σ+
}

, (5.10a)
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where

α =
Ω2

r

4∆r
− g2

rN

∆r
=

β2
r

ηr
− ηrN. (5.10b)

5.4 Comparison to two-level atom

We are now in a position to analyze the differences between a two-level
atom in a squeezed vacuum and our Λ-system interacting with squeezed light
through a cavity. For the purposes of comparison, the master equation for
a two-level atom with atomic transition linewidth γ, interacting resonantly
with a broadband squeezed vacuum, is [75]

ρ̇ =
γ

2
(N + 1)

(

2σ−ρσ+ − σ+σ−ρ − ρσ+σ−)

+
γ

2
N
(

2σ+ρσ− − σ−σ+ρ − ρσ−σ+
)

−γMσ+ρσ+ − γM∗σ−ρσ−. (5.11)

First of all we note that there is a time dependence in master equa-
tion (5.10a), which can only be removed when parameters are chosen such
that α = 0. This is a prerequisite for keeping the phase of the atomic ground
states constant with respect to the phase of the squeezed light. We see that
the detuning δ between the cavity and the laser has not provided a degree of
freedom to cancel with α as we might have hoped.

Even if we choose parameters such that α and δ are zero we still do not
have a master equation of the appropriate form (5.11) due to the term that
is proportional to η2

r . This term may be interpreted as phase damping of
the qubit caused by a coherent scattering process between the atom and the
intra-cavity photons. The effects of this term will be negated if we can choose
parameters such that

β2
rN 
 η2

rN (N + 1) . (5.12)

Unfortunately, the requirement of α = 0 means that β2
r = η2

rN and therefore
Equation (5.12) cannot be simultaneously satisfied. Therefore we seem to
be in a situation where we cannot simulate a two-level atom in a squeezed
vacuum by using a three-level Λ-system in a cavity driven by squeezed light.

5.4.1 Bloch equations

To understand further the effect of the term containing η2
r in Equation (5.10a)

it is informative to compare the Bloch equations for the Λ-system with those



68 CHAPTER 5. AN EFFECTIVE ONE-DIMENSIONAL SYSTEM

for a two-level atom in a broadband squeezed vacuum. For clarity, we choose
κ = 1, α = 0, δ = 0 and M real, so that the reduced master equation for the
Λ-system simplifies to

ρ̇ = β2
r (N + 1)

{

2σ−ρσ+ − σ+σ−ρ − ρσ+σ−}

+β2
rN

{

2σ+ρσ− − σ−σ+ρ − ρσ−σ+
}

−β2
r M

{

2σ+ρσ+ + 2σ−ρσ−}

+η2
r

N(N + 1) + M2

2

{

2σ−σ+ρσ−σ+ − σ−σ+ρ − ρσ−σ+
}

.

(5.13)

If we define the constant

B =
η2

r

2β2
r

(

N(N + 1) + M2
)

, (5.14a)

the Bloch equations are

〈σ̇x〉 = −β2
r (2N + 1 + 2M + B) 〈σx〉 , (5.14b)

〈σ̇y〉 = −β2
r (2N + 1 − 2M + B) 〈σy〉 , (5.14c)

〈

˙σ−σ+
〉

= 2β2
r (N + 1)

〈

σ+σ−〉− 2β2
rN, (5.14d)

〈

˙σ+σ−
〉

= −2β2
r (N + 1)

〈

σ+σ−〉+ 2β2
rN. (5.14e)

These equations may be compared to the Bloch equations for a single
two-level atom in squeezed vacuum, calculable from (5.11), which are

〈σ̇x〉 = −γ

2
(2N + 1 + 2M) 〈σx〉 , (5.15a)

〈σ̇y〉 = −γ

2
(2N + 1 − 2M) 〈σy〉 , (5.15b)

〈

˙σ−σ+
〉

= γ(N + 1)
〈

σ+σ−〉− γN, (5.15c)
〈

˙σ+σ−
〉

= −γ(N + 1)
〈

σ+σ−〉+ γN. (5.15d)

We see that the Bloch equations would be of the same form except for the
extra term B present in the phase decay equations for the Λ-atom in a cavity.
This extra factor causes enhanced phase decay in both quadratures but does
not affect the populations or their decay rates.

With the requirement of α = 0, we see that β2
r = η2

rN and so B cannot
be chosen to be significantly less than 2M . Hence, there is always significant
phase decay in each quadrature (i.e. the term 2N + 1 − 2M + B cannot
be made small). We conclude that it is not possible to choose a parameter
regime which permits the Λ-atom in a cavity to have similar phase decay
dynamics to the equivalent two-level atom.
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Figure 5.2: The atomic levels and transitions for a four-level atom, showing
the resonant Raman transition and the virtual excitation of state |s〉. The
two lasers have frequencies ωLr and ωLs, and Rabi frequencies Ωr and Ωs,
respectively. The excited levels have frequencies ωr and ωs and spontaneous
emission rates γr and γs. The lasers are strongly detuned by ∆r = ωLr − ωr

and ∆s = ωLs − ωs. As drawn, the detunings ∆r and ∆s are negative.

5.5 Four-level Λ-system

The time dependence in Equation (5.10a) arises from the differing level shifts
experienced by states |0〉 and |1〉 in our effective two level system. This
suggests that the addition of another level shift into one of these ground states
could provide a degree of freedom with which to cancel the time dependence.
A technique to achieve this is to virtually excite a fourth atomic level by
driving it selectively from one of the ground states via a second laser field.

A new atomic level scheme to achieve this is shown in Figure 5.2. This
configuration has the same basic structure as that shown in Figure 5.1 except
for the addition of a new excited state |s〉 and a second laser field coupling
it to level |0〉. We also now choose δ = 0 (i.e. drive the transition |0〉 ↔ |1〉
on Raman resonance). The state |s〉 is virtually excited from |0〉 by a second
strongly detuned laser with Rabi frequency Ωs and detuning ∆s. It has
a spontaneous emission rate γs. We expect that the state |s〉 will add an
additional ac-Stark shift to the ground state |0〉 due to the laser field Ωs.

Following the approach for the three-level Λ-system used earlier in the
Chapter we may again adiabatically eliminate the excited states of the atoms
and then the cavity mode. The timescale conditions for the adiabatic elimi-
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nation become

|∆r| , |∆s| 
 κ, Ωr, Ωs, gr, γr, γs, (5.16a)

κ 
 βr, ηr. (5.16b)

We obtain the master equation

ρ̇ = +β2
r

(
N + 1

κ − iα

)
{

σ−ρσ+ − σ+σ−ρ
}

+β2
r

(
N + 1

κ + iα

)
{

σ−ρσ+ − ρσ+σ−}

+β2
r

(
N

κ + iα

)
{

σ+ρσ− − σ−σ+ρ
}

+β2
r

(
N

κ − iα

)
{

σ+ρσ− − ρσ−σ+
}

−β2
rM

e2iφe2iαt

κ + iα

{

2σ+ρσ+
}

−β2
rM

∗ e−2iφe−2iαt

κ − iα

{

2σ−ρσ−}

+η2
r

N(N + 1) + MM∗

2κ

{

2σ−σ+ρσ−σ+ − σ−σ+ρ − ρσ−σ+
}

,

(5.17a)

where the definition of α becomes

α =
Ω2

r

4∆r
− Ω2

s

4∆s
− g2

rN

∆r
. (5.17b)

It is now possible to satisfy the condition α = 0, while simultaneously
satisfying conditions (5.16), and also choosing parameters to ensure

B � 2N + 1 − 2M. (5.18)

This means that we can choose a parameter regime to make the behaviour of
the ground states of a 4-level Λ-system in a cavity driven by squeezed light
identical to the behaviour of a free two-level atom interacting directly with
squeezed light.

5.6 Conclusions

We have seen that we can create a system, based on cavity QED, which
has the same interaction with squeezed light as a free atom. However, in
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the cavity QED system, the atom is effectively one-dimensional; we need
only squeeze the modes into which the cavity decays and do not need to
squeeze the full 4π of modes with which a free atom can interact. This is
a substantially simpler technical challenge. Therefore, the use of a 4-level
system offers a solution to the problem of driving an atom from all directions
with broadband squeezed light. This was the major assumption made in
Chapter 4.

In the next Chapter, we shall consider a cavity QED situation using two
of these 4-level atoms. We may expect that all of the results obtained in
Chapter 4 should continue to apply if we take the systems considered there
and substitute, for an atom in free space with linewidth γ, a subsystem

comprising a 4-level Λ-atom trapped in a cavity with effective linewidth 2β2
r

κ
.





Chapter 6

Entangling one-dimensional
atoms with squeezed light

In this Chapter we investigate two schemes to transfer entanglement from
squeezed light to a pair of one-dimensional atoms created by the cavity QED
setup described in Chapter 5. In an extension of the work of Palma and
Knight [2], we first consider two 4-level atoms that are both trapped in a
single high-finesse optical cavity which is driven by quadrature-squeezed light
from a degenerate parametric amplifier. In another scenario, based on the
idealized models of Chapter 4, we consider two 4-level atoms that are
trapped in individual optical cavities each driven by a different output field
from a non-degenerate parametric amplifier. In both cases we show how the
quantum correlations in the light fields are transferred to the atoms. For the
DPA system we show how atomic two-qubit states of arbitrary entanglement
and entropy may be generated.
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6.1 Introduction

The system of a pair of atoms in a cavity driven resonantly by broadband
squeezed light was considered by Banerjee in 1996 [76], under the assumption
that the distance between the two atoms was much smaller than the resonant
wavelength (Dicke model). The steady state solution for the atoms was
found and the degree of atomic squeezing characterized as a function of the
spontaneous emission rate of the atoms and of the squeezing parameters (N
and M) of the light driving the cavity.

In this Chapter, the first system we consider bears many similarities to
that of [76], except we employ the effective one-dimensional atoms of Chap-
ter 5. We do not consider the effect of spontaneous emission during the
Raman transition because we assume that it can be made small using the
arguments made in Section 5.3.1. We find that the resulting master equation
contains a collective phase decay term that degrades the entanglement, but
which can be made negligible in the appropriate parameter regime.

The second system that we investigate is an extension of the system of two
separate atoms driven by an NDPA, which was considered in Chapter 4. We
use the two output modes from an NDPA to drive two different cavities, each
containing a 4-level atom in the cavity QED setup described in Chapter 5.

6.2 Entangling atoms with the DPA

In the first part of this Chapter we will consider the two atoms to be trapped
in the same optical cavity. The alternative situation, where the atoms are
trapped in individual cavities, is considered in Section 6.7.

The details of the experimental setup are as follows. The squeezed output
mode from a degenerate parametric amplifier (DPA) is mode-matched to
a resonant high-finesse optical cavity, with field decay rate κ, containing
two trapped atoms (see Figure 6.1). The quantized annihilation (creation)
operator for the cavity mode is denoted a (a†). The atoms are trapped at
sites with sufficient separation so that there is no direct interaction between
the atoms and so that they can be individually addressed by probe lasers if
necessary. The output from the DPA is characterized by two parameters N
(real) and M (complex) for which 0 ≤ |M |2 ≤ N(N + 1). When M = 0 we
have thermal light, and for |M |2 = N(N +1) we have ideally squeezed light.

The relevant level scheme of each atom is shown in Figure 6.2. The atoms
are considered to be identical in every respect except position, to have the
same coupling strengths to the cavity, and to be driven by identical strength
laser fields. This level scheme is identical to that described in Figure 5.2;
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Figure 6.1: Cavity containing two atoms and driven by squeezed light.
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Figure 6.2: The atomic levels and transitions for each atom, showing the
Raman transition and the virtual excitation of state |s〉. The two lasers have
frequencies ωLr and ωLs, and Rabi frequencies Ωr and Ωs respectively. The
excited levels have frequencies ωr and ωs. The lasers are strongly detuned
by ∆r = ωLr − ωr and ∆s = ωLs − ωs. As drawn, the detunings ∆r and ∆s

are negative.
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it is briefly described again here. The states |1〉, |r〉 and |0〉 are in the
Λ-configuration as employed in [72]. A strongly detuned laser drives the
transition 1 ↔ r with a Rabi frequency of Ωr and detuning ∆r. The transition
r ↔ 0 is coupled with strength gr and the same detuning ∆r to the cavity
mode. A fourth state |s〉 is virtually excited from |0〉 by another strongly
detuned laser with Rabi frequency Ωs and detuning ∆s. As we have seen
in Chapter 5, the state |s〉 adds an additional ac-Stark shift to the ground
state |0〉 due to the laser field Ωs and is required to create an interaction with
the squeezed light of the desired form.

6.3 Master Equation

The master equation for the entire system, assuming broadband squeezed
light with respect to the cavity decay rate, is given by

ρ̇ = −i [H, ρ] + Lcavρ, (6.1a)

Lcavρ = κ(1 + N)
(

2aρa† − a†aρ − ρa†a
)

+κN
(

2a†ρa − aa†ρ − ρaa†)

−κMe−2iωt
(

2a†ρa† − a†a†ρ − ρa†a†)

−κM∗e2iωt (2aρa − aaρ − ρaa) , (6.1b)

H = Hcav + Hatoms + Hatoms/lasers + Hatoms/cav, (6.1c)

Hcav = ωa†a, (6.1d)

Hatoms =
∑

i=1,2

(ωr |r〉 〈r|i + ωs |s〉 〈s|i) , (6.1e)

Hatoms/lasers =
Ωr

2
e−i[ωLr t+φr ] |r〉 〈1|i + H.c.

+
Ωs

2
e−i[ωLs t+φs] |s〉 〈0|i + H.c., (6.1f)

Hatoms/cav =
∑

i=1,2

gr |r〉 〈0|i a + H.c.. (6.1g)

Here H.c. refers to the Hermitian conjugate of the previous term. In this
Chapter we assume that spontaneous emission from the excited states of
the atoms during their Raman transitions can be neglected. The effects of
such spontaneous emission are investigated in depth in Chapter 7 in a closely
related system.



6.4. REDUCED MASTER EQUATION 77

6.4 Reduced master equation

To understand the dynamics of this system we wish to find a reduced master
equation for a pair of effective two-level systems. We first adiabatically elim-
inate the excited states of the atoms as in Section 5.3.1. We then operate the
cavity in the bad-cavity limit where the decay rate of the cavity dominates
its interaction with the atoms. This enables us to adiabatically eliminate the
cavity as well and obtain the master equation

ρ̇ =
2β2

r

κ
(N + 1)

(

2SρS† − S†Sρ − ρS†S
)

+
2β2

r

κ
N
(

2S†ρS − SS†ρ − ρSS†)

−2β2
r

κ
Me2iφr

(

2S†ρS† − S†S†ρ − ρS†S†)

−2β2
r

κ
M∗e−2iφr (2SρS − SSρ − ρSS)

+
η2

r

2κ
{N(N + 1) + MM∗} (2PρP † − P †Pρ − ρP †P

)

, (6.2a)

where we have defined the collective operators

S =
1√
2

(

σ−
1 + σ−

2

)

, (6.2b)

P = σ−
1 σ+

1 + σ−
2 σ+

2 . (6.2c)

The reduced system is characterized by the parameters

βr =
grΩr

2∆r

, (6.3a)

ηr =
g2

r

∆r

, (6.3b)

which are respectively the coupling constant of each effective two-level system
to the cavity and the ac-Stark shift induced in |0〉 per cavity photon. With
these definitions, the bad-cavity limit can be quantified as

κ 
 |βr| , |ηr| . (6.4)

This master equation is in the interaction picture such that the rotation
of the effective two-level system is stopped. Its validity depends on the
additional assumption that we have chosen parameters such that the effective
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two-level system remains at a constant phase relative to the squeezed light
field, i.e.,

Ω2
r

4∆r
− Ω2

s

4∆s
− g2

r

∆r
N = 0. (6.5)

As we have seen in Chapter 5, it is for this reason that we employ the
additional state |s〉 and the laser driving the transition 0 ↔ s. The extra
degree of freedom provided by varying Ωs and/or ∆s will permit us the
flexibility to make ηr negligible if desired, while still satisfying (6.5).

We now examine Equation (6.2a). This bears much similarity to Equa-
tion (4.12), which was for the system of two atoms driven by a DPA (con-
sidered in Chapter 4). In (6.2a), stimulated emission into and absorption
from the squeezed reservoir, is through collective couplings, as expected for
two atoms in the same cavity. In contrast to Equation (4.12) however, even
the terms describing (effective) spontaneous emission are collective, since
the mechanism for spontaneous emission of the effective two-level systems
is through decay of the shared cavity mode. The term proportional to η2

r

may be interpreted as a collective phase damping of the qubits caused by a
coherent scattering process between the atoms and the intra-cavity photons.

The collective coupling of two atoms to a single cavity mode leads to
decoherence-free states. Repeating the definition of the Bell states for con-
venience,

∣
∣φ±〉 =

1√
2

(|00〉 ± |11〉) , (6.6a)

∣
∣ψ±〉 =

1√
2

(|01〉 ± |10〉) , (6.6b)

we find that |ψ−〉 is coherently trapped for all possible combinations of βr,
ηr, N and M and that |ψ+〉 is trapped when βr = 0. We will interpret the
dynamics of the system within the entanglement-entropy plane by considering
these trapped states.

A significant feature of the system we propose is that the parameters
βr and ηr are independently adjustable, as long as Equation (6.5) and our
timescale assumptions remain satisfied. When βr = ηr = 0 the dynamics of
the system are frozen.

6.5 Steady state solution

Equation (6.2a) has been solved in the steady state under the assumption
that the phase decay term ηr is negligible, φr = 0 and M is real. The solution
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is a function of the initial state, due to the existence of the trapping state
|ψ−〉, so we only consider steady states that have no projection onto |ψ−〉.
The resulting density matrix, specified in the basis {|11〉 , |10〉 , |01〉 , |00〉}, is

ρss =







ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44







, (6.7a)

where

ρ11 =
M2(1 − 2N) + N2(1 + 2N)

(1 + 2N)L
, (6.7b)

ρ22 = ρ23 = ρ32 = ρ33 =
1

6
− 1

6L
, (6.7c)

ρ44 = 1 − ρ11 − ρ22 − ρ33, (6.7d)

ρ14 = ρ41 =
M

(1 + 2N)L
, (6.7e)

L = 1 + 3N(1 + N) − 3M2. (6.7f)

A few comments can be made about this solution. When driven from the
ground state |00〉 〈00| with strong (N → ∞) ideally squeezed light, we obtain
the pure state |φ+〉. Changing the phase of M rotates this state into |φ−〉; in
general we can generate correlated Bell states |φ±〉 but not anticorrelated Bell
states |ψ±〉 in this manner due to the correlated (as opposed to anticorrelated)
nature of the squeezed light. Less strong ideally squeezed light drives the
ground state to a state that is still pure and of the form

|ψ〉 =

√

N

1 + 2N
|11〉 +

√

N + 1

1 + 2N
|00〉 . (6.8)

It is informative to plot these steady states in the LEFT and LEFC planes
(see Figure 6.3). In contrast to the states displayed in Figure 4.9, here we
do not access all of the (entangled) LEFC plane below the Werner line.

For nonideal (M2 < N(N+1)) strongly squeezed light (N 
 1) we obtain
states (see, for example, the N = 5 line of Figure 6.3) that lie just below the
Werner line. These steady states are mixtures of |φ+〉 〈φ+| and the state

ρ =







1/3 0 0 0
0 1/6 0 0
0 0 1/6 0
0 0 0 1/3







. (6.9)
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Figure 6.3: Steady states for two four-level atoms trapped in a cavity driven
by squeezed light, plotted for a variety of N with 0 ≤ M2 ≤ N(N + 1). The
top graph is the LEFT plane; the bottom graph is the LEFC plane.
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These states are not true Werner states because |ψ−〉 is a trapped state and
our choice of initial condition prevents us from having a component of |ψ−〉 in
our mixture (as exists in true Werner states). In a related scenario considered
in Section 6.7, we will consider a system that does not have trapped states
and hence true Werner states are created.

Time evolution to the steady state is plotted in Figure 6.4 in both the
LEFT and LEFC planes. Evolution from the ground state |00〉 creates states
that are entangled at all times but always below the Werner line. Note
that the larger the degree of squeezing N , the greater the maximum entropy
achieved and the greater the final entanglement.

6.6 Entanglement and entropy engineering

In this Section we demonstrate that, by appropriate manipulations of the
amplitude (∝ β2

r ) and phase (∝ η2
r) couplings into the reservoir, we can

access all entangled regions in the linear entropy-free tangle plane.
First we note, that by enabling the amplitude-decay channel at the ex-

pense of the phase-decay channel (i.e., selecting parameters such that βr 

ηr), we can generate states covering almost all the entangled area under the
Werner line.

To generate states above the Werner line we use coherent Raman tran-
sitions induced by auxiliary laser fields to prepare the separable pure super-
position state

|ψ〉 = RDPA(θ) |00〉 , (6.10a)

where

RDPA(θ) = {cos(θ/2)12 + i sin(θ/2)σy}⊗2 , (6.10b)

for arbitrary 0 < θ ≤ π/2. We then drive the atoms with strong ideally
squeezed light by selecting βr �= 0, ηr � βr, N large and M2 = N (N + 1).
The resulting states are shown in Figure 6.5. This technique accesses much
of the region between the Werner and MEMS lines. It should be remembered
that at any time the evolution of the system can be stopped by turning off
all sources of light (setting N, M, Ωr, Ωs = 0).

These dynamics permit us to access most of the plane. To access the
rest of the plane we stop the system somewhere on the θ = π/2 curve in
Figure 6.5 (the path followed during strong squeezing, commencing from the
initial state 1

2
{|0〉 + |1〉}⊗2). A further local unitary transformation,

U =
1√
2
{σx + σz} ⊗ 1√

2
{12 − iσy} , (6.11)
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Figure 6.4: Evolution to the steady state in ideally squeezed light, plotted
in both the LEFT and LEFC planes. The initial state is |00〉. Evolution is
from bottom-left to top-left.
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Figure 6.5: Evolution from a rotated ground state in squeezed light. N = 5
and M = −√N(N + 1).

is performed on the state. This transformation differs from (6.10b) in that
it requires single atom addressing. We then disable the amplitude decay
channel and enable the phase decay channel by setting βr = 0, ηr �= 0,
N > 0 and M = 0. The subsequent evolution is shown in Figure 6.6. We
can see that the remaining area under the Werner line is accessed in this
manner. The phase decay results in a final state that lies on the border
between entangled and separable (where τfree = 0).

6.7 Entangling atoms with the NDPA

In this Section we investigate another scenario based on the idealized model of
Section 4.2, where two separated atoms each interact with spatially separated
output modes from an NDPA. The alteration we make is to replace each atom
with an effective one-dimensional atom, as developed in Chapter 5, consisting
of an optical cavity containing a trapped 4-level atom (see Figure 6.7). As
compared to the system described in Section 6.2, this experimental setup
may hold advantages in loading and individually addressing the atoms.

We have seen, in the limit βr 
 ηr, that the four-level cavity QED
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Figure 6.6: Phase decay initiated by thermal light. Evolution is from top-
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selected states from the θ = π/2 curve of Figure 6.5 (shown here as the solid
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Figure 6.7: Two cavities containing a 4-level atom driven by squeezed light
from an NDPA.
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system of Chapter 5 interacts with squeezed light in the same manner as
a two-level atom (that is not in a cavity); we need only rescale the coupling

with the correspondence γ
2
↔ β2

r

κ
. Therefore, from Equation (4.5), we may

immediately write the master equation for two one-dimensional atoms driven
by an NDPA as

dρ

dt
= +

β2
r

κ
(N ′ + 1)

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
β2

r

κ
N ′ (2σ+

2 ρσ−
2 − σ−

2 σ+
2 ρ − ρσ−

2 σ+
2

)

+
β2

r

κ
(N ′ + 1)

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
β2

r

κ
N ′ (2σ+

3 ρσ−
3 − σ−

3 σ+
3 ρ − ρσ−

3 σ+
3

)

−β2
r

κ
M ′ (2σ+

2 ρσ+
3 − σ+

3 σ+
2 ρ − ρσ+

3 σ+
2

)

−β2
r

κ
M ′ (2σ+

3 ρσ+
2 − σ+

2 σ+
3 ρ − ρσ+

2 σ+
3

)

−β2
r

κ
M ′ (2σ−

2 ρσ−
3 − σ−

3 σ−
2 ρ − ρσ−

3 σ−
2

)

−β2
r

κ
M ′ (2σ−

3 ρσ−
2 − σ−

2 σ−
3 ρ − ρσ−

2 σ−
3

)

. (6.12)

We now consider how to access various regions of the entropy-entanglement
plane. Evolution from the ground state is shown in Figure 6.8. The entire
entangled region of the LEFT plane below the Werner line can be sampled.
This area should be compared to that in Figure 6.4, which was for the situ-
ation with two atoms in the same cavity.

In contrast to the scheme with both atoms in one cavity (described in
Section 6.2), for this scheme of two atoms each in their own cavity, we have
not yet identified an initial state which can be driven directly to a state that
lies above the Werner line. However, it is is still possible to generate states
above the Werner line with a short sequence of operations. First we drive
the system from the ground state |00〉 with strong ideally squeezed light to
generate the Bell state |φ+〉. Then we make the local unitary transformation

RNDPA(θ)
∣
∣φ+

〉

, (6.13a)

where

RNDPA(θ) = 12 ⊗ {cos(θ/2)12 − i sin(θ/2)σx} . (6.13b)
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Figure 6.8: Evolution from the ground state |00〉 in ideally squeezed light.

If we then choose βr �= 0 and ηr � βr, and allow the system to decay into
vacuum (N, M = 0), we generate the states swept out in Figure 6.9. In this
manner we access a large area above the Werner line.

6.8 Conclusions

In this Chapter we have combined the ideas of Chapters 4 and 5 in creating
two systems capable of generating long-lived entanglement in two separated
trapped atoms. The technical difficulties involved in squeezing all of the
modes with which the atoms might interact are dramatically lessened by
coupling the atoms primarily to just one cavity mode. Then only this mode
needs to be squeezed.

The decay of the atoms into the squeezed reservoir is through two mecha-
nisms we have described as amplitude decay and phase decay. The strengths
of these channels are independently adjustable. This flexibility allows us to
engineer states of all physically allowed combinations of entropy and entan-
glement, as measured by the linear entropy and entanglement of formation,
respectively.

We have not yet characterized all the states that can be produced using
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Figure 6.9: Amplitude decay into vacuum from a rotated Bell state.

the adjustable parameters of our systems. It would be interesting to find a
physically realizable system that could access every state in the Hilbert space
of two qubits and not just those of distinct entanglement and purity.





Chapter 7

Engineering a quantum
reservoir

This chapter introduces quantum reservoir engineering and shows how it
can be used to entangle atoms in a cavity QED setting without the necessity
of using non-classical sources of light. The effects of atomic spontaneous
emission during the Raman transitions are also investigated for realistic
experimental parameters.
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7.1 Introduction

In the previous chapters we used squeezed light to create a quantum reservoir
for the atoms we wish to entangle. However, it is possible to create an
effective quantum reservoir by driving a cavity with classical (thermal) light.
The technique used to achieve this is known as quantum reservoir engineering
and is the subject of this Chapter.

The concept of quantum reservoir engineering was first explicitly stated
by Poyatos et al. [1]. They suggested ways to engineer particular couplings
between the motional states of a trapped ion and its environment. The
dissipation associated with each coupling drives the system into a particular
steady state. They considered couplings capable of generating “Schrödinger
Cat states” and squeezed states, among others.

A more general treatment can be found in the paper by Carvalho et
al. [77]. Consider a reduced master equation for a system interacting with its
environment, to which we have added an additional decay channel described
by Leng:

ρ̇ = −i [H, ρ] + Ldecρ + Lengρ, (7.1a)

Lenvρ ≡
∑

i

γi

2

(

2ciρci
† − ci

†ciρ − ρci
†ci

)

, (7.1b)

Lengρ ≡ Γeng

2

(

2dρd† − d†dρ − ρd†d
)

. (7.1c)

Under the assumption that we can ignore the internal dynamics of the system
described by H , we see that the engineered decay channel will dominate the
natural decay channel when Γeng 
 γi and that the steady state of the system
will be very close to the pointer states of the operator d.

The scheme for quantum-reservoir engineering that we propose is a varia-
tion of that described by Lütkenhaus, Cirac and Zoller in 1998 [78]. In their
paper they investigated the dynamics of a driven multi-level atom coupled
to a normal vacuum and showed how an effective squeezed reservoir is cre-
ated for the atoms. Their scheme did not involve cavity QED and relied on
spontaneous decay from excited states to produce the effective interaction.
The lack of detailed control over the decay mechanisms allowed unwanted
cross-decay channels to limit the degree of squeezing they could achieve.

7.2 Scheme

In the scenario considered in this Chapter, two atoms are trapped in a high-
finesse optical cavity that has a decay rate of κ and frequency ω (see Fig-
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Figure 7.1: The cavity containing two trapped 5-level atoms. The cavity has
a field decay rate κ and frequency ω, and the annihilation (creation) operator
for the cavity mode is denoted a (a†). The spontaneous emission rates from
the three excited levels of the atoms are γr, γs, and γt. The cavity may
optionally be resonantly driven by thermal light of mean photon number n̄.

ure 7.1). The cavity is resonantly driven with thermal light characterized
by a mean photon number n̄. It is necessary to trap the atoms at sites
with a separation much greater than one optical wavelength, so that they
can be individually addressed by probe lasers and so that there is no direct
dipole-dipole interaction between them.

Two stable ground states of the atoms consititute the qubit states (see
Figure 7.2). The cavity field and two auxiliary laser fields drive two different
Raman transitions between these states. Transitions |1〉 ↔ |r〉 and |0〉 ↔ |s〉
are driven independently by strongly detuned lasers of Rabi frequency Ωr

and Ωs respectively. The transitions |0〉 ↔ |r〉 and |1〉 ↔ |s〉, of frequencies ωr

and ωs, are strongly coupled to the cavity mode, with coupling strengths gr

and gs, and detunings ∆r and ∆s, respectively. The phase difference between
the two lasers driving the Raman transitions is taken to be φ. A detuning ∆01

has been added between the ground states of the atoms, but it proves to
have no significant effect (other than to the interaction picture we consider
the system in) as long as both Raman transitions are Raman-resonant.

In the scheme of Lütkenhaus et al. [78], the laser fields Ωr and Ωs are
chosen to be of opposite circular polarization so that they couple selectively
to their respective atomic transitions, chosen to have ∆mj = ±1. In this
Chapter we shall take this selectivity for granted and not concern ourselves
with the exact mechanism used to achieve it.

A fifth state |t〉 is virtually excited from |1〉 by another strongly detuned
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Figure 7.2: The atomic levels and transitions for each atom, showing the
two Raman transitions and the virtual excitation of state |t〉. The three
lasers have frequencies ωLr , ωLs and ωLt , and Rabi frequencies Ωr, Ωs and Ωt

respectively. The excited levels have frequencies ωr, ωs and ωt. The lasers
are strongly detuned by ∆r = ωLr − ωr + ∆01, ∆s = ωLs − ωs and ∆t =
ωLt −ωt +∆01. The ground states |0〉 and |1〉 are detuned by an amount ∆01.
As drawn, the detunings ∆r, ∆s and ∆t are negative and ∆01 is positive.
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laser field of Rabi frequency Ωt. This driving adds an additional ac-Stark
shift to the ground state |1〉, which may be used to cancel the other level
shifts in the atomic ground states (in the manner which we have already
employed in Chapter 5). The phase of the laser Ωt is not significant and is
set to zero.

7.3 Master equation

The master equation for the system comprising the cavity and the two 5-level
atoms, in a frame rotating at the frequency of state |0〉, is

ρ̇ = Lρ, (7.2a)

where

Lρ = −i [H, ρ] + Lcavρ + Lsponρ, (7.2b)

Lcavρ = κ(1 + n̄)
(

2aρa† − a†aρ − ρa†a
)

+κn̄
(

2a†ρa − aa†ρ − ρaa†) , (7.2c)

and

H = Hcav + Hatoms + Hatoms/lasers + Hatoms/cav, (7.2d)

Hcav = ωa†a, (7.2e)

Hatoms =
∑

i=1,2

(

ωr |r〉 〈r|i + ωs |s〉 〈s|i + ωt |t〉 〈t|i

+∆01 |1〉 〈1|i
)

, (7.2f)

Hatoms/lasers =
∑

i=1,2

(Ωr

2
e−iωLr t |r〉 〈1|i + H.c.

+
Ωs

2
e−i[ωLs t+φ] |s〉 〈0|i + H.c.

+
Ωt

2
e−iωLt t |t〉 〈1|i + H.c.

)

, (7.2g)

Hatoms/cav =
∑

i=1,2

(gr |r〉 〈0|i a + gs |s〉 〈1|i a + H.c.) . (7.2h)

The details of the spontaneous emission channels depend on the particular
atomic levels chosen. In the level scheme used in [78] the linearly polarized
photons produced in the decays |r〉 → |0〉 and |s〉 → |1〉 interfere (in that
scheme there was no detuning ∆01). However, for generality, we will assume



94 CHAPTER 7. ENGINEERING A QUANTUM RESERVOIR

that all spontaneous emission channels are distinct, from each excited state
to each ground state, and for each atom. Thus we obtain a spontaneous
emission term as follows:

Lsponρ =
∑

i∈{1,2}

∑

j∈{r,s,t}

∑

k∈{0,1}
γj

2

(

2YijkρYijk
† − ρYijk

†Yijk − Yijk
†Yijkρ

)

, (7.3a)

where

Yijk = gjk |k〉 〈j|i , (7.3b)

and γr, γs and γt are the total spontaneous emission rates from each excited
state. The summations, in turn, are over each atom, each excited state, and
each ground state. Here, gjk are coupling strengths (e.g., Clebsch-Gordon
coefficients) that specify the branching ratios for the decays. We assume a
closed system so that the branching ratios obey

g2
j0 + g2

j1 = 1. (7.4)

Since we are not specifying a particular atomic level configuration we will
choose, for simplicity, all values of gjk to be 1√

2
.

We do have occasion later to distinguish two types of spontaneous emis-
sion, depending on whether decay from an excited atomic state causes an ef-
fective transition between the ground states or not (assuming we were driven
to the excited state via a laser, not the cavity). Therefore we define

gl = gr0, gs1, gt0, (7.5a)

gc = gr1, gs0, gt1, (7.5b)

where gl represents decay channels that induce a Raman transition. In gen-
eral this type of decay proves to be more detrimental to our state preparation
schemes.

7.4 Reduced master equation

In this Section we will adiabatically eliminate first the excited states of the
atoms and then the cavity mode from Equation (7.2) to find a reduced master
equation for the atomic ground states alone. This adiabatic elimination will
be performed assuming no atomic spontaneous emission during the Raman
transitions. In the reduced master equation that arises the effective squeez-
ing interaction will be apparent. We shall consider the effects of atomic
spontaneous emission in Section 7.6.
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7.4.1 Adiabatic elimination of excited states

We proceed by assuming that the the light fields are highly detuned from the
the excited atomic states, i.e. that

|∆j | 
 Ωj , gr, gs, κ, γj, (j = r, s, t). (7.6)

We may then adiabatically eliminate the excited states |r〉i, |s〉i and |t〉i
to obtain a reduced master equation for a pair of effective two-level atoms
(consisting of the states |0〉i and |1〉i) coupled to the shared cavity mode.
The details of the adiabatic elimination may be found in Appendix C.

In this way, for the case where spontaneous emission may be entirely
neglected (i.e., γr, γs, γt = 0), we obtain a master equation for the cavity and
for the ground states of the atoms

ρ̇ = −i [Hreduced, ρ] + Lcavρ, (7.7a)

where

Hreduced =
∑

i=1,2

a†a
(

ηrσ
−
i σ+

i + ηsσ
+
i σ−

i

)

+
∑

i=1,2

[

βr

(

aσ+
i + a†σ−

i

)

+ βs

(

eiφaσ−
i + e−iφa†σ+

i

)]

+
∑

i=1,2

(
Ω2

r

4∆r

σ+
i σ−

i +
Ω2

s

4∆s

σ−
i σ+

i +
Ω2

t

4∆t

σ+
i σ−

i

)

, (7.7b)

and

Lcavρ = κ(1 + n̄)
(

2aρa† − a†aρ − ρa†a
)

+κn̄
(

2a†ρa − aa†ρ − ρaa†) . (7.7c)

Here σ−
i = |0〉 〈1|i is the lowering operator for atom i.

This (partially) reduced system is characterized by the parameters

βr =
grΩr

2∆r

, βs =
gsΩs

2∆s

, ηr =
g2

r

∆r

, ηs =
g2

s

∆s

, (7.8)

where βr and βs are two (Raman) coupling strengths to the cavity mode
for each effective two-level atom and the cavity mode and ηr and ηs are the
ac-Stark shifts per cavity photon induced in |0〉 and |1〉, respectively.
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7.4.2 Adiabatic elimination of cavity

We further reduce the model by assuming the “bad-cavity limit” with respect
to the two-level systems, i.e.

κ 
 |βr| , |βs| , |ηr| , |ηs| . (7.9)

This enables us to adiabatically eliminate the cavity mode to obtain the
master equation in a form in which the effective squeezing interaction is
easily recognized, i.e.,

ρ̇ =
2β2

κ
(N + 1)

(

2SρS† − S†Sρ − ρS†S
)

+
2β2

κ
N
(

2S†ρS − SS†ρ − ρSS†)

−2β2

κ
M

(

2S†ρS† − S†S†ρ − ρS†S†)

−2β2

κ
M∗ (2SρS − SSρ − ρSS)

+
η2

2κ
n̄(n̄ + 1)

(

2PρP † − P †Pρ − ρP †P
)

. (7.10a)

Here, we have defined parameters describing the effective degree and purity
of squeezing:

N =
(n̄ + 1)β2

s + n̄β2
r

β2
, (7.10b)

M =
− (2n̄ + 1)βrβs

β2
eiφ, (7.10c)

effective amplitude and phase coupling constants:

β2 = β2
r − β2

s , (7.10d)

η2 = (ηr − ηs)
2 , (7.10e)

and collective atomic operators:

S =
1√
2

(

σ−
1 + σ−

2

)

, (7.10f)

P = σ−
1 σ+

1 + σ−
2 σ+

2 . (7.10g)

It should be noted that we absorb the phase angle between the driving lasers
into our definition of M (7.10c), hence we will not restrict ourselves to M
real.
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The derivation of this master equation (7.10) also requires that the light
shifts induced in the atoms, by the driving lasers and by photons in the
cavity, are the same for each ground state. Then, the phase of the effective
two-level system will remain constant with respect to the phase difference φ
between the two lasers driving the Raman transitions. In other words, the
atomic system and effective squeezed reservoir must be “resonant” with each
other, requiring

Ω2
s

4∆s
− Ω2

r

4∆r
− Ω2

t

4∆t
+

g2
r

∆r
n̄ − g2

s

∆s
n̄ = 0. (7.11)

It is to satisfy this condition, while maximizing flexibility in our choices
of Ωr,s and ∆r,s, that we employ the additional transition |1〉 ↔ |t〉. The
level shift Ω2

t /(4∆t) provides an extra degree of freedom with which to satisfy
Equation (7.11).

We now examine Equation (7.10). It bears a striking resemblance to
Equation (6.2), which was for a pair of 4-level atoms in a cavity driven
by squeezed light, despite the fact that in the current system there are no
sources of non-classical light. The terms in (7.10) that are proportional to β2

describe the collective coupling, with strength β2/κ, of our pair of effective
two-level atoms to an effective squeezed reservoir, with the degree of purity of
squeezing characterized by the parameters N and M [2, 70]. Ideal squeezing
corresponds to the case where |M |2 = N(N + 1), which requires n̄ = 0 (i.e.,
no thermal driving of the cavity). The last line of Equation (7.10a) may again
be interpreted as phase damping of the atomic qubits caused by a coherent
scattering process between the atoms and the (thermal) intra-cavity photons.
There is no phase damping when there is no thermal driving (i.e., n̄ = 0) or
when the level shifts caused by intra-cavity photons are the same for each
ground state (i.e., ηr = ηs).

The phase damping in this system differs from that occurring in Equa-
tion (6.2), where two 4-level atoms are driven by squeezed light in a cavity.
In that system, the phase damping is induced by the squeezed light itself and
can only be made negligible by reducing the level shift ηr. Here, the degree
of phase damping depends on both n̄ and η2 and may be eliminated by set-
ting either of these to zero. It is easy to choose parameters such that η = 0
(just take ηr = ηs). Also, n̄ is zero when generating ideal squeezing. Thus
the effects of phase damping are more controllable than in the system of
Section 6.3.

The relative strengths of the amplitude decay terms (proportional to β2)
and the phase damping term (proportional to η2) are independently ad-
justable, so long as Equation (7.11) is satisfied and our timescale assump-
tions (7.6) and (7.9) remain justified. Again, it is worth remembering that,
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when we choose β, n̄ = 0 or β, ηr − ηs = 0, the state of the system is frozen.

7.5 Entanglement and entropy engineering

In this Section we demonstrate that, by adjusting the amplitude (∝ β2) and
phase (∝ η2) couplings into the reservoir, we can access states in the entirety
of the entangled part of the linear entropy-free concurrence plane.

In the absence of phase damping terms, our master equation (7.10) has
a form identical to Equation (6.2) for two 4-level atoms in a cavity driven
by squeezed light (the system considered in Section 6.3). Therefore, the re-
sults described in this section largely duplicate those obtained in Section 6.6.
The differences relate to the way in which the phase damping channel is
manipulated.

7.5.1 Steady state solutions

We first examine the states in the entropy-entanglement plane that can be
generated in the steady state.

The collective coupling of two atoms to the reservoir leads as usual to cer-
tain decoherence-free states, which decouple completely from the dynamics.
Restating the Bell states again for convenience,

∣
∣φ±〉 =

1√
2

(|00〉 ± |11〉) , (7.12a)

∣
∣ψ±〉 =

1√
2

(|01〉 ± |10〉) , (7.12b)

we find that |ψ−〉 is decouples in all parameter regimes and that |ψ+〉 is also
decoupled when N, M = 0.

We restrict ourselves to initial states (such as the ground state |00〉)
which have no projection onto |ψ−〉. With such initial states, we may solve
Equation (7.10) to obtain the steady state in the case where the phase decay
term can be neglected in comparison to the other terms (i.e., through choices
of parameters such that η2 � β2). The steady state density matrix ρss,
specified in the basis {|11〉 , |10〉 , |01〉 , |00〉}, is then

ρss =







ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44







, (7.13a)
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Figure 7.3: The steady state, plotted in the LEFT plane, for selected values
of N and 0 ≤ M ≤ √

N(N + 1) and for an initial state of |00〉. It is not
possible to generate states up to the Werner line as N → ∞.

where

ρ11 =
|M |2(1 − 2N) + N2(1 + 2N)

(1 + 2N)L
, (7.13b)

ρ22 = ρ23 = ρ32 = ρ33 =
1

6
− 1

6L
, (7.13c)

ρ44 = 1 − ρ11 − ρ22 − ρ33, (7.13d)

ρ14 = ρ41
∗ =

M

(1 + 2N)L
, (7.13e)

L = 1 + 3N(1 + N) − 3|M |2. (7.13f)

The steady state (see Equation (7.13)) and time evolution to the steady
state are shown in Figure 7.3 and Figure 7.4 respectively, plotted in the
LEFT plane as defined in Section 2.5.

With ideal squeezing (n̄ = 0, |M |2 = N(N + 1)), the steady state (7.13)
is a pure state, ρss = |Ψ〉 〈Ψ|, with [2]

|Ψ〉 =

√

N + 1

1 + 2N
|00〉 − eiφ

√

N

1 + 2N
|11〉 . (7.14)
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Figure 7.4: Evolution in the LEFT plane, from |00〉 to the steady state with
ideal squeezing, plotted for various values of N . The data points are not
equally spaced in time. Pure states always result. Evolution is from bottom-
left to top-left.
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These states lie on the y-axis of Figure 7.3. In the limit of strong ideal
squeezing (N → ∞, n̄ = 0, |M |2 = N(N + 1)), the phase values φ = 0
and φ = π generate the Bell states |φ−〉 and |φ+〉, respectively.

Strong nonideal squeezing (N → ∞, |M |2 = N(N + 1), η = 0) generates
states that lie just below the Werner line (see N = 5 line of Figure 7.3). These
states are mixtures of |φ−〉 〈φ−| and the state ρ′ = diag {1/3, 1/6, 1/6, 1/3}.

7.5.2 States above the Werner line

States above the Werner line (see Figure 7.5) can be generated by initially
preparing the separable pure superposition state

|ψ〉 = RQRE(θ) |00〉 , (7.15a)

RQRE(θ) = {cos(θ/2)12 + i sin(θ/2)σy}⊗2 , (7.15b)

for arbitrary 0 < θ ≤ π/2, and then allowing it to decay into a strongly
squeezed quantum reservoir. From Figure 7.3 and Figure 7.5 we see that we
can produce states covering most of the Linear Entropy-Tangle plane. The
remaining area in the plane may be accessed by performing the local unitary
transformation

U =
1√
2
{σx + σz} ⊗ 1√

2
{12 − iσy} (7.16)

on states from the θ = π/2 curve of Figure 7.5, and then enabling the phase
decay channel at the expense of amplitude decay as shown in Figure 7.6. To
do this we must drive the cavity with thermal light (n̄ �= 0), while choosing
parameters such that β = 0 and η �= 0.

It is also straightforward to generate the interesting states on the bound-
ary between separable and entangled, where τfree = 0. These are swept out
when the initial state |01〉 decays into a reservoir with strong ideal squeez-
ing. Included in this range is the maximally mixed entangled state on the
intersection of the Werner line and the MEMS line.

7.6 Spontaneous emission

It is possible to find the reduced master equation for the cavity and the
atomic ground states in the presence of spontaneous emission (details are
given in Appendix C). In that derivation we make the assumptions that
the detunings are all the same (i.e., ∆r = ∆s = ∆t = ∆) and that the
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Figure 7.5: Evolution from various rotated initial ground states RQRE(θ) |00〉,
as defined in (7.15b), plotted in the LEFT plane. Parameters are κ = 1,
βr = 0.11, βs = 0.1, n̄ = 0, so that N = 4.8. The data points are not equally
spaced in time. Evolution is from bottom-left to top-left.
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Figure 7.6: Phase decay commencing after application of the unitary trans-
formation (7.16) to a selection of states from the θ = π/2 curve of Figure 7.5.
Phase decay is enabled, and amplitude decay is disabled. The parameters
are κ = 1, βr = 0, βs = 0, n̄ = 1, ηr = 0.1, ηs = 0.08. Evolution is from
top-left to bottom-right.
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spontaneous emission rates from the excited states are all the same (i.e.,
γr = γs = γt = γ). We obtain the master equation

ρ̇ = −i
(

Heffρ − ρH†
eff

)

+
∑

j∈{r,s,t}

∑

k∈{0,1}

γ

∆2 + γ2

4

(

Y1jkQ
†
1 ⊗ 1

)

ρ
(

Q1Y
†
1jk ⊗ 1

)

+
∑

j∈{r,s,t}

∑

k∈{0,1}

γ

∆2 + γ2

4

(

1 ⊗ Y2jkQ
†
2

)

ρ
(

1 ⊗ Q2Y
†
2jk

)

,

(7.17a)

where

Heff =
1

∆ + iγ
2

(

Q1Q
†
1 ⊗ 1 + 1 ⊗ Q2Q

†
2

)

, (7.17b)

and

Q†
1 = gra |r〉 〈0|1 + gsa |s〉 〈1|1

+
Ωr

2
|r〉 〈1|1 +

Ωs

2
e−iφ |s〉 〈0|1 +

Ωt

2
|t〉 〈1|1 , (7.17c)

Q†
2 = gra |r〉 〈0|2 + gsa |s〉 〈1|2

+
Ωr

2
|r〉 〈1|2 +

Ωs

2
e−iφ |s〉 〈0|2 +

Ωt

2
|t〉 〈1|2 . (7.17d)

The definitions of the spontaneous emission terms Yijk can be found in Equa-
tion (7.3a).

We may now estimate the effect of spontaneous emission. First we con-
sider the slowest rate associated with the dynamics of the reduced master
equation (7.10). Taking M to be real and positive, and n̄ = 0 (i.e., no phase
decay), we find the slowest rate to be

τslow =
4β2

κ
(2N − 2M + 1) , (7.18)

whose form is typical of the inhibited phase decay associated with atomic
damping by a squeezed reservoir [79]. Analysis of Equation (7.17) reveals
characteristic rates

τemiss = γi
Ω2

i

2∆2
i

, (i = r, s, t) , (7.19)

for spontaneous emission from the finite populations of the excited atomic
states. We then expect that spontaneous emission can be neglected when τslow 
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τemiss. So, taking the rate for i = r to be the maximum value for τemiss, the
condition that atomic spontaneous emission be negligible during the state
preparation period can be expressed (after some manipulation) as

2g2
r

γrκ



(

1 −
√

N

N + 1

)−2

. (7.20)

This amounts to the condition of strong coupling in cavity QED, made some-
what more stringent due to the inhibited atomic decay rate associated with
the effective squeezed reservoir interaction.

We will now investigate the dynamics of Equation (7.17) in the LEFT
plane, tracing over the cavity (which is negligibly populated) to calculate
the free tangle. The numerical simulation is not sensitive to the detailed
state of the cavity, and we can use a truncated number basis containing
only 2 states. We use parameters, as achieved recently in a cavity QED ex-
periment [15], of (gr, κ, γr) /2π = (110, 14.2, 5.2)MHz. With the degree of
squeezing N = 2, the condition for neglecting spontaneous emission (7.20)
reduces to the inequality 332 
 30, indicating that a sufficiently strong cou-
pling is experimentally realistic with significant levels of effective squeezing.

Another requirement is that the state we are trying to prepare is estab-
lished on a timescale much less than typical trap confinement times for single
atoms. Taking Ωr/∆r = 0.02 (for example), and using the above parameters
for gr, κ and γr, the characteristic state preparation time is computed to be
less than 50µs, which is orders of magnitude less than single-atom trapping
times in tightly-confining optical dipole traps (see, e.g., [14, 12, 80]).

Starting from the rotated ground state RQRE(π/2) |00〉 (7.15b), and dis-
abling the phase decay channel with n̄ = 0, we obtain a curve in the LEFT
plane as in Figure 7.7. Examining this graph we see that, rather unexpect-
edly, spontaneous emission induces a slow late-time decay in the entangle-
ment. The explanation for this effect can be found in Figure 7.8, which shows
the projection of ρ onto the four Bell states. The Bell state |ψ−〉 decouples
from Equation (7.10), but no longer does so when spontaneous emission is
included into the model. Therefore, the evolving state of the system acquires
a projection onto |ψ−〉 which significantly degrades the maximum entangle-
ment generated. The slowest rate found in condition (7.18) is more precisely
the slowest non-zero rate, since the trapped state does not evolve.

We see that, despite the negative effects of spontaneous emission, we can
still generate states above the Werner line. Although the maximum value of
the tangle becomes limited to ≈ 0.5, we nevertheless still achieve a high peak
overlap (≈ 0.85) with the Bell state |φ−〉, as seen in Figure 7.8.
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Figure 7.7: Evolution with spontaneous emission included, plotted in
the LEFT plane. The points plotted are not equally spaced in time.
The free tangle is calculated after tracing over the cavity. The initial
atomic state is |00〉. Parameters are (gr, gs, κ, γ, Ωr, Ωs, Ωt, ∆r, ∆s, ∆t) /2π =
(110, 132, 14.2, 5.2, 100, 100, 66.3, 8000, 8000, 8000)MHz and n̄ = 0, gc =
gl = 1√

2
. The effective degree and purity of squeezing are N = 2.27 and

M = −2.72. Late-time decay of the entanglement occurs, nevertheless states
above the Werner line are still generated during the evolution.
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Figure 7.8: Projections of the states obtained in Figure 7.7 onto the Bell
states as functions of time. Spontaneous emission is included. The late-time
decay of the entanglement seen in Figure 7.7 is caused by the gradual increase
of the unwanted component of |ψ−〉. All parameters are as in Figure 7.7.
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7.7 Collective spin operators

The effective squeezed reservoir can be expected to induce squeezing in the
collective atomic spin operators of the trapped atoms. These squeezed atomic
states were introduced by Barnett and Dupertuis in 1987 [81]. The relevant
Heisenberg uncertainty relation for the collective spin operators Sx, Sy and Sz

is

∆Sx∆Sy ≥ 1

2
|〈Sz〉| . (7.21)

It is convenient to normalize these with the definitions

∆X =
√

2
∆Sx

|〈Sz〉|
1
2

, (7.22a)

∆Y =
√

2
∆Sy

|〈Sz〉|
1
2

. (7.22b)

so that

∆X∆Y ≥ 1. (7.23)

The evolution of the spin quadrature variables is shown in Figure 7.9.
The atomic system evolves into a spin-squeezed state (∆X < 1) even in the
presence of spontaneous emission. Interestingly, the squeezing does not seem
to undergo late-time decay (in contrast to the entanglement).

7.8 Conclusions

In this Chapter we have proposed a system for entangling two atoms in a cav-
ity, based on the principle of quantum-reservoir engineering. By designing an
appropriate coupling between the atoms and their environment (through the
cavity mode), an effective squeezing interaction arises without requiring non-
classical light sources. As we have seen, the effective squeezing interaction
generates entangled atomic-squeezed states. It is thought that this system
will prove to be more experimentally accessible than those in Chapter 6,
which are based on the use of squeezed light.
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Figure 7.9: Evolution of the spin quadratures plotted against time (top) and
as a parametric plot (bottom). Parameters are as in Figure 7.7. The solid line
of the bottom Figure defines the minimum uncertainty states (MUS) where
∆X∆Y = 1. Evolution is from right to left. The atomic system evolves into a
spin-squeezed state (∆X < 1) even in the presence of spontaneous emission.
The squeezing does not seem to undergo the same degree of late-time decay
as the entanglement.





Chapter 8

Conclusions

This final Chapter summarizes the results obtained in this Thesis and
suggests some avenues of future research.

Contents
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8.1 Results

In this Thesis, our original aim was to investigate the possibility of using
squeezed light to entangle atoms in a realistic cavity QED situation. This
investigation has been successful and forms the content of Chapters 4, 5
and 6. The realization that the technique of quantum-reservoir engineering
could be used to achieve similar results came as an unexpected bonus, and
this idea was developed in Chapter 7.

In Chapter 4 the two schemes investigated are both very idealized, but
set the goals for later, more realistic models. It was shown, in an extension
of the work of Palma and Knight [2], that separated atoms interacting with
spatially separated entangled light modes can be entangled themselves. In
the limit of ideal two-mode squeezing from an NDPA, it was found that
pure states arise. The parameter regimes where the atoms are entangled and
where their correlations violate the CHSH inequality were also calculated.

The scheme in which the squeezed light from a DPA is passed through a
beam splitter before interacting with the atoms was also investigated as an
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alternative method of producing entangled light beams. In this case, only
limited entanglement can be produced. Nevertheless, entanglement purifica-
tion procedures could conceivably be used to concentrate the entanglement
in the atoms, so this scheme is still of interest.

Realistic schemes to entangle atoms with squeezed light require that they
interact predominantly with squeezed modes. In Chapter 5, a method was
described for creating an effective one-dimensional atom where the predomi-
nant coupling to the outside world is via a single cavity mode. In particular,
the use of a 4-level atom and Raman transitions in a cavity QED situa-
tion offers a practical alternative to the problem of driving an atom from all
directions with broadband squeezed light.

Such effective one-dimensional atoms were then used in Chapter 6, in
conjunction with the ideas of Chapter 4, to design realistic schemes which
may be used to generate long-lived entanglement in two separated trapped
atoms. The technical difficulties involved in squeezing all of the modes with
which the atoms might interact are dramatically lessened through the pri-
mary coupling of the atoms to just one cavity mode. Only this single mode
needs to be squeezed.

The decay of the atoms into the squeezed reservoir is through either
amplitude coupling or phase coupling. The strengths of these channels are
independently adjustable and it was shown how the flexibility provided by
these channels allows one to engineer states of all physically allowed combi-
nations of entropy and entanglement, as measured by the linear entropy and
entanglement of formation, respectively.

In Chapter 7 a system was proposed, based on the idea of quantum-
reservoir engineering, for entangling two atoms in a cavity. It employs the
one-dimensional atoms developed in Chapter 5, albeit in a slightly more com-
plicated 5-level atomic scheme. It was found that, by designing an appropri-
ate coupling between the atoms and the cavity mode, an effective squeezing
interaction arises without requiring non-classical light sources. This system
should be more experimentally accessible than that of Chapter 6 and it should
provide a simpler method of achieving strong squeezing interactions.

8.2 Future research

There are a number of areas of future research that suggest themselves and
they are listed as follows:

1. Finding a two-atom cavity QED system capable of generating states
above the Werner line in the steady state.
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2. Characterizing more comprehensively all the states that can be pro-
duced using the adjustable parameters of our systems. Also, it would
be interesting to find a physically realizable system that could access
every state of two qubits and not just those of distinct entanglement
and purity.

3. Finding general solutions to the master equations considered with both
phase damping and spontaneous emission included.

4. Isolating actual atomic level configurations that would be suitable for
realizing the cavity QED schemes of Chapters 5, 6 and 7.

5. Finding ways to minimize the deleterious effects that the trapping
states (i.e., Bell state |ψ−〉) have on the entanglement in the presence
of spontaneous emission.

6. Considering the spin-squeezing of a large number of atoms trapped in
a single cavity using quantum-reservoir engineering.

In conclusion, it is hoped that the ideas proposed in this Thesis might
lead to the experimental production of atomic states of controllable purity
and entanglement. These atomic states would allow a thorough experimental
exploration of quantum information protocols such as quantum teleportation,
entanglement purification and entanglement distillation.





Appendix A

Derivation of the two-qubit
master equations

In this Appendix we provide details of the derivation of the reduced master
equations (4.3a) and (4.10) for a pair of two-level atoms interacting with
broadband squeezed light from a parametric amplifier, as investigated in
Chapter 4. The cascaded quantum systems technique is used as in [82].
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Chapter 4 considers two systems in which either an NDPA or a DPA
is used to provide squeezed light for the atoms. In the main text of this
Appendix we provide details of the derivation of the master equation (4.3a)
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for atoms driven by the NDPA. The equations applicable to the atoms being
driven by the DPA are placed in rectangular boxes.

A.1 Quantum Langevin equations

We assume resonant interaction between the output mode(s) of the para-
metric amplifier and the atoms. The operators governing the interactions
of the systems with their input fields are a, b, σ−

2 and σ−
3 . Therefore, we

can write the quantum Langevin equations for the individual systems, in the
interaction picture, as

ẋ1 = −i [x1, H1]

− [

x1, a
†]
{κa

2
a +

√
κaf1a

}

+
{κa

2
a† +

√
κaf

†
1a

}

[x1, a]

− [

x1, b
†]
{κb

2
b +

√
κbf1b

}

+
{κb

2
b† +

√
κbf

†
1b

}

[x1, b] , (A.1a)

ẋ2 = − [

x2, σ
+
2

] {γ2

2
σ−

2 +
√

γ2f2

}

+
{γ2

2
σ+

2 +
√

γ2f
†
2

} [

x2, σ
−
2

]

,

(A.1b)

ẋ3 = − [

x3, σ
+
3

] {γ3

2
σ−

3 +
√

γ3f3

}

+
{γ3

2
σ+

3 +
√

γ3f
†
3

} [

x3, σ
−
3

]

.

(A.1c)

where

H1 = i
(

Ea†b† − E∗ab
)

. (A.1d)

ẋ1 = −i [x1, H1]

− [

x1, a
†]
{κa

2
a +

√
κaf1

}

+
{κa

2
a† +

√
κaf

†
1

}

[x1, a] , (A.2a)

ẋ2 = − [

x2, σ
+
2

] {γ2

2
σ−

2 +
√

γ2f2

}

+
{γ2

2
σ+

2 +
√

γ2f
†
2

} [

x2, σ
−
2

]

,

(A.2b)

ẋ3 = − [

x3, σ
+
3

] {γ3

2
σ−

3 +
√

γ3f3

}

+
{γ3

2
σ+

3 +
√

γ3f
†
3

} [

x3, σ
−
3

]

,

(A.2c)

H1 =
i

2

(

Ea†2 − E∗a2
)

. (A.2d)

Here xi is an arbitrary operator in system i.
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A.1.1 Boundary conditions

The relationships of the output fields to the input fields for each system are
given by

g1a = f1a +
√

κaa, (A.3a)

g1b = f1b +
√

κbb, (A.3b)

g2 = f2 +
√

γ2σ
−
2 , (A.3c)

g3 = f3 +
√

γ3σ
−
3 . (A.3d)

g1 = f1 +
√

κaa, (A.4a)

g2 = f2 +
√

γ2σ
−
2 , (A.4b)

g3 = f3 +
√

γ3σ
−
3 . (A.4c)

The fields at the beam splitters are related by

f2 =
√

ε2g1a +
√

1 − ε2h2, (A.5a)

f3 =
√

ε3g1b +
√

1 − ε3h3. (A.5b)

f2 =
√

ε2

(√

1

2
g1 +

√

1

2
h1

)

+
√

1 − ε2h2, (A.6a)

f3 =
√

ε3

(√

1

2
g1 +

√

1

2
h1

)

+
√

1 − ε3h3. (A.6b)

After substituting for g1a and g1b we obtain

f2 =
√

ε2 (f1a +
√

κaa) +
√

1 − ε2h2, (A.7a)

f3 =
√

ε3 (f1b +
√

κbb) +
√

1 − ε3h3, (A.7b)

f2 =
√

ε2

(√

1

2
f1 +

√
κaa +

√

1

2
h1

)

+
√

1 − εh2, (A.8a)

f3 =
√

ε3

(√

1

2
f1 +

√
κaa +

√

1

2
h1

)

+
√

1 − εh3, (A.8b)

and rearranging further we obtain

f2 =
√

κaε2a +
√

ε2f1a +
√

1 − ε2h2, (A.9a)

f3 =
√

κbε3b +
√

ε3f1b +
√

1 − ε3h3. (A.9b)
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f2 =
√

κaε2a +

√
ε2

2
f1 +

√
ε2

2
h1 +

√
1 − ε2h2, (A.10a)

f3 =
√

κaε3a +

√
ε3

2
f1 +

√
ε3

2
h1 +

√
1 − ε3h3. (A.10b)

A.1.2 Combined quantum Langevin equation

With x defined to be any operator in the space of the three systems, and
writing conj to indicate the Hermitian conjugate of everything except x, the
combined quantum Langevin equation is

ẋ = −i [x, H1]

− [

x, a†]
{κa

2
a +

√
κaf1a

}

− conj

− [

x, b†
] {κb

2
b +

√
κbf1b

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 +
√

γ2f2

}

− conj

− [

x, σ+
3

] {γ3

2
σ−

3 +
√

γ3f3

}

− conj. (A.11)

ẋ = −i [x, H1]

− [

x, a†]
{κa

2
a +

√
κaf1

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 +
√

γ2f2

}

− conj

− [

x, σ+
3

] {γ3

2
σ−

3 +
√

γ3f3

}

− conj. (A.12)
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Then expanding for f2 and f3, we have

ẋ = −i [x, H1]

− [

x, a†]
{κa

2
a +

√
κaf1a

}

− conj

− [

x, b†
] {κb

2
b +

√
κbf1b

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 +
√

κaγ2ε2a +
√

γ2ε2f1a +
√

γ2(1 − ε2)h2

}

−conj

− [

x, σ+
3

] {γ3

2
σ−

3 +
√

κbγ3ε3b +
√

γ3ε3f1b +
√

γ3(1 − ε3)h3

}

−conj. (A.13)

ẋ = −i [x, H1]

− [

x, a†]
{κa

2
a +

√
κaf1

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 +
√

κaγ2ε2a

+

√
γ2ε2

2
f1 +

√
γ2ε2

2
h1 +

√

γ2(1 − ε2)h2

}

− conj

− [

x, σ+
3

] {γ3

2
σ−

3 +
√

κaγ3ε3a

+

√
γ3ε3

2
f1 +

√
γ3ε3

2
h1 +

√

γ3(1 − ε3)h3

}

− conj.

(A.14)

A.2 Conversion to a quantum Ito equation

Assume the input fields f1a, f1b, h1, h2 and h3 (for the DPA f1, h1, h2 and
h3) are describable as quantum white noise, in fact as vacuum fields. Define
quantum Wiener processes (denoted by capital letters), corresponding to
each input field, satisfying

f1a dt = dF1a, (A.15a)

f1b dt = dF1b, (A.15b)

h1 dt = dH1, (A.15c)

h2 dt = dH2, (A.15d)

h3 dt = dH3. (A.15e)
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f1 dt = dF1, (A.16a)

h1 dt = dH1, (A.16b)

h2 dt = dH2, (A.16c)

h3 dt = dH3. (A.16d)

The quantum Langevin equation may now be transformed into a Stratonovich
quantum stochastic differential equation by direct substitution. We have

(S) dx = −i [x, H1] dt

− [

x, a†]
{κa

2
a dt +

√
κa dF1a

}

− conj

− [

x, b†
] {κa

2
b dt +

√
κa dF1b

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 dt +
√

κaγ2ε2a dt +
√

γ2ε2 dF1a

+
√

γ2(1 − ε2) dH2

}

− conj

− [

x, σ+
3

] {γ3

2
σ−

3 dt +
√

κbγ3ε3b dt +
√

γ3ε3 dF1b

+
√

γ3(1 − ε3) dH3

}

− conj. (A.17)

(S) dx = −i [x, H1] dt

− [

x, a†]
{κa

2
a dt +

√
κa dF1

}

− conj

− [

x, σ+
2

] {γ2

2
σ−

2 dt +
√

κaγ2ε2a dt +

√
γ2ε2

2
(dF1 + dH1)

+
√

γ2(1 − ε2) dH2

}

− conj

− [

x, σ+
3

] {γ

2
σ−

3 dt +
√

κaγ3ε3a dt +

√
γ3ε3

2
(dF1 + dH1)

+
√

γ3(1 − ε3) dH3

}

− conj. (A.18)

This equation may be converted to an Ito quantum stochastic differential
equation using the substitution rules for a vacuum quantum Wiener pro-
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cess [66]:

(S) g dW → (I) g dW, (A.19a)

(S) dW g → (I) g dW +

√
γ

2
[g, c] , (A.19b)

(S) g dW † → (I) g dW † −
√

γ

2

[

g, c†
]

, (A.19c)

(S) dW † g → (I) g dW †, (A.19d)

applicable to the quantum Langevin equation

ẋ = −i [x, H1] −
[

x, c†
] {γ

2
c +

√
γbin(1, t)

}

− conj. (A.20)

The Ito equations are then found to be identical to the Stratonovich equa-
tions.

A.3 Conversion to master equation

Take the expectation value of Equation (A.17) and move to the Schrödinger
picture to obtain a master equation. It is useful to first expand the commu-
tators

(I) dx = −i [x, H1] dt

+
κa

2

(

2a†xa − xa†a − a†ax
)

dt

+
κb

2

(

2b†xb − xb†b − b†bx
)

dt

+
γ2

2

(

2σ+
2 xσ−

2 − xσ+
2 σ−

2 − σ+
2 σ−

2 x
)

dt

+
γ3

2

(

2σ+
3 xσ−

3 − xσ+
3 σ−

3 − σ+
3 σ−

3 x
)

dt

−√
κaγ2ε2

(

xaσ+
2 − σ+

2 xa + σ−
2 a†x − a†xσ−

2

)

dt

−√
κbγ3ε3

(

xbσ+
3 − σ+

3 xb + σ−
3 b†x − b†xσ−

3

)

dt

+Ito increments. (A.21)
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(I) dx = −i [x, H1] dt

+
κa

2

(

2a†xa − xa†a − a†ax
)

dt

+
γ2

2

(

2σ+
2 xσ−

2 − xσ+
2 σ−

2 − σ+
2 σ−

2 x
)

dt

+
γ3

2

(

2σ+
3 xσ−

3 − xσ+
3 σ−

3 − σ+
3 σ−

3 x
)

dt

−√
κaγ2ε2

(

xaσ+
2 − σ+

2 xa + σ−
2 a†x − a†xσ−

2

)

dt

−√
κaγ3ε3

(

xaσ+
3 − σ+

3 xa + σ−
3 a†x − a†xσ−

3

)

dt

+Ito increments. (A.22)

Converting to a master equation, the Ito increments are discarded, and the
sign of the first commutator is reversed to give

dρ

dt
= i [ρ, H1]

+
κa

2

(

2aρa† − a†aρ − ρa†a
)

+
κb

2

(

2bρb† − b†bρ − ρb†b
)

+
γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

−√
κaγ2ε2

(

aσ+
2 ρ − aρσ+

2 + ρσ−
2 a† − σ−

2 ρa†)

−√
κbγ3ε3

(

bσ+
3 ρ − bρσ+

3 + ρσ−
3 b† − σ−

3 ρb†
)

(A.23)

dρ

dt
= i [ρ, H1]

+
κa

2

(

2aρa† − a†aρ − ρa†a
)

+
γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

−√
κaγ2ε2

(

aσ+
2 ρ − aρσ+

2 + ρσ−
2 a† − σ−

2 ρa†)

−√
κaγ3ε3

(

aσ+
3 ρ − aρσ+

3 + ρσ−
3 a† − σ−

3 ρa†) (A.24)
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A.4 Equivalent noise terms for system 1

The dynamics of system 1 can be reduced to a set of noise terms using a
generalized P representation, leaving a master equation for systems 2 and 3
only. A positive P representation must be used to represent squeezed light
owing to its non-classical nature. Define

α = (α, α†, β, β†), (A.25)

α = (α, α†), (A.26)

and ρ(α) to be an operator in the combined space of systems 2 and 3 so that

ρ =

∫

d2α

∫

d2α†
∫

d2β

∫

d2β† |α〉
〈

α†∗∣∣
a

〈α†∗|α〉a
|β〉 〈β†∗∣∣

b

〈β†∗|β〉b
ρ(α). (A.27)

ρ =

∫

d2α

∫

d2α† |α〉
〈

α†∗∣∣
1

〈α†∗|α〉1
ρ(α). (A.28)

We use the equivalences

aρ ↔ αρ, (A.29a)

ρa† ↔ α†ρ, (A.29b)

a†ρ ↔
(

α† − ∂

∂α

)

ρ, (A.29c)

ρa ↔
(

α − ∂

∂α†

)

ρ. (A.29d)
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The reduced master equation becomes

dρ(α)

dt
= −E

{

α†β† −
(

α† − ∂

∂α

)(

β† − ∂

∂β

)}

ρ(α)

−E∗
{

αβ −
(

α − ∂

∂α†

)(

β − ∂

∂β†

)}

ρ(α)

+
κa

2

{

2αα†ρ(α) −
(

α† − ∂

∂α

)

αρ(α) −
(

α − ∂

∂α†

)

α†ρ(α)

}

+
κb

2

{

2ββ†ρ(α) −
(

β† − ∂

∂β

)

βρ(α) −
(

β − ∂

∂β†

)

β†ρ(α)

}

+
γ2

2

{

2σ−
2 ρ(α)σ+

2 − σ+
2 σ−

2 ρ(α) − ρ(α)σ+
2 σ−

2

}

+
γ3

2

{

2σ−
3 ρ(α)σ+

3 − σ+
3 σ−

3 ρ(α) − ρ(α)σ+
3 σ−

3

}

−√
κaγ2ε2

{

ασ+
2 ρ(α) − αρ(α)σ+

2 + ρ(α)σ−
2 α† − σ−

2 ρ(α)α†}

−√
κbγ3ε3

{

ασ+
3 ρ(α) − αρ(α)σ+

3 + ρ(α)σ−
3 β† − σ−

3 ρ(α)β†} .

(A.30)

dρ(α)

dt
= −1

2
E

{

α†2 −
(

α† − ∂

∂α

)2
}

ρ(α)

−1

2
E∗

{

α2 −
(

α − ∂

∂α†

)2
}

ρ(α)

+
κa

2

{

2αα†ρ(α)
}

−κa

2

{(

α† − ∂

∂α

)

αρ(α) +

(

α − ∂

∂α†

)

α†ρ(α)

}

+
γ2

2

{

2σ−
2 ρ(α)σ+

2 − σ+
2 σ−

2 ρ(α) − ρ(α)σ+
2 σ−

2

}

+
γ3

2

{

2σ−
3 ρ(α)σ+

3 − σ+
3 σ−

3 ρ(α) − ρ(α)σ+
3 σ−

3

}

−√
κaγ2ε2

{

ασ+
2 ρ(α) − αρ(α)σ+

2 + ρ(α)σ−
2 α† − σ−

2 ρ(α)α†}

−√
κaγ3ε3

{

ασ+
3 ρ(α) − αρ(α)σ+

3 + ρ(α)σ−
3 α† − σ−

3 ρ(α)α†} .

(A.31)
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This is equivalent to the master equation for systems 2 and 3

dρa

dt
= −√

κaγ2ε2

{

α(t)
[

σ+
2 , ρa

]

+ α†(t)
[

ρa, σ
−
2

]}

−√
κbγ3ε3

{

β(t)
[

σ+
3 , ρa

]

+ β†(t)
[

ρa, σ
−
3

]}

+
γ2

2

(

2σ−
2 ρaσ

+
2 − σ+

2 σ−
2 ρa − ρaσ

+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρaσ

+
3 − σ+

3 σ−
3 ρa − ρaσ

+
3 σ−

3

)

, (A.32)

dρa

dt
= −√

κaγ2ε2

{

α(t)
[

σ+
2 , ρa

]

+ α†(t)
[

ρa, σ
−
2

]}

−√
κaγ3ε3

{

α(t)
[

σ+
3 , ρa

]

+ α†(t)
[

ρa, σ
−
3

]}

+
γ2

2

(

2σ−
2 ρaσ

+
2 − σ+

2 σ−
2 ρa − ρaσ

+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρaσ

+
3 − σ+

3 σ−
3 ρa − ρaσ

+
3 σ−

3

)

, (A.33)

in which the phase space variables α(t) satisfy the Fokker-Planck equation
(FPE)

dP (α)

dt
=

∂

∂α

(κa

2
α − Eβ†

)

P (α) +
∂

∂α†

(κa

2
α† − E∗β

)

P (α)

∂

∂β

(κb

2
β − Eα†

)

P (α) +
∂

∂β†

(κb

2
β† − E∗α

)

P (α)

+E
∂2

∂α∂β
P (α) + E∗ ∂2

∂α†∂β†P (α). (A.34)

dP (α)

dt
=

∂

∂α

(κa

2
α − Eα†

)

P (α) +
∂

∂α†

(κa

2
α† − E∗α

)

P (α)

+
1

2
E

∂2

∂α2
P (α) +

1

2
E∗ ∂2

∂α†2P (α). (A.35)

A.5 Conversion of FPE to SDEs

Assume the parametric amplifier driving term is real from the appropriate
choice of phase. The Fokker-Planck equation is equivalent to the stochastic
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differential equations (SDEs)

d

dt







α(t)
α†(t)
β(t)
β†(t)







=







−κa

2
0 0 E

0 −κa

2
E 0

0 E −κb

2
0

E 0 0 −κb

2













α(t)
α†(t)
β(t)
β†(t)







+

√

E

2







i 0 1 0
0 i 0 1
−i 0 1 0
0 −i 0 1













η1(t)
η2(t)
η3(t)
η4(t)







, (A.36)

d

dt

(
α(t)
α†(t)

)

=

( −κa

2
E

E −κa

2

)(
α(t)
α†(t)

)

+
√

E

(
1 0
0 1

)(
η1(t)
η2(t)

)

, (A.37)

where the ηi(t) are real classical white noise terms obeying

〈ηi(t)〉 = 0, (A.38a)

〈ηi(t), ηj(t
′)〉 = δijδ(t − t′). (A.38b)

The solution of this equation is

(
α(t)
β†(t)

)

=

∫ t

−∞
dτ eA(t−τ)

(
ξ1(τ)

ξ†2(τ)

)

, (A.39a)

(

α†(t)
β(t)

)

=

∫ t

−∞
dτ eA(t−τ)

(

ξ†1(τ)
ξ2(τ)

)

, (A.39b)

(

α(t)
α†(t)

)

=

∫ t

−∞
dτ eA(t−τ)

(

ξ1(τ)
ξ2(τ)

)

, (A.39c)

where

A =

( −κa

2
E

E −κb

2

)

, (A.39d)







ξ1(t)

ξ†1(t)
ξ2(t)

ξ†2(t)







=

√

E

2







i 0 1 0
0 i 0 1
−i 0 1 0
0 −i 0 1













η1(t)
η2(t)
η3(t)
η4(t)







. (A.39e)
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A =

( −κa

2
E

E −κa

2

)

, (A.39f)

(

ξ1(t)
ξ2(t)

)

=
√

E

(

η1(t)
η2(t)

)

. (A.39g)

The non-zero correlations for ξ are

〈ξ1(0)ξ2(τ)〉 =
〈

ξ†1(0)ξ†2(τ)
〉

= Eδ(τ). (A.40)

〈ξ1(0)ξ1(τ)〉 = 〈ξ2(0)ξ2(τ)〉 = Eδ(τ). (A.41)

A.6 Solution of SDEs

Now solve for α(t). The eigenvalues of A are

λ1,2 =
1

2

{

−1

2
(κa + κb) ±

√

1

4
(κa − κb)2 + 4E2

}

. (A.42)

λ1,2 = −κa

2
± E. (A.43)

The exponential evaluates to

eAt =
1

λ1 − λ2

(

B1 B2

B2 B3

)

, (A.44a)

where

B1 =
(

λ1 +
κa

2

)

eλ2t −
(

λ2 +
κa

2

)

eλ1t, (A.44b)

B2 = Eeλ1t − Eeλ2t, (A.44c)

B3 =
(

λ1 +
κa

2

)

eλ1t +
(

λ2 +
κa

2

)

eλ2t. (A.44d)

eAt =
1

2

(

eλ1t + eλ2t eλ1t − eλ2t

eλ1t − eλ2t eλ1t − eλ2t

)

, (A.45)
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So we obtain

α(t) =
1

λ1 − λ2

∫ t

−∞
dτ

{

B1ξ1(τ) + B2ξ
†
2(τ)

}

, (A.46a)

β†(t) =
1

λ1 − λ2

∫ t

−∞
dτ

{

B2ξ1(τ) + B3ξ
†
2(τ)

}

. (A.46b)

α(t) = +
1

2

∫ t

−∞
dτ

(

eλ1(t−τ) + eλ2(t−τ)
)

ξ1(τ)

+
1

2

∫ t

−∞
dτ

(

eλ1(t−τ) − eλ2(t−τ)
)

ξ2(τ), (A.47a)

α†(t) = +
1

2

∫ t

−∞
dτ

(

eλ1(t−τ) − eλ2(t−τ)
)

ξ1(τ)

+
1

2

∫ t

−∞
dτ

(

eλ1(t−τ) + eλ2(t−τ)
)

ξ2(τ). (A.47b)

Now use the broad-bandwidth approximations

eλ1(t−τ) → 2

λ1

δ(t − τ), (A.48a)

eλ2(t−τ) → 2

λ2
δ(t − τ). (A.48b)

Hence, noting that the delta functions lie at the end of the range of integration
we obtain

α(t) =
1

λ1 − λ2

((

λ1 + κa

2

)

λ2

−
(

λ2 + κa

2

)

λ1

)

ξ1(t)

+
1

λ1 − λ2

{
E

λ1
− E

λ2

}

ξ†2(t)

=

( −1

λ1λ2

)(κb

2
ξ1(t) + Eξ†2(t)

)

, (A.49a)

β†(t) =
1

λ1 − λ2

{
E

λ1

− E

λ2

}

ξ1(t)

+
1

λ1 − λ2

((

λ1 + κa

2

)

λ1

−
(

λ2 + κa

2

)

λ2

)

ξ†2(t)

=

( −1

λ1λ2

)(

Eξ1(t) +
κa

2
ξ†2(t)

)

. (A.49b)
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Similarly, the other noise terms are

α†(t) =

( −1

λ1λ2

)(κb

2
ξ†1(t) + Eξ2(t)

)

, (A.49c)

β(t) =

( −1

λ1λ2

)(

Eξ†1(t) +
κa

2
ξ2(t)

)

. (A.49d)

α(t) =
1

2

(
1

λ1

+
1

λ2

)

ξ1(t) +
1

2

(
1

λ1

− 1

λ2

)

ξ2(t), (A.50a)

α†(t) =
1

2

(
1

λ1
− 1

λ2

)

ξ1(t) +
1

2

(
1

λ1
+

1

λ2

)

ξ2(t), (A.50b)

A.7 Noise correlations

Define the parameters describing the squeezing in the parametric amplifier
to be

N =

(
E2κaκb

λ1
2λ2

2

)

, (A.51a)

M =
√

κaκb E

(
E2 + κaκb

4

λ1
2λ2

2

)

. (A.51b)

N =

(
E2κ2

a

λ1
2λ2

2

)

, (A.52a)

M = κaE

(

E2 + κ2
a

4

λ1
2λ2

2

)

. (A.52b)

The non-zero correlations are then

〈

α†(t)α(0)
〉

=
N

κa

δ(t), (A.53a)

〈

β†(t)β(0)
〉

=
N

κb

δ(t), (A.53b)

〈α(t)β(0)〉 =
M√
κaκb

δ(t), (A.53c)

〈

α†(t)β†(0)
〉

=
M√
κaκb

δ(t). (A.53d)
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〈α(t)α(0)〉 =
〈

α†(t)α†(0)
〉

=
M

2κa
δ(t), (A.54a)

〈

α(t)α†(0)
〉

=
〈

α†(t)α(0)
〉

=
N

2κa
δ(t). (A.54b)

A.8 Cumulant expansion

A cumulant expansion (taken to second order) may be used to transform
the master equation by averaging over the noise terms. Write the master
equation in the form

dρ

dt
=

(

A0 + α(t)A1 + α†(t)A2 + β(t)B1 + β†(t)B2

)

ρ, (A.55a)

where we have defined

A0ρ = +
γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

, (A.55b)

A1ρ = −√
κaγ2ε2

[

σ+
2 , ρ

]

, (A.55c)

A2ρ = −√
κaγ2ε2

[

ρ, σ−
2

]

, (A.55d)

B1ρ = −√
κbγ3ε3

[

σ+
3 , ρ

]

, (A.55e)

B2ρ = −√
κbγ3ε3

[

ρ, σ−
3

]

. (A.55f)

dρ

dt
=

(

A0 + α(t)A1 + α†(t)A2

)

ρ, (A.56a)

where we have defined

A0ρ = +
γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

, (A.56b)

A1ρ = −√
κaγ2ε2

[

σ+
2 , ρ

]−√
κaγ3ε3

[

σ+
3 , ρ

]

, (A.56c)

A2ρ = −√
κaγ2ε2

[

ρ, σ−
2

]−√
κaγ3ε3

[

ρ, σ−
3

]

. (A.56d)

Using the cumulant expansion to remove the noise terms results in the
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transformed master equation

dρ

dt
= A0ρ

+

∫ ∞

0

dτ
{〈

α(τ)α†(0)
〉

(A1A2 + A2A1)
}

ρ

+

∫ ∞

0

dτ {〈α(τ)β(0)〉 (A1B1 + B1A1)} ρ

+

∫ ∞

0

dτ
{〈

α†(τ)β†(0)
〉

(A2B2 + B2A2)
}

ρ

+

∫ ∞

0

dτ
{〈

β(τ)β†(0)
〉

(B1B2 + B2B1)
}

ρ. (A.57)

dρ

dt
= A0ρ

+

∫ ∞

0

dτ
{〈α(τ)α(0)〉A1A1 +

〈

α(τ)α†(0)
〉

A1A2

}

ρ

+

∫ ∞

0

dτ
{〈

α†(τ)α(0)
〉

A2A1 +
〈

α†(τ)α†(0)
〉

A2A2

}

ρ.

(A.58)

After integrating over the delta functions and substituting for A0 we
obtain

dρ

dt
= +

γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
N

2κa

(A1A2 + A2A1) ρ

+
M

2
√

κaκb

(A1B1 + B1A1) ρ

+
M

2
√

κaκb
(A2B2 + B2A2) ρ

+
N

2κb
(B1B2 + B2B1) ρ. (A.59)
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dρ

dt
= +

γ2

2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
γ3

2

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
M

4κa
(A1A1 + A2A2) ρ

+
N

4κa
(A1A2 + A2A1) ρ. (A.60)

A.9 Reduced master equation

Substituting Equations (A.55c-A.55f), we obtain the reduced master equation
for the atoms alone

dρ

dt
= +

1

2
γ2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ3

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

2
γ2ε2N

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ2ε2N

(

2σ+
2 ρσ−

2 − σ−
2 σ+

2 ρ − ρσ−
2 σ+

2

)

+
1

2
γ3ε3N

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

2
γ3ε3N

(

2σ+
3 ρσ−

3 − σ−
3 σ+

3 ρ − ρσ−
3 σ+

3

)

−1

2

√
γ2γ3ε2ε3M

(

2σ+
2 ρσ+

3 − σ+
3 σ+

2 ρ − ρσ+
3 σ+

2

)

−1

2

√
γ2γ3ε2ε3M

(

2σ+
3 ρσ+

2 − σ+
2 σ+

3 ρ − ρσ+
2 σ+

3

)

−1

2

√
γ2γ3ε2ε3M

(

2σ−
2 ρσ−

3 − σ−
3 σ−

2 ρ − ρσ−
3 σ−

2

)

−1

2

√
γ2γ3ε2ε3M

(

2σ−
3 ρσ−

2 − σ−
2 σ−

3 ρ − ρσ−
2 σ−

3

)

. (A.61)
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Substituting Equations (A.56c) and (A.56d), we obtain the reduced mas-
ter equation for the atoms alone

dρ

dt
= +

1

2
γ2

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

2
γ3

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

4
γ2ε2N

(

2σ−
2 ρσ+

2 − σ+
2 σ−

2 ρ − ρσ+
2 σ−

2

)

+
1

4
γ2ε2N

(

2σ+
2 ρσ−

2 − σ−
2 σ+

2 ρ − ρσ−
2 σ+

2

)

+
1

4
γ3ε3N

(

2σ−
3 ρσ+

3 − σ+
3 σ−

3 ρ − ρσ+
3 σ−

3

)

+
1

4
γ3ε3N

(

2σ+
3 ρσ−

3 − σ−
3 σ+

3 ρ − ρσ−
3 σ+

3

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ−
2 ρσ+

3 − σ+
3 σ−

2 ρ − ρσ+
3 σ−

2

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ+
2 ρσ−

3 − σ−
3 σ+

2 ρ − ρσ−
3 σ+

2

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ−
3 ρσ+

2 − σ+
2 σ−

3 ρ − ρσ+
2 σ−

3

)

+
1

4

√
γ2γ3ε2ε3N

(

2σ+
3 ρσ−

2 − σ−
2 σ+

3 ρ − ρσ−
2 σ+

3

)

−1

4
γ2ε2M

(

2σ+
2 ρσ+

2 − σ+
2 σ+

2 ρ − ρσ+
2 σ+

2

)

−1

4
γ2ε2M

(

2σ−
2 ρσ−

2 − σ−
2 σ−

2 ρ − ρσ−
2 σ−

2

)

−1

4
γ3ε3M

(

2σ+
3 ρσ+

3 − σ+
3 σ+

3 ρ − ρσ+
3 σ+

3

)

−1

4
γ3ε3M

(

2σ−
3 ρσ−

3 − σ−
3 σ−

3 ρ − ρσ−
3 σ−

3

)

−1

4

√
γ2γ3ε2ε3M

(

2σ+
2 ρσ+

3 − σ+
3 σ+

2 ρ − ρσ+
3 σ+

2

)

−1

4

√
γ2γ3ε2ε3M

(

2σ+
3 ρσ+

2 − σ+
2 σ+

3 ρ − ρσ+
2 σ+

3

)

−1

4

√
γ2γ3ε2ε3M

(

2σ−
2 ρσ−

3 − σ−
3 σ−

2 ρ − ρσ−
3 σ−

2

)

−1

4

√
γ2γ3ε2ε3M

(

2σ−
3 ρσ−

2 − σ−
2 σ−

3 ρ − ρσ−
2 σ−

3

)

. (A.62)





Appendix B

Calculation of steady states

In this Appendix we present details of the method used to automate the cal-
culation of the steady state solution of a given master equation.

In this Thesis we commonly wish to calculate the steady state solutions
for master equations in 2 ⊗ 2 systems. Density matrices for these systems
have 15 degrees of freedom and it is a tedious exercise to calculate the steady
state by hand. For this reason, the process has been automated by writing
a computer program to run in the mathematics package MATLAB c©.

The computer program represents the master equation symbolically. The
stored symbolic representation of the master equation is then manipulated
in the computer in a manner equivalent to the steps used when solving a
master equation by hand. The process of solving the master equation is as
follows:

1. Define the constants and operators that occur in the master equation.
Each constant and operator is represented by a unique integer and has
an associated human-readable string.

2. Define the commutation relations between the operators, and other rel-
evant operator identities (e.g., σ+σ+ = 0), that are needed to calculate
the differential equations governing each element of the density matrix.

3. Define the Liouvillian, in a symbolic manner, using the constants and
operators previously defined.

4. The computer then finds the Bloch equations for the master equation.
It calculates a 16 × 16 matrix of symbolic expressions that describes
the evolution of the 16 density matrix elements in a 2 ⊗ 2 system.
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5. The symbolic evolution matrix is block-diagonalized and subblocks of
interest may be selectively processed.

6. Constraints are added to handle the trace condition (and any decoupled
dark states) so that a unique steady state solution is calculable.

7. A text file of the evolution matrix (with constraints) is written to disk
in a suitable format to be readable by the symbolic mathematics pack-
age Mathematica c©. This matrix may then be imported into a simple
Mathematica program which inverts the matrix to find an analytic for-
mula for the steady state solution to the master equation.



Appendix C

Adiabatic elimination of
excited states

In this Appendix we provide details of the projector technique that is used to
eliminate the excited states of the atoms in Chapter 7. The adiabatic
elimination is performed in two ways, depending on whether spontaneous
emission from the excited atomic states can be neglected.

Contents

C.1 Interaction picture . . . . . . . . . . . . . . . . . . 138

C.2 Projectors . . . . . . . . . . . . . . . . . . . . . . . 138

C.3 Neglecting spontaneous emission . . . . . . . . . 139

C.4 Including spontaneous emission . . . . . . . . . . 140

A projector technique may be used to eliminate the excited states of the
atoms. Here we employ the technique used in [78] and apply it to the master
equation (7.2). This method for the adiabatic elimination deals exclusively
with the master equation and avoids the difficulties that can arise due to
operator ordering when working with the Heisenberg equations of motion [83].

In this Appendix we commonly use notation for operators where only the
atomic spaces are explicitly stated. The space of the cavity is assumed. Thus
the operator Q1 ⊗ 1 is a notational shortcut for 1cav ⊗ Q1 ⊗ 12.
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C.1 Interaction picture

To begin we move the master equation (7.2) into the interaction picture. The
frame we choose has the excited states stopped with respect to the rotation
of their respective virtual transitions (shown as dotted lines in Figure 7.2).
The rotation of state |1〉 is also stopped. We obtain

ρ̇ = −i
[

Q + Q† + Z, ρ
]

+ Lcavρ + Lsponρ, (C.1a)

where we have defined

Q†
1 = gra |r〉 〈0|1 + gsa |s〉 〈1|1

+
Ωr

2
|r〉 〈1|1 +

Ωs

2
e−iφ |s〉 〈0|1 +

Ωt

2
|t〉 〈1|1 , (C.1b)

Q†
2 = gra |r〉 〈0|2 + gsa |s〉 〈1|2

+
Ωr

2
|r〉 〈1|2 +

Ωs

2
e−iφ |s〉 〈0|2 +

Ωt

2
|t〉 〈1|2 , (C.1c)

Q† = Q†
1 ⊗ 1 + 1 ⊗ Q†

2, (C.1d)

and

Z1 = −∆r |r〉 〈r|1 − ∆s |s〉 〈s|1 − ∆t |t〉 〈t|1 , (C.1e)

Z2 = −∆r |r〉 〈r|2 − ∆s |s〉 〈s|2 − ∆t |t〉 〈t|2 , (C.1f)

Z = Z1 ⊗ 1 + 1 ⊗ Z2. (C.1g)

The forms of Lcavρ and Lsponρ remain unchanged from Equation (7.2c) and
Equation (7.3a). The operators Q and Q† are lowering and raising operators
that describe the action of the driving lasers and the cavity mode in moving
the system between the ground and excited states. The operator Z gives the
residual rotation of the excited states.

C.2 Projectors

We define projectors onto the excited and the ground states of the atoms as

P+
1 = |r〉 〈r|1 + |s〉 〈s|1 + |t〉 〈t|1 , (C.2a)

P+
2 = |r〉 〈r|2 + |s〉 〈s|2 + |t〉 〈t|2 , (C.2b)

P−
1 = |1〉 〈1|1 + |0〉 〈0|1 , (C.2c)

P−
2 = |1〉 〈1|2 + |0〉 〈0|2 , (C.2d)
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so that the projectors in the full Hilbert space may be written

P++ = P+
1 ⊗ P+

2 , (C.2e)

P+− = P+
1 ⊗ P−

2 , (C.2f)

P−+ = P−
1 ⊗ P+

2 , (C.2g)

P−− = P−
1 ⊗ P−

2 . (C.2h)

We need to commute the projectors and the Q operators. This can be
done using

P++Q = 0, (C.3a)

P+−Q = (1 ⊗ Q2)P++, (C.3b)

P−+Q = (Q1 ⊗ 1)P++, (C.3c)

P−−Q = (Q1 ⊗ 1)P+− + (1 ⊗ Q2) P−+. (C.3d)

P++Q† =
(

Q†
1 ⊗ 1

)

P+− +
(

1 ⊗ Q†
2

)

P−+, (C.3e)

P+−Q† =
(

Q†
1 ⊗ 1

)

P−−, (C.3f)

P−+Q† =
(

1 ⊗ Q†
2

)

P−−, (C.3g)

P−−Q† = 0. (C.3h)

C.3 Neglecting spontaneous emission

We perform the adiabatic elimination in two ways, depending on whether
spontaneous emission from the atoms is being considered or not. In this
Section we consider the case where spontaneous emission may be neglected.
The adiabatic elimination in the presence of spontaneous emission is covered
in Section C.4.

Define partial density matrices

ρ−−−− = P−−ρP−−, (C.4a)

ρ+−−− = P+−ρP−−, (C.4b)

ρ−+−− = P−+ρP−−... etc. (C.4c)

Then partial master equations can be obtained

d

dt
ρ−−−− = −i (Q1 ⊗ 1) ρ+−−− − i (1 ⊗ Q2) ρ−+−− + H.c., (C.5a)

d

dt
ρ+−−− = −iZρ+−−− − i

(

Q†
1 ⊗ 1

)

ρ−−−−, (C.5b)

d

dt
ρ−+−− = −iZρ−+−− − i

(

1 ⊗ Q†
2

)

ρ−−−−. (C.5c)
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Now the adiabatic elimination may be performed by assuming that the co-
herence terms ρ+−−− and ρ−+−− follow adiabatically the population ρ−−−−

in the ground states. Setting the derivatives in Equations (C.5b,C.5c) to zero
and substituting into (C.5a) we obtain the following master equation

d

dt
ρ = −i

(

Heffρ − ρH†
eff

)

, (C.6a)

where

Heff = −
(

Q1Z
−1
1 Q†

1 ⊗ 1 + 1 ⊗ Q2Z
−1
2 Q†

2

)

, (C.6b)

and where we take

Z−1
1 = − 1

∆r

|r〉 〈r|1 −
1

∆s

|s〉 〈s|1 −
1

∆t

|t〉 〈t|1 , (C.6c)

Z−1
2 = − 1

∆r

|r〉 〈r|2 −
1

∆s

|s〉 〈s|2 −
1

∆t

|t〉 〈t|2 . (C.6d)

This master equation is for the reduced density matrix in the space Hcav ⊗
H2 ⊗H2.

C.4 Including spontaneous emission

In this Section we consider the adiabatic elimination in the presence of spon-
taneous emission. The definitions of the spontaneous emission terms used
are those of Equation 7.3a, i.e. the case where δ �= 0 and each decay from
each excited state is effectively into a different reservoir. We assume in this
Section that the detunings are all the same (i.e., ∆r = ∆s = ∆t = ∆) and
that the spontaneous emission rates from the excited states are all the same
(i.e., γr = γs = γt = γ).

By neglecting all terms that are second order or more (i.e., more than
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two ’+’s) we obtain the partial master equations

d

dt
ρ−−−− = −i (Q1 ⊗ 1) ρ+−−− − i (1 ⊗ Q2) ρ−+−− + H.c.

+γ
∑

Y1

(Y1 ⊗ 1) ρ+−+−
(

Y †
1 ⊗ 1

)

+γ
∑

Y2

(1 ⊗ Y2) ρ−+−+
(

1 ⊗ Y †
2

)

(C.7a)

d

dt
ρ+−−− =

(

i∆ − γ

2

)

ρ+−−− − i
(

Q†
1 ⊗ 1

)

ρ−−−−, (C.7b)

d

dt
ρ−+−− =

(

i∆ − γ

2

)

ρ−+−− − i
(

1 ⊗ Q†
2

)

ρ−−−−. (C.7c)

d

dt
ρ+−+− =

1

∆2 + γ2

4

(

Q†
1 ⊗ 1

)

ρ−−−− (Q1 ⊗ 1) , (C.7d)

d

dt
ρ−+−+ =

1

∆2 + γ2

4

(

1 ⊗ Q†
2

)

ρ−−−− (1 ⊗ Q2) , (C.7e)

For clarity, we use a shorthand notation where summation over Yi means the
summation over all decay channels for atom i, i.e.,

∑

Yi

Yi ≡
∑

j∈{r,s,t}

∑

k∈{0,1}
Yijk. (C.8)

We perform the adiabatic elimination by taking the derivatives to be zero
in Equations (C.7b-C.7e) and substituting into Equation (C.7a). The final
master equation we obtain is

d

dt
ρ = −i

(

Heffρ − ρH†
eff

)

+
∑

Y1

γ

∆2 + γ2

4

(

Y1Q
†
1 ⊗ 1

)

ρ
(

Q1Y
†
1 ⊗ 1

)

+
∑

Y2

γ

∆2 + γ2

4

(

1 ⊗ Y2Q
†
2

)

ρ
(

1 ⊗ Q2Y
†
2

)

, (C.9a)

where

Heff =
1

∆ + iγ
2

(

Q1Q
†
1 ⊗ 1 + 1 ⊗ Q2Q

†
2

)

. (C.9b)
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[18] G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther.
A single ion as a nanoscopic probe of an optical field. Nature, 414:49,
2001.

[19] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight. Cavity-loss-
induced generation of entangled atoms. Physical Review A, 59:2468,
1999.

[20] Almut Beige, William J. Munro, and Peter L. Knight. Bell’s inequality
test with entangled atoms. Physical Review A, 62:052101, 2000.
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