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Abstract

Quantum trajectory theory of continuous variable quantum teleportation is devel-
oped for a single-mode teleportation scheme. Necessary materials are introduced
and the theories are developed, which are then applied to the teleportation proto-
col introduced in the thesis. A stochastic Schrédinger equation is developed from
quantum trajectory theory applied to the protocol, and the equation is studied
both analytically and numerically. To study the teleportation of non-classical in-
put states, Fock states were chosen; single-shot results are investigated extensively
for Fock state inputs. The Wigner function is also used to investigate the protocol
analytically. The results show that both methods, quantum trajectory theory and
Wigner function analysis, are equivalent.

The Wigner function of the conditional output state is calculated explicitly for a
Fock state input with an arbitrary photon number. The conditional output state is
also calculated from the stochastic Schrodinger equation for an arbitrary input state,
and is shown to be equivalent to the Wigner function of the conditional output state
of an arbitrary input state. Conditional fidelities of the single-shot output states are
investigated and the results show that the quality of teleportation gets better as the
squeezing parameter of the two-mode squeezed state (entangled source) is increased.
Also it is shown that for Fock state inputs perfect teleportation can occur for any
non-zero squeezing parameter (entanglement), although the chance of it happening
is very small for a small squeezing parameter.
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Chapter 1

Introduction

1.1 General introduction to quantum teleportation

In 1935 Einstein, Podolsky and Rosen published a paper entitled ‘Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?’ [1]. In the
paper, as the name suggests, they tried to prove the incompleteness of quantum
mechanics; they believed quantum mechanics was not the most fundamental theory
that describes Nature. They used what is now called quantum entanglement to
show the inadequacy of quantum mechanics. Ironically, quantum entanglement was
later used by John S. Bell to give a testable inequality, called the Bell inequality,
which were tested experimentally by many physicists to show that Nature favours
the quantum mechanical description.’

Even though their main argument has been in vain, the concept of quantum
entanglement, or entangled states, has proved to be very important. In fact, it plays
a central role in the field of quantum information theory; Charles H. Bennett, one
of the founders of the field, says that maximally entangled states are the ‘purest
form of quantum information’ [2]. Quantum entanglement is the enabling resource
in superdense coding [3] and quantum teleportation [4].

According to some, quantum teleportation is the disembodied transport of a
quantum state from one place to another by the use of quantum entanglement and
a classical communication channel [5, 6, 7]. The total information of the state is
separated into classical and quantum information and then transmitted through the
classical channel and quantum entanglement, respectively. Quantum teleportation

was first proposed by Bennett et al. [4] for dichotomic variables (living in a two-

"More about the Bell inequality is said in Chapter 4.
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dimensional Hilbert space) and later extended by Vaidman [8] to continuous variables
(living in an infinite-dimensional Hilbert space); then Braunstein and Kimble [9]
proposed a practical scheme using quantum optical tools.

We adopt the teleportation scheme of Braunstein and Kimble in this thesis. In
their paper Braunstein and Kimble used the Wigner function (introduced in Chapter
2) to analyze the teleportation scheme and showed that it does work. Our object
is to give an alternative description of the scheme using quantum trajectory theory
and see if the scheme works as expected. Meanwhile, we try non-classical input
states, namely Fock states; Braunstein and Kimble illustrated their scheme with
a non-classical state, but the two existing experimental realizations [5, 10] of the
scheme make use of classical states called coherent states.? The Fock states are
interesting because they show the features of truly quantum states, i.e., states which
do not allow a hidden-variable type description (such as stochastic electrodynamics).
Unlike other works on continuous variable quantum teleportation (CVQT), we con-
centrate on single-shot results, trying to see the shot-to-shot quality of teleportation.

Visualization of the states is provided by the Wigner function.

1.2 Outline

A large proportion of this thesis is devoted to the introduction of background mate-
rials which one must know before a full understanding of the teleportation protocol
and its analysis can be attained. No familiarity with quantum optics is assumed,
although it would certainly help the reader, but substantial knowledge of quantum
mechanics is assumed, preferably first year graduate level. References to textbooks
are given in places to help readers with limited background as much as possible.

Chapter 2 introduces basic concepts of quantum optics; a lot of them taken from
the quantum optics lectures given in the first year of MSc here at the University of
Auckland. A broad range of material is covered, necessarily in sketchy form, with
references given for more detailed explanations.

Chapter 3 introduces quantum trajectory theory. Dissipation in open systems
is introduced and the description of dissipation via the master equation is given.
The latter is applied to the damped harmonic oscillator, which provides an example

through which we develop the theory of quantum trajectories.

Chapter 4 explains the teleportation protocol of Braunstein and Kimble. To do

2The definition of non-classical states are given at the end of Section 5.1, and the coherent states
are introduced in the next chapter.
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this, we describe quantum entanglement first, then the original proposal of Bennett
et al. which is in terms of dichotomic variables, for example spin. The last section
of the chapter describes the proposal of Braunstein and Kimble in detail.

Chapter 5 explains the methods of analysis. Largely, there are two methods:
numerical simulations and finding analytical expressions. A specific protocol for
teleportation is introduced first, then the stochastic Schrédinger equation of the
protocol is obtained from quantum trajectory theory. The details of numerical sim-
ulation via quantum trajectory theory are explained. Analytical expressions are
obtained by working in the Wigner representation, as in Braunstein and Kimble,
as well as by solving the stochastic Schrodinger equation. Both expressions are
compared and shown to be equivalent.

Chapter 6 presents all the results, both from the simulation and analytic expres-
sions. A few single-shot output states are shown in the Wigner representation. A
measure of the quality of teleportation, the fidelity, is introduced and evaluated for
various input states. The probability distribution for Alice’s measurement results
(this statement will become clear in Chapter 6) is also given.

Chapter 7 presents the conclusion and remarks on possible future works.

Finally, some mathematical results as well as the computer codes for numerical

simulations are given in the Appendices.
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Chapter 2
Introduction to quantum optics

This chapter introduces various tools and concepts in quantum optics, which will
be used throughout this thesis. This is not, however, meant to be a complete
introduction to quantum optics. We merely state the fundamental concepts without

rigorous derivations. For more concrete discussions see Refs. [11, 12, 13].

2.1 Quantized electromagnetic fields

In its most basic form, quantum optics deals with the interaction between elec-
tromagnetic fields and atoms. To build a fully quantum mechanical theory, one
obviously has to quantize not only the atoms but the electromagnetic fields as well.
In this section we briefly look at the formalism of quantized electromagnetic fields.

When the free electromagnetic field is quantized, its Hamiltonian can be written

as
) 1
szk:hwk(nk+§)7 (2.1)

where k denotes a mode of the electromagnetic field, wy the angular frequency of
the mode and 7n; the photon number operator for the mode. h is the Planck’s
constant, which makes the units right. The Hamiltonian has the same form as that
of a set of harmonic oscillators. Thus, the free electromagnetic field can be formally
represented by a set of harmonic oscillators [14]. The ), 1/2 gives a, generally
infinite, non-zero energy to the ground state, which is due to what is called the
vacuum fluctuations. However, because only the change in energy can be measured,

the constant term of Y, 1/2 can be ignored.! The vacuum fluctuations are briefly

'If the electromagnetic fields exist in different regions with different boundary conditions, the
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discussed below Eq. (2.73).

Let us assume that the electromagnetic field is a single-mode field, so that the
sum (over k) goes away. The eigenstates (constant energy states) of this Hamiltonian
are called number states or Fock states. The Fock state containing n photons is
denoted |n). It is assumed that the Fock states form a complete orthonormal basis,
that is, any state (ignoring the polarizations) of the electromagnetic field can be

represented as a superposition of Fock states, i.e.,
) =) caln). (2:2)
n
The completeness of the basis states may be written as

> In)nl =1, (2.3)

where 1 is the unit operator. We can see this by inserting the unit operator in front

of an arbitrary state:

[y =119) = In){nl) =Y caln). (2.4)

Note that the coefficient ¢,, is given by (n|¢).

The number operator can be written as
n = ala, (2.5)

where a' and a are the photon creation and annihilation operators, respectively (the
hat on the annihilation and creation operators is omitted). They operate on the

Fock states to create and annihilate a photon, i.e.,

a'ln) = vVn+1jn + 1), (2.6a)
aln) =+/nln —1). (2.6b)

Note that a|0) = 0. |0), the state with no photons, is called the vacuum state.
Although there are no photons in the vacuum state, the hw/2 term in Eq. (2.1)
— remember, the electromagnetic field is in a single-mode — gives non-zero energy to

the state. In terms of mechanical harmonic oscillators, this comes from the perpetual

term cannot be ignored. For example, it could lead to an observable effect called the Casimir effect.
See Mandel [15], Section 10.9.3, and Merzbacher [11] p. 574, and the references therein.
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jiggling of the particle in a harmonic potential, while in terms of the electromagnetic
field, it comes from the vacuum fluctuations mentioned earlier. Since photons are

bosons, a and a obey the commutation relation given by
[a,a’] = 1. (2.7)

A single-mode electric field operator may be represented in terms of the creation

and annihilation operators as

1
. h 2 ) )
E—=i <2€;‘}V> [aez(k:c—wt) - a‘i‘e—z(k:c—wt)L (28)

where V is the volume of the cube the electric field is quantized in. The total electric
field inside the cube is a sum over all modes of the electric field obeying periodic
boundary conditions. Often, the total electric field is written in terms of its positive

and negative frequency parts:

E(r, t) = (r t) + E (r t), (2.9)

R .
(7“ t) =i Z \ 2 g €k Aak e RtTker) (2.10)
KA

Tt =

where

- (+

~

(r,t)1. (2.11)

k is the wave-vector and é ) is the polarization direction of the electric field, where
there are two perpendicular directions of polarization denoted by the subscript .
A similar expansion exists for a magnetic field operator, but we will not go into it
here. The details of expansions of the electric and magnetic field operators can be

found in many textbooks; see, for example, Chapter 1 of Scully [12].

2.2 Quadrature operators

Quadrature operators are defined in terms of the creation and annihilation operators

as

Ao

% (ae—“’ + aTe“’) , (2.12)
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where 6 is the angle of the quadrature. The quadrature operator is Hermitian and
therefore an observable. It can be measured experimentally using the (balanced)
homodyne detection [16]. (See Section 2.7.3.) In this thesis, we are mainly interested

in the two quadratures defined by § = 0 and 6 = 7/2. We will call them & and p:
1 1
izi(a—kcﬁ), ﬁEZ_i(a_aT>' (2.13)
From this equation we obtain
a =2+ 1p. (2.14)
Using the quadrature operators [Eq. (2.13)], we can rewrite Eq. (2.8) as

1
. 2hw\2 . . .
E=-— —~ [Z sin(kx — wt) + pcos(kx — wt)]. (2.15)
€0
Looked at in this way, the quadrature operators & and p are just the amplitude
operators of cosinusoidally and sinusoidally varying terms of the electric field, re-
spectively.
From Eq. (2.7), we can derive the commutation relationship between & and p:
R i
[#.0) = 5. (2.16)
This commutation relation tells us that the quadrature operators & and p are canon-
ically conjugate variables, just like the position and momentum operators.? It is for
this reason that we call the two quadrature operators & and p. Since they are non-
commuting observables they obey the Heisenberg Uncertainty Principle (HUP), i.e.,

they obey

AzAp > (2.17)

| =

The quadrature operators will be useful later when we look at the Wigner dis-

tributions and squeezed light.

2h and the factor of 2 are irrelevant, since they can be absorbed into the definition of the & and
p. Often the units are chosen such that A = 1, in which case we only have to absorb the factor 2.
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2.3 Coherent states

It is extremely difficult to generate a Fock state experimentally, and states are
generally in a superposition of Fock states as shown in Eq. (2.2). One such state,
which is very important in quantum optics, is called the coherent state. It represents,
to a good approximation, the state of a laser beam, and is the closest quantum
mechanical state to classical light (soon we will see why this is so). Coherent states

can be defined as eigenstates of the annihilation operator, i.e.,
ala) = ala), (2.18)

where |o) is the coherent state. We will not go into details, but the Fock state

representation of the coherent states can be found from the relationships
(nlala) = a(n|ay), (2.19a)
(nale) = (a]a’|n)* = Vn+ L{aln + 1)* = Vn+ 1{n + 1|a). (2.19b)

and the normalization condition (a|a) = 1. It is given by

a 2 0 o
la) = exp <—%> nz::o N n). (2.20)

It can be proved that the coherent states form a complete set of basis states [13],

so they can be used to build up the unit operator, i.e.,
1 9 .
— [ |a){a|d®a =1, (2.21)
T

but they are not orthogonal.® In fact, the scalar product of two coherent states is

given by
1 2 2 *
(a]B) = exp | =5 (ja” +|6]%) + ™6 (2.22)
Formally, coherent states can be generated using the displacement operator

D(a) = exp (aaT - a*a) , (2.23)

3@ is not an observable, it is not Hermitian, so the eigenstates do not have to be orthogonal to
each other.
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by displacing the vacuum state, i.e.,

|a) = D(«)]0). (2.24)
The displacement operators have the following properties:

D'(a) = DY), (2.25a)
D'(a)aD(a) = a + «. (2.25b)

Incidentally, the coherent states are minimum uncertainty states of the observables

Z and p. We can see this from a simple calculation:

(@) = S{al(a +ab)la) = £ (a+0%) (2.26)
(@) = Flallo +aa' +ata+ (a)ja) = F(olla® + 1+ 2ata + (a)?]jo),
1 1 1
= Z[oé2+1+2ya|2+(a )3 = Fata )2+Z’
= @+ 1,
Aw = /@ = (@) = =. (2.27)

2

Similarly, Ap :% . Thus, for the coherent states, we obtain the uncertainty relation
1
AzAp = T (2.28)

Comparing with Eq. (2.17), we immediately see that the coherent states are mini-
mum uncertainty states. In this sense, the coherent states are as close as a quantum
state can get to a classical state, i.e., with definite values for both x and p. If the
average number of photons for a coherent state is large, the statistical uncertainty in
the amplitude of the coherent state becomes negligible and the state approximately

describes the field generated by a laser.

2.4 Density operator

So far we have been working only with pure states. Although pure states have a
statistical nature guarded by the HUP, it is intrinsically different to the classical

uncertainty. For example, the intrinsic statistical nature applies just as well to a
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single particle system as it does to an ensemble of such systems. Thus the uncertainty
is not from our ignorance about the system.

We now look at the formalism to describe a system which can accommodate
our classical ignorance on top of the quantum mechanical uncertainty — the density
operator formalism. To motivate the form of density operators, we note that the
quantities of importance in quantum mechanical systems are the expectation values,
since they are the things that connect the theory to experiments. In bra-ket notation,

the expectation value of an operator Aina pure state [¢)) is given by

(W[ Alp). (2.29)

Equivalently, it may be written in a trace form:

tr [Al) (] = Y-l AR) (i), (2.30)

where the set of states |n) forms a complete set of basis states (any complete set
will do, as the trace is independent of the basis set). We can see the equivalence of
Eq. (2.29) and Eq. (2.30) by rearranging the latter:

> (nlApp)lny = " (pln)(n|Alp) = (@A), (2.31)

where, in the second equality we used the completeness of |n).

Now we introduce some classical ignorance. Suppose we have an ensemble of
particles which have an observable A such that 20% of them are in a state that gives
ay, 40% give ag, and 40% give as. In classical mechanics, the average value of A of

the whole ensemble is given by

1 2 2
(A) = 5 01 + £ @2 + = 03, (2.32)

where the angled brackets denote the ensemble average. To write the quantum

mechanical version of this, we introduce a density operator

.1 2 2

b= zlan) (o] + ZJaz)(aal + = as) (as], (23
from which we can write the expectation value of A as

- 1. 12 2
(A) = tr [Ap] —caitzartCa (2.34)
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In general, density operators can be written as

p="_ pili)i, (2.35)

where p; is the probability to be in the state |i). The expectation value of an
arbitrary operator A in the ensemble of states described by the density operator p

is given by

@4>::tr{ﬁﬁ}. (2.36)

2.4.1 Properties of density operators

1. Trace of density operators:

Because the probabilities add up to one, i.e., > p; = 1, we have

tr[p] = 1. (2.37)
2. Time evolution of density operators:
From the Schrédinger equation
d .
ih% = H|y), (2.38)

we can work out the time evolution of density operators:

dp  djp) il _ i :
L= 22l + ) = — (ARl - )W),
= [A.4]. (2:39)

This equation (the von Neumann equation) looks like the Heisenberg
equation of motion, except for the minus sign, but since we are in the

Schrodinger picture and there is no direct connection.

3. Pure states and mixed states:

A pure state can be represented by a single ket, but a mixed state has to

be represented by a density operator. We can find out whether a density
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operator is pure or mixed by calculating
tr [p?] . (2.40)

If the density operator represents a pure state, p? = p, and thus the trace

is equal to one; otherwise, the trace is less than one.

4. The cyclic property:

A A

tr[AB] = tr[BA]. (2.41)

It is seen easily from the definition of the trace.

2.5 Wigner distribution

This section introduces what is called a ‘phase space representation’ of quantum
states.? There are three commonly used representations, but we will only consider
the Wigner representation here. The Wigner distribution® was first introduced by
Fugen P. Wigner in 1932, and used in working out quantum mechanical corrections
to thermal equilibrium [18]. Our main interest, however, is in its ability to provide
a visualization of the quantum states. In fact we can ‘see’ the quantum mechanical
fluctuations from the Wigner distribution. We will demonstrate this for the coherent
states shortly.

The Wigner distribution is a two-dimensional Fourier transform of a suitably
defined characteristic function. For a system represented by a density operator p, it

can be written as
* 1 2 ~ . N . Lk %
W(a,a*) == [ d°ztr [pexp (zza +iz"a )] exp (—iaz — ia*2%), (2.42)
7r
where
Xs(z,2") = tr {/3 exp (z’za + iz*aT)} (2.43)

is the characteristic function. To provide the meaning of «, it is instructive to work

40ur discussion on this subject is necessarily very limited. For a more concrete discussion see,
for example, Schleich [17].
5In the literature, the names Wigner distribution and Wigner function are used synonymously.
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out the Wigner distribution for a coherent state. Using the Baker-Hausdorff theorem
[19] and p = 8)(8], we get

tr [ﬁexp (z’za + iz*aTﬂ =tr [ﬁ exp(iz*al) exp (iza)] exp <—%\z]2> ,
= exp(iz* ") exp (izf3) exp <—%\z]2> . (2.44)

We now put this back into Eq. (2.42) and carry out the integration. To do this, we
write the complex variables z and « in terms of real variables, i.e., z = y+ig and a =
x +ip. Then, d?z = dydg and the integration can be carried out straightforwardly.

The answer we get is

Wigy(@,9) = = exp {2 [(z ~ 25 + (b~ ps)?]} (245

where 3 = xg+ipg. Figure 2.1 shows the Wigner distribution: a Gaussian distribu-
tion centered at o = . The coherent state |3) is an eigenstate of the annihilation
operator a = T + ¢p with the eigenvalue x5 + ipg, and since the Wigner distribution
of the coherent state is a Gaussian centered at * = zg, p = pg, we can think of
the = and p as the corresponding values of the operators & and p. This interpreta-
tion is supported by the fact that the expectation values of Z and p can be worked
out by treating the Wigner function as a probability distribution over the x and p
representing & and p, respectively. [See Eq. (2.50).]

Figure 2.2 is a schematic representation of a coherent state in the Wigner repre-
sentation. The center of the circle is placed at the amplitude of the coherent state,
and the radius of the circle corresponds to the width of the Gaussian which could
be one or two standard deviations. Now imagine that the amplitude of the coherent
state is increased. The size of the circle (uncertainty due to the quantum fluctua-
tions) remains the same, but the center moves away from the origin. Therefore the
signal to noise ratio decreases. If the average number of photons in a coherent state
is very large, the amplitude of the coherent state is also very large ((a|f|a) = |a|?)
and the state behaves like a classical field. The quantum fluctuations can be ignored.

So far we have seen how the Wigner distribution can give a graphical repre-
sentation of a quantum state. However, this is not all. The Wigner distributions
can also act like probability distributions over x and p, although strictly, they are
not. We will now see in which sense the Wigner distributions do act like probability

distributions and in which sense they do not.
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, ”‘:

il

Figure 2.1: Wigner distribution of a coherent state, of amplitude 1 + i.

Y

Figure 2.2: Schematic representation of a coherent state, of amplitude 1 + i.
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The Wigner distribution can be used to calculate the expectation values of any

symmetrically ordered product of annihilation and creation operators, i.e.,

<<aT”am)8> = /anW (a, ) ™™, (2.46)

where the subscript s denotes the symmetric ordering. In a symmetrically-ordered

operator, every possible ordering of @ and a' occurs. For example,

(aTa) = % (aTa + aaT) , (2.47a)
<aT2a) = % (aTQa +a'aa’ + aaT2> , (2.47b)
(aTaz) = % (aTa2 + aa'a + a® T) . (2.47c)

Eq. (2.46) can be proved in the following way. First, from the definition of the
characteristic function [Eq. (2.43)], we get

(), )= el (aan) ]

8n+m

" oty )

(2.48)

z=z*=0

Then noting that xs(z,2") is the inverse Fourier transform of the Wigner distribu-

tion, i.e.,
Xs(z,2%) = /d2aW (o, ) exp(iz*a™ +iza), (2.49)

after substituting it into Eq. (2.48), we obtain Eq. (2.46).
Since 2" and p™ are symmetrically ordered operators, we can calculate the ex-

pectation values of " and p™ using the relations

(") = /dwde(x,p)x", (2.50a)

(™Y = / dadpW (2, p)p™. (2.50D)

These equations suggest that the marginal distributions, [ dzW (x,p) and
f dpW (z,p), act as the probability distributions over x and p, respectively. Con-
sequently we can think of W (x,p) as the joint probability distribution, although

strictly, it is not a probability density: the expectation value of Z"p™ cannot be
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found in the same way as in Eq. (2.50). This is because the two operators do not
commute with each other, and what phase space integration finds is, again, the

symmetrically ordered operator average, i.e.,
((@"p™),) = /dwde(x,p)x"pm. (2.51)

Note that the symmetrically ordered operators are Hermitian, and therefore observ-
ables. The ordering issue, however, is a strictly quantum feature. If the quadrature
operators & and p were not operators, ordering would not matter at all. Thus,
W (x,p) can still be thought of as a probability distribution which can be used to
calculate the (symmetrically ordered) operator averages. The more serious issue is
that a Wigner distribution can be negative, and once it is, we can no longer in-
terpret it as a probability distribution. Thus, the Wigner distribution is called a
quasi-probability distribution.

2.6 Squeezed light

In the previous section, we have seen the Wigner representation of a coherent state,
the minimum uncertainty state with equal uncertainty in all the quadratures. Now
we look at a more general kind of minimum uncertainty state; states which have
different uncertainty in different quadratures while keeping the product of uncer-
tainties in the orthogonal quadratures to be the minimum. An easy way to see this
conceptually, is to look at the schematic diagram of the state in phase space, as
shown in Figure 2.2 for the coherent state. Figure 2.3 shows the squeezed version
of the coherent state shown in Figure 2.2. Depending on the squeezed ‘direction’,
squeezed states have different names, as captioned in the figure.

We now have some idea of what the squeezed states are; their quadratures have
‘squeezed’ uncertainty in a certain quadrature or ‘direction’; at the cost of increased
uncertainty in the orthogonal quadrature. Next, we develop a formal approach
starting from the squeeze operator.

The squeeze operator is given as [20]

S(e) = exp (%s*cﬁ - %z—: aT2> , (2.52)

where ¢ = re%®. ¢ determines the angle of the squeezed quadrature and r, the

squeezing parameter, determines the amount of squeezing. The squeeze operator is
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Figure 2.3: Schematic representation of a squeezed coherent state:
(a) squeezed in the x quadrature, (b) squeezed in the p quadrature,
(c) amplitude squeezed, (d) phase squeezed.

unitary:
ST(e) = S_l(s) = S(—¢), (2.53)

where the last equality follows from the definition. It transforms the annihilation

and creation operators as

ST(e)asS(e) = acosh(r) — ale??? sinh(r), (2.54a)
ST(e)a'S(e) = a' cosh(r) — ae~2 sinh(r). (2.54b)

From Eq. (2.54) we can work out the transformation of the quadrature operator
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given in Eq. (2.12):
St(e) (A¢ +idy, . /2) S(e) = Age ™ +idy npe. (2.55)
For example, if ¢ = 0 we get
ST(r) (& +ip) S(r) = Ze™" + ipe”. (2.56)

This explicitly shows that the quadratures are amplified and deamplified. How much
they are amplified and deamplified depends on the squeezing parameter r. Squeezed
coherent states can be obtained by squeezing the vacuum state and then displacing
it:6

la,e) = D(a)S(€)[0) (2.57)
For this state, the quadratures have the uncertainties given by
1, L,
AA¢ = 56 N AA¢_|_7|./2 = 56 . (258)
Specifically, if e = r, |, r) has the uncertainties given by
Az = 56"”, Ap = §€T. (2.59)

It should be mentioned that the displacement operators do not change the uncer-
tainty of the squeezed states, i.e., the widths of the ellipses in Figure 2.3 do not
change. Every squeezed coherent state has the same uncertainty as the squeezed
vacuum.

In this section we introduced the quantum mechanical description and phase
space representation of squeezed states. Quantum squeezing has received a lot of
attention, and found applications, during the past two decades, and now is one of the
fundamental resources in the field of quantum information. Reduction of noise in one
quadrature has also found use in ultra-sensitive measurements, such as gravitational
wave detection. These have all been possible because of the experimental success in

generation and detection of squeezed states. For reviews on squeezing see Ref. [21]
and Ref. [22].

In some literature the vacuum state is displaced first and then squeezed. There is no funda-
mental difference between the two approaches, a simple relationship between them exists. See for
example Section 2.4 and 2.5 of Walls [13].
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2.7 Photoelectric detection

To detect squeezing, people normally use what is called the ‘balanced homodyne
detection’ scheme [23]. In a homodyne detector, the signal field is mixed with a
high intensity coherent field (called the local oscillator) and then the mixed field is
detected with a photoelectric detector. The local oscillator field introduces a phase
in the measurement, and thus the whole detection scheme is phase sensitive. This
phase sensitivity is necessary in the detection of squeezing, since squeezing is a phase
dependent phenomenon. Balanced homodyne detection is a convenient version of
homodyne detection, used often in experiments because it allows unwanted noise to
be subtracted.

Our object, in this section, is to introduce the balanced homodyne detection
scheme and understand how it can be used to measure the noise reduction in squeezed
light. Before we do this, however, we develop the theory of photoelectric detection,
since photoelectric detectors are the building blocks of a balanced homodyne detec-

tor. The discussion here is essentially that of Carmichael [24].

2.7.1 Semi-classical treatment of photoelectric detection

Suppose we have a beam of light traveling freely across a room. We want to do
a photon counting experiment, so we place a photoelectric detector in the path of
the beam. When a photon, from the light beam, hits the detector, it ionizes an
atom in a photoelectric material; the generated photoelectron subsequently goes
through a multiplication process, producing a pulse of current. In photon counting
experiments, we simply count the number of these pulses. One of the basic question
we might ask is this: what is the probability of measuring n photons in a time
interval T? We will try to answer this question.

To describe the photoelectric detection process we need a full quantum mechan-
ical treatment of the light-atom interaction, i.e., quantized electromagnetic fields
interacting with quantized atoms. Needless to say, developing the full theory might
take some time. So instead, we start with the semi-classical theory of light inter-
acting with atoms. In the semi-classical theory, the atoms are quantized but the
electromagnetic field is treated classically. Because of the quantum nature of the
interaction between the electromagnetic field and the detector (photoelectric ma-
terial), we can only talk about the probabilities of counting a certain number of
photons in a time interval 7T'. Using the semi-classical theory we work out the pho-

ton counting distribution P(n,t,T'), the probability of counting n photons in a time
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interval (¢,t + T'), which will motivate the form of the fully quantum mechanical

expression.

area A

Figure 2.4: Light beam of cycle-averaged intensity I and cross-sectional area A
incident on a photoelectric detector.

Consider a beam of light with frequency w incident on a photoelectric detector
(Figure 2.4). The light beam has a cross-sectional area A and a constant cycle-
averaged intensity I. In a time interval T, the average number of photons we mea-
sure, N, will be

- AIT

N = o (2.60)
where hw is the energy of a photon in the beam, whence AI/hw is the number of
photons passing through area A per second. The above equation is true only if all
the photons incident on the detector are detected. Otherwise, the detector has a
quantum efficiency n depending on the details of the light and detector. We will
take it as an empirical parameter, a given number between 0 and 1. With a non-unit
quantum efficiency n we have

N = n% =elT. (2.61)

Now we divide the time interval T into N subintervals of duration At:

T

N=_—.
At

(2.62)

Then, if N > 1, At < 1 such that e/At < 1, the probability for detecting a photon

in any subinterval can be approximated as
p = el At. (2.63)

If At is small enough, the chance of detecting two photons in a subinterval can be
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neglected.

We have only given a heuristic argument here, but Eq. (2.63) can be derived
from semi-classical arguments.” Note that Eq. (2.63) is valid only as long as At >
1/w. That is, At must be big enough so that only the time averaged intensity I is
important. We are not interested in the situation where the intensity is so high that
the above approximation cannot be true.

Given Eq. (2.63), the probability of having no photodetection in time At, which

we will call g, is simply given by 1 — p, i.e.,
g=1—-p=1-clAt. (2.64)

Now assume a particular sequence of photoelectric detections (Figure 2.5) in time

NAt. The probability of having this kind of sequence with n photoelectric detections

is given by
pgN " = (eI At)"(1 — eI At)N ™. (2.65)
@ | oo | | lo| jof e || | |0] | o]
12 =<7 N

At

Figure 2.5: Sequence of photoelectric detections. Each cell represents a subinterval
of duration At. Black dots represent successive photon detections and vacancies
represent no detection.

There are N(N —1)--- (N —n+1)/n! ways of arranging the n detection events
and N —n non-detection events in N intervals. So the probability of having exactly
n detection events in IV intervals is

N(N-1)---(N—-n+1)
n!

p(n,t,T) = (eIA)"(1 — eIA)N ", (2.66)

"Look, for example, in section 9.3 of Mandel and Wolf [15].
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In the limit N — oo, At — 0, while keeping NAt = T constant, we get

p(n,t,T) = (1 _ %) (1 _ ”];1> (ENi!At)”(l AT

= (6173'1)” exp(elT), (2.67)

where we have used
(1 — eIA)YN™" — exp(—€lT),

in the limit given above. The photon counting distribution in Eq. (2.67) is the
Poisson distribution. We named it p(n,¢,T) but actually it is independent of ¢;
since the intensity is constant, we are free to choose the origin of time. In other

words, when we start counting does not matter.

0.05 4
0.04 4
0.03 4
0.02

0.01 4

T T
20 40

Figure 2.6: The Poisson distribution with 7 = 100.

The Poisson distribution has variance 72, where 7 = €IT is the average number of
photon counts (Figure 2.6). The signal to noise ratio then is equal to v/n/fi = 1/v/7.
This noise is normally called the shot noise. It arises from the discreteness of the
photoelectric pulses — the discreteness due to the nature of light-atom interaction.
Note that so far there has been no statistical fluctuations from the light. The
intensity was held constant. The noise in the photon counting distribution originated
from the quantum mechanical interaction between the classical light and atoms. We
will now look at the case of fluctuating intensities.

First consider the case where T is short compared to the correlation time of
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Figure 2.7: Stochastically varying intensity, when the counting time 7' is short
compared with the correlation time.

the intensity. In this case, the intensity over a given counting interval stays almost
constant (Figure 2.7). However, the intensity is different for different time intervals
due to its fluctuations, and thus the photon counting distribution has to be averaged

over the fluctuations, i.e.,

p(n,t,T) = / dIP(I) (dn 7;)71 exp(—elT),

_ <(€I "

= . exp(—eI_T)> . (2.68)

P(I) is the probability of obtaining a value I, assumed to be independent of time
(the fluctuations are stationary, independent of the time origin).

Generalization to the case where T is not so small is quite straightforward and
natural in terms of the result. We simply replace the average number with an

integral:®
~ T
elT — 6/ dt'I(t) = Qt,t+T), (2.69)
t

which changes the photon counting distribution to

[Q(t,t +T)"™
n!

p(n,t,T) = < exp[—Q(t,t + T)]> . (2.70)

This is the semi-classical formula for the photon counting distribution. p(n,t,T)

8For derivation of this result, see Loudon [25], pp. 230ff.
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now depends on ¢, since I(t) now depends on time. The angled brackets refer to an
ensemble average over the different functions I(¢). This point should be emphasized.
There are two averages here: the first is the average in the time integral of intensity

1(t); the second is the average over all the possible functions I(t).

The semi-classical photon counting distribution has a pitfall that we must point
out here. We have seen in the constant intensity case that the distribution is Poisson.
Then it is not hard to see that, as we add more and more fluctuations in intensity, the
distribution should get broader and broader, i.e., the photon counting distribution
must be super-Poissonian. Indeed, it can be shown mathematically, that it has to
be a super-Poissonian.”

This is saying that the Poisson distribution is the narrowest photon counting
distribution one could observe. But this looks strange. For example, consider the
case where photons come in one after another in a regular time interval, say 0.1
sec interval. In such a case, if we count photons for 1 sec, we are certain to get 10
photons. The lack of this possibility comes from the fact that we have not quantized

the electromagnetic field.

2.7.2 Photon counting distribution for quantized optical field

We now seek the generalization of Eq. (2.70) to the case where the electromagnetic
field is quantized. We will find that the result looks very similar to Eq. (2.70).
Heuristic arguments are used to derive the result, which will then be compared with
the fully quantum mechanical formula.

In terms of the positive and negative frequency parts of an electric field operator,

introduced in Section 2.1, we can write the intensity operator I as
I =2e0cB 7 (1, 0) - BT (1), (2.71)

where c¢ is the speed of light, € is the permittivity of free space, and the electric
field operators are evaluated at the location of the detector. The constant factors are
needed to make the unit of intensity right. We can check the validity of this equation
by substituting the single-mode electric field operator [Eq. (2.8)] into Eq. (2.71):

P=C0t,

Since aTac/ V' is the number of photons that passes through a unit area every second,

9See, for example, Carmichael [24], Chapter 5, especially section 5.3.
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I has the right interpretation of being the energy passing through a unit area every
second.

Can we simply put this into Eq. (2.70) to get the answer? Well, almost. There
is only one more thing to worry about — operator ordering. The operators usually
do not commute with each other and certainly, E(_)(T, t) and E(+)(T, t) do not.
Their operator characteristics are in the creation and annihilation operators, and
the creation and annihilation operators do not commute. There are many differ-
ent operator orderings that one can take. In addition to the symmetrical ordering
shown in Section 2.5, there are normal and anti-normal orderings as well. In normal
ordering we move all the creation operators to the left of the annihilation operators;
in anti-normal ordering, as the name suggests, we do the opposite. For example, if

we have two creation and two annihilation operators, different orderings give

normal ordering — a'a'aa,

anti-normal ordering — aaa’al.

It turns out that in a direct photon counting experiment, we have to take normal
ordering. Let us see why. For simplicity, we take an idealized photoelectric detector
of negligible spatial extension and a frequency-independent photoabsorption proba-
bility.!? Now suppose the detector has clicked. Then an atom must have absorbed
a photon and emitted a photoelectron. This implies that the photon has been de-
stroyed. Photoelectric detectors work by annihilating the photons they detect. To
see how the ordering occurs, suppose the detector is initially in a ground state, and
denote the state of the detector plus field as |i). After the detector absorbs a photon,
the total state jumps to a final state |f), where now the detector is in an excited
state. Then the probability amplitude of this event happening is proportional to the

matrix element
(FIES (v,0)]0), (2.72)

since E§\+) (r,t) is the negative frequency part (which contains the photon annihila-

tion operator, see Section 2.1) of the electric field operator. E§+)(r, t) is a particular

frequency component — the frequency of the photon that was absorbed — of the total

90ur argument follows closely that of Glauber [26]. The assumption of frequency independence
makes the sum over the final states independent of frequency, hence making the probability inde-
pendent of final states. For this point see Gardiner and Zoller [27], Section 8.2.
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electric field operator, which has a polarization specified by A\. Now the total proba-
bility of there being a photon absorption in a time interval (¢,¢ + dt] is proportional
to the sum over the final states of the transition probabilities, i.e., it is proportional

to

STIFIET (v 0)li)de = S GIE (e, )| AUIES (v, )] dt,
f f

= (B (2, ) B (v, 1) i)t (2.73)

One immediate consequence of this is that the probability for the detector to click
vanishes for the vacuum field. Classically, this is very trivial. There is nothing in
the vacuum, so there is nothing to make the detector click. Remember, however,
that in the quantum world the vacuum fluctuates, i.e., the fluctuations of electric

field in the vacuum is non-zero:
(0| E3(r,1)|0) > 0. (2.74)

Nevertheless, according to Eq. (2.73), this vacuum will not make the detector go
click, which means we cannot think of the vacuum fluctuations as being real fluctu-
ations of the electromagnetic field.!!

Going back to finding the expression for the photon absorption probability, we
now imagine a situation where two photons are absorbed, at different time intervals
(t,t + dt] and (¢',t' + dt']. The matrix element for this situation is given by

CFIEST (e, EST (x,)0), (2.75)
and the probability is proportional to
GIEC (e, )BT (0, ) ESD (2, ) EY (v, 8)[) it (2.76)

Note the normal ordering of the operators. The creation operators to the left of the
annihilation operators. Also the operators are time-ordered. Operators at earlier
times lie ‘outside’, closer to the kets and bras, of the operators at later times. Gen-
eralization to the case of a larger number of detections at different times gives us
the normal and time ordering of the operators.

We have seen that the detection of photons by photoelectric detectors results in

"This does not mean that the vacuum fluctuations do not exist, though. The vacuum fluctuation
can yield the Casimir effect mentioned in Section 2.1.
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the normal ordering of the creation and annihilation operators. Combining this fact
with Eq. (2.71) and Eq. (2.70) our guess to the correct form of the photon counting
distribution is

ol £.T) = <: [Q(t, ¢+ T)]

ol exp[—Q(t,t + T)] r> ; (2.77)

where
. t+T R .
Ot t+T) =¢ / dt' EC) (v, t") BN (x, 1),
t

2600

The notation : : indicates the normal and time ordering of the operators, and the
angled brackets now stand for the expectation value with respect to the initial state
|i). The fully quantum mechanical derivation (with fields quantized) of the photon
counting distribution, using perturbation theory with appropriate approximations,
is given by Kelley and Kleiner [28]. Their result agrees with Eq. (2.77). We will not
go into the detail here, but this formula, as expected, allows sub-Poissonian photon

counting distributions, i.e., it tells us that photons can come in regular intervals.

2.7.3 Balanced homodyne detection

We are now ready to talk about the balanced homodyne detection scheme mentioned
earlier in relation to the detection of squeezing. Before we can talk about the
detection of squeezing, however, we must first know the trait we are looking for.
The central feature of squeezed light is its phase dependent noise reduction. As we
have seen in section 2.6, a squeezed state has its noise reduced below the vacuum
fluctuation limit, possibly for a range of quadratures. Thus, what we are looking
for experimentally is a reduction of noise below a threshold; the threshold is set
by the noise of the vacuum fluctuations.!> The threshold is called the shot noise
limit, related to the shot noise in photon counting experiments. In fact, what we are
doing is carrying out a phase-dependent photon counting experiment and obtaining

sub-Poissonian statistics for the squeezed quadrature.

The homodyne detection scheme is shown in Figure 2.8. LO denotes the local

12 Although the vacuum fluctuations cannot be measured directly (since the vacuum does not fire
the detectors), they can, in effect, be measured indirectly by mixing a known field with the vacuum
(via a beam splitter) and detecting the mixed field.
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oscillator field: experimentally it is the field out of a laser, theoretically it is a
coherent state with large amplitude. The local oscillator field has to be mode-
matched to the input field, meaning that they must overlap completely in space and
time. To achieve this it has to have the same frequency, or central frequency, as the
input light. The field to be homodyned is mixed with the local oscillator by passing
both field through a 50/50 beam splitter, then the two outputs are detected by
the photoelectric detectors. In the balanced homodyne detection scheme, the two
photocurrents coming out of the photoelectric detectors are then subtracted [23]
yielding the output d@ (shown in the figure). The subtraction creates a desirable

effect of cancelling the local oscillator amplitude terms.

LO
N/
50/50 dQ
/ h
input field

Figure 2.8: Schematic representation of the balanced homodyne detection scheme.

The balanced homodyne detector can be used to detect a quadrature of the
input field, and hence its fluctuations. The angle of the quadrature is specified
by the phase of the local oscillator. We now analyze the scheme mathematically.
Assume the input and the local oscillator fields are single-modes, to which we give
the annihilation operators a and b, respectively. The state of the local oscillator
field is that of a laser, which can be described by a coherent state, say |3), where
B = |Blexp(ig). The effect of the beam splitter is to produce two output fields with
the mode annihilation operators ¢ and d. The output annihilation operators can be

written in terms of the input annihilation operators as

(a+0), (2.78a)

C =

d=——=(a—Db). (2.78b)

Sl Sl
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The output of the photodetectors is proportional to the intensities of the two output
fields, i.e.,

1
I x (cfe) = E(aTa +bTb+a’b+bla), (2.79)

1
I_ o (did) = §(aTa +0'b—a'b — bla), (2.80)
where (-) denotes the expectation value with respect to the state |in) ® |3). Thus,

dQ x I, —I_ x (a'b+ bla),
= |Bl(exp(ig)a’ + exp(—ig)a), (2.81)

where dQ is the average value of charge deposited in time dt. We have used the
fact that (3|b|3) = | 3| exp(i¢) and (B]b|3) = |B] exp(—ip) to obtain the second line.
Then, from the definition of quadrature operator, Eq. (2.12), we obtain

dQ o< (Ag). (2.82)

We can also obtain the shot noise by calculating the intensity fluctuations in the
output photocurrent. To make things simple, assume the input state is the squeezed
vacuum so the mean value of the quadrature operator is zero. In this case, variance

of the input field is given by

((cTe —d'd)?) = (a0 4+ b™a® + aabb' + aa'b'd),
= (a'b? + b%a? + 2atab'b + aTa + b'D),
= 8% (a'? exp(2i¢) + a® exp(—2i¢) + 2a'a) + (aTa) + |52 (2.83)

The last two terms constitute the shot noise. Note how the shot noise terms appear,
they appear from the commutation relations [a,a’] = 1 and [b,b{] = 1. Thus, we
can think of the shot noise as coming from the vacuum fluctuations of the input
and the local oscillator field. In most cases, the local oscillator field dominates the
fluctuation and the (a'a) term can be neglected. Then, the |3|? term acts like a
noise threshold, independent of the input field. If the squeezed quadrature of the
squeezed state is measured, the other terms in Eq. (2.83) can take a negative value

and the variance goes below the shot noise.



Chapter 3
Quantum trajectory theory

Most quantum optical experiments employ a scattering-type scenario: light (typi-
cally from a laser) comes into the region of interest, interacts with the system (a
non-linear crystal, for example), then leaves the region of interest. When we perform
a measurement it is usually the output light we detect, and usually with photoelec-
tric detectors.

Master equations, the equations describing the evolution of density operators,
are the standard tool used in quantum optics to describe the system dynamics. In
a scattering-type scenario, a system is interacting with a reservoir that carries the
output field. The master equation only describes the evolution of the system states;
the reservoir states are traced out, i.e., the reservoir is ignored.

Quantum trajectory theory seeks a different way to analyze the evolution of the
system; the reservoir states are not traced out, but disentangled. By creating our
own reservoir, or environment, with detecting equipment, we select out a particular
reservoir state from the measurement records. This in turn selects out a particular
state of the system, one which we infer from the measurement records. These points
will become clearer when we use the theory to analyze some simple examples later
in this chapter. Quantum trajectory theory will be developed by unravelling the
master equation, then applied to two examples: photoelectric counting and balanced
homodyne detection of an optical field in a damped (or leaky) cavity.

We start off with an introduction to the master equation, applying it to a dis-
sipative system. Then a general unravelling of the master equation is introduced
using a superoperator notation, followed by examples that will make the use of the

unravelling and the interpretation of quantum trajectory theory clear.

31
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3.1 Dissipation in quantum mechanics and master equa-

tions

Dissipation, or damping, plays an important role in quantum optics: the simplest
example is spontaneous emission, random emission of photons to the environment.
Another example, which shows the typical feature of quantum optical experiments,
is a laser; there is a medium (lasing medium) in a cavity, and the laser beam is the
output from the cavity. Obviously, the cavity has to be leaky if there is to be any
output, i.e., a laser beam. In the case of spontaneous emission, atoms are coupled
to infinitely many modes of the electromagnetic field in their environment; there are
an infinity of vacuum modes, which any atom can spontaneously emit a photon to.
In the case of a laser, the intracavity field is coupled to infinitely many modes of the
field outside the cavity, which, again, is the environment.

Now, the origin of dissipation is clear. It comes from the coupling of the system
to its environment. If you look at the whole system, system plus reservoir, there
is no dissipation; photons from the system have merely migrated to the reservoir.
But if we take the system’s point of view, it has lost the photons; lost them forever,
since the photons travel away at the speed of light. Thus, the dissipation occurs
from ignoring the states of the reservoir. The system and reservoir way of treating

dissipation in quantum systems was pioneered by Senitzky [29, 30].

3.1.1 Master equations

We seek to find the equation of motion for the density operator of a system. We use
a density operator because it provides a straightforward way to ignore the reservoir
states, namely tracing over the reservoir states. Our derivation follows that of
Carmichael [19] (Chapter 1).

Let x(t) be the density operator for the total system, and let us write the total

Hamiltonian as
H=Hgs+ Hr + Hgg, (3.1)

where Hg is the Hamiltonian of the system alone, Hp is the Hamiltonian for the

reservoir, and Hgp is an interaction Hamiltonian. We introduce the reduced density
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operator p(t), where

p(t) = trr[x(t)] (3.2)

is the density operator of the system alone, since the reservoir states have been
traced over. All the expectation values of system operators can be worked out from

p(t); for a system operator O, the expectation value is give by
<O> — trsen [Ox(t)] — trg {O trR[x(t)]} — trg [Op(t)] : (3.3)

Our objective now is to find the equation that governs the evolution of p(t).

As shown in Section 2.4, the Schrodinger equation for x(¢) is given by

(1) = o [Hx(0)] (3.4

where the dot above x stands for the time derivative. The above equation is very
hard to solve, so we need to make some approximations. For this purpose, it is best

to change to the interaction picture as follows:

. i i
X0 = %0 = exp | (s + Ht| xoww |~ (s + ] . 39
Then, Eq. (3.4) becomes
£ =+ [Asa(t).50)] (36)
ih ’ ’
where the interaction Hamiltonian,
~ 7 1
Hgpr(t) = exp [ﬁ(HS + HR)t:| Hgpexp |:_ﬁ(HS + HR)t:| , (3.7)

is now explicitly time dependent. The formal solution to Eq. (3.6) can be written as

() = %(0) +% /O at' [Asp(t'), %(t)] (3.8)

Substituting this equation back into Eq. (3.6) we obtain

) = [Asn).x0)] - 2 [t [Asnto) [Fsn) x| 9
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Eq. (3.6) and Eq. (3.9) are completely equivalent; the reason we put it in the latter
form is to make subsequent approximations easier. Assume the interaction is turned
on at t = 0, and assume there is no correlation between the system and the reservoir
at t = 0.5 Then x(0) = x(0) can be factorized as

x(0) = p(0)Ro, (3.10)

where Ry is the reservoir density operator at ¢ = 0. We now take the trace of
Eq. (3.9) over the reservoir. Note that?

trp [7(8)] = exp (%Hg) p(t) exp (—%Hst) (1) (3.11)

Using Eq. (3.11), Eq. (3.9) becomes

) =~ [ e { s, [Asutt). 5]} (3.12)

0

where, for simplicity, the trace over the first term has been set to zero,
ie., trR{[ﬁSR(t),f((O)]} = 0. This is true if trp [ﬁSRRO] = 0, that is, if the
reservoir operator in Hgp has a mean value of zero. Even if this is not the case, we
can always move the mean value to Hg, making Eq. (3.12) true.

We now make two major approximations that assume a reasonable behaviour
of system and reservoir. The first one is called the Born approrimation. This

approximation can be stated as

X(t) =~ p(t)Ro. (3.13)

It is saying that the reservoir is a huge system, making the effect of the interaction
on it negligible, whereas the effect of the interaction on the system is large; the
system is expected to change significantly from the interaction. Furthermore, this
approximation states that an initially uncorrelated system and reservoir remain
uncorrelated. This is possible when the interaction is sufficiently weak.

In summary, the Born approximation is saying that the interaction strength

!The assumption that the interaction can be turned on abruptly (leaving the system and reservoir
initially uncorrelated) can only be made on high frequency systems such as the optical systems we
are dealing with.

2To see why, just take the trace with energy eigenstates; Hgr and Hg commute, so
the exp(+i/hHRg) factors become ordinary numbers and cancel out, leaving the trace of
exp (£ Hs) x(t) exp (— % Hs) over the reservoir states.
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is feeble, leaving the reservoir essentially undisturbed, although the system s sig-
nificantly disturbed by this interaction. With the Born approximation Eq. (3.12)

becomes

= | it { [Fon(o), [Asnl), 50) o] |} (3.14)

This equation is correct up to second order in Hgg, higher order terms are ignored
by virtue of the approximation.

Eq. (3.14) is still very hard to solve, because the future evolution of the system
depends on the past history of itself, i.e., the system is non-Markovian. We now
introduce our second major approximation, the Markov approximation — we simply
change p(t') into p(t). Then, Eq. (3.14) becomes

= | ittnn { [Fon(o) [Asalt), 50)Ro]] . (3.15)

This is our final result, the master equation in the Born-Markov approximation.
Let us examine the validity of the Markov approximation. It states that future
evolution of the system depends only on the current state of the system; that is, there
is no memory about the past history in the whole system. In theory, the reservoir
does obtain some information about the state of the system through their interaction,
and it can ‘remember’ this information. This way the future evolution could depend
on the past history. In practice, the reservoir is usually in thermal equilibrium and its
memory is very short-lived; it will re-equilibrate very fast compared with the system
dynamics. In such a case, the Markovian approximation is a good assumption. So
the question boils down to this: is the typical time scale of reservoir dynamics short
enough compared with the typical time scale of the system dynamics? The answer

must be ‘Yes’ if one is to use the master equation.

3.1.2 Example: damped harmonic oscillator

We now consider a specific example: a damped harmonic oscillator. This is a model
for describing the electromagnetic field in an optical cavity, coupled to the field out-
side the cavity through the cavity’s non-zero transmissivity. The damped harmonic
oscillator is one of the simplest examples of a damped system, but is still quite

interesting as it captures the essence of the physics for a variety of systems.

Let us restrict our system to a single-mode of the optical field, in a cavity, with
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frequency wg. The reservoir comprises harmonic oscillators, or photon modes, in
the vacuum states. We will call it the vacuum reservoir. For this system, the

Hamiltonian can be written as (see Chapter 6 of Louisell [31])

Hg = hwoa'a, (3.16a)
Hp = Z hwjr;rj, (3.16b)
J
Hsp = RZ h (ar;[ + aTrj> , (3.16¢)
J

where r; and 7“;[. are the annihilation and creation operators for the jth harmonic
oscillator of the reservoir, and wj; is the frequency for the jth harmonic oscillator.
For simplicity we have taken the interaction parameter x to be real and frequency
independent; in general it could be complex and frequency dependent.

We now explicitly calculate the commutators in Eq. (3.15) to obtain the master
equation for this damped harmonic oscillator. Changing to the interaction picture,

we write
-E[SR = KZ h {(ae‘i‘*’ot)(r}ei%t) + (aTeiwot)(rje—iwjt)] 7
J

—k Z h [a(t)r}(t) + aT(t)rj(t)] . (3.17)

Substituting this interaction Hamiltonian into Eq. (3.15), we obtain

p(t) = —k? /O dt'trg | ri(Ori(#)Ro | [a(t)a(t))p(t) — a(t')p(t)a(t)] + hec.
k,j

+trp | > r ()i (6)R | [p(a(t))a(t) — a(t)p(t)a(t’)] + hec.
k.j

trg | 3ol Ro| ol ©a()p(t) - al)i(t)al )] + hee.
k,j

e | Sk Ro | [A(t)a)al (1) — al @)5(0)a(t)] + e
k,j
(3.18)

where the h.c. stands for Hermitian conjugate. Because the reservoir is in the vacuum
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state, the first, second and fourth traces are zero, but the third one is not. Let us

write the trace in the third line explicitly:

trr | Y re®)ri(t)Ro| = exp(—iwit + iw;t')(0]ryrf0). (3.19)
k,j k,j

It is equal to zero unless k = j; in the case k = j we get

tr | S k() () Ro | = S expliw;(t — ))(0]r5+1[0),
k.3 J

= > expliw; (¢ — £)){0lr}r; +110),

J
= exp[—iw;(t — t')]. (3.20)
J
Putting this equation back into Eq. (3.18), we obtain
L:—/izt’ expl—iw;(t — ] la B)a(t)pt) — a(t)p(t)al
(t) /0 dt; pl—iw; (t = 1) [l (Da(t)5(t) — a(t)p(D)a’ (1)

+ Z exp|+iw; (t — )] [ﬁ(t)cﬁ(t')a(t) - a(t)ﬁ(t)aT(t’)} . (3.21)

J

Changing the variable ¢ into 7 = ¢t — ' and pulling out the time dependence of a(t)
and af(t) we get

p(t) = —m2/0 dTZeXp[—i(wj — wp)T] [aTaﬁ(t) - aﬁ(t)aq
J
+ Z exp[—i(wp — w;)7] [ﬁ(t)aTa - aﬁ(t)aq . (3.22)

The next step is to change the summation to an integration by introducing a
density of states g(w), where g(w)dw is the number of oscillators in the frequency

range w to w + dw, i.e., we make a substitution

%:H /0 dug(w). (3.23)
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Making this change in Eq. (3.22) gives us

pt) = —K2 /Ot dr /000 dwg(w) {exp[—i(w — wo)T] [aTaﬁ(t) - aﬁ(t)aq
+exp[—i(wo — w)7] [ﬁ(t)aTa - aﬁ(t)aT] } L (3.24)

When 7 is large, the frequency integral will quickly converge to zero, due to the
rapidly oscillating exponential term; g(w) is usually a slowly varying function of w.
Since the frequency integral is small for large 7, we can increase the limit of the time

integral to infinity, i.e., we can write

/Ot dr /OOO dwg(w) exp|—i(w — wo)T]
— /OOO dr /Ooo dwg(w) exp[—i(w — wo)r]  (3.25)

To solve Eq. (3.24) we evaluate the time integral first. We use

& P
/ dr exp[—i(w — wp)7] = T (w — wp) + 1 , (3.26)
0 wo — W

where P denotes the Cauchy principal value, to get

5(t) = (7k2g(wo) +iA) (aﬁ(t)cﬁ - aTaﬁ(t)) +he, (3.27)
where

o'} 2
A= P/ LG (3.28)

0 wo — w

A short derivation of Eq. (3.26) is given in Appendix A.
Note that Eq. (3.27) is in the interaction picture. We now convert back to the

Schrédinger picture using

1

j(6) = - Hs. ] + exp <—%Hst> F(t) exp (%Hg) | (3.20)

which is obtained from Eq. (3.11). Substituting Hg = hwoa'a and Eq. (3.27) into
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this equation, and using

exp (—iwoaTat) ap(t)a’ exp (iwoaTat)

= exp (—z’woaTat> aexp (z’woaTat) p(t) exp <—z’w0aTat) alexp (z’woaTat) ,

= aexp (—iwpt) p(t)a’ exp (iwgt)

= ap(t)a, (3.30)

and similar terms, we obtain
SN et g 1 1 T
p(t) = —iwplala, p(t)] + 3 (20p(t)a’ — alap(t) = p()a'a) . (3.31)

where wjy = wo+ A and vy = 2mk2g(wp). This is the master equation for a damped
harmonic oscillator in a vacuum reservoir.

Instead of a vacuum reservoir we could have used a thermal reservoir (thermal
bath), which is often a better approximation to real systems. In this case the master

equation becomes

p(t) = —iwplata, p(t)] + 3 (0 +1) (20p(t)a’ — alap(t) = p(t)ata)

—I-%ﬁ <2aTﬁ(t)a —aa'p(t) — p(t)aaT) ) (3.32)

where 7 is the average number of quanta in a reservoir mode of frequency wg. This
type of master equation is said to be in Lindblad form, named after G. Lindblad
who studied it extensively [32].3 Note that when 7 = 0, the result becomes the same
as the vacuum reservoir case, which is obvious, since a thermal reservoir with no
photons is a vacuum reservoir. The treatment of the thermal reservoir is given in

Chapter 1 of Carmichael [19], amongst many other references.

3.2 Quantum trajectories

We are now ready to investigate quantum trajectory theory, the main theme of this
chapter and an integral part of this thesis. There is an analogy to the relationship
between the master equation approach and the quantum trajectory approach. This
analogy is as follows. In classical statistical mechanics there are largely two ways

of describing the dynamics of a system. The first way is to look at a probabil-

3Lindblad form is required for exact conservation of probability.
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ity distribution of the states of the system, where the probability is governed by
a Fokker-Planck equation. The second way is to follow the dynamics of a single
state going through a trajectory in a phase space, by using a stochastic differential
equation. An ensemble average over the trajectories lead to the same result as that
obtained from the Fokker-Planck equation method.

The master equation way of looking at the dynamics is analogous to the F-P
equation method, the density operator being the quantum mechanical probability
density. The quantum trajectory theory approach is analogous to the stochastic
trajectories method. There are two ways to work out trajectories. One is working
out a quantum Langevin equation, by working out the operator evolutions in the
Heisenberg picture [33, 27]. The second way, the quantum trajectory method, is
essentially in the Schrodinger picture. It describes a stochastic evolution of a state.

The stochastic nature of the evolution is inevitable; in classical systems the
stochastic nature arises from our incomplete knowledge about the system — for ex-
ample consider Brownian motion: the intractable number of molecules colliding with
a grain of pollen means that we cannot possibly follow them all. Instead we treat
them as if their motion is completely random or stochastic. In quantum mechanics,
we have to resort to stochastic equations even if we have a comparatively simple
system (such as a damped cavity). The reason is, of course, the intrinsically proba-

bilistic nature of quantum mechanics; quantum processes are necessarily stochastic.

3.2.1 Exclusive photon counting distribution

Quantum trajectory theory relies heavily on what is called the exclusive photon
counting distribution, which we will introduce now. We have derived in Chapter 2

the photon counting distribution given by Eq. (2.77):

[Q(t,t+T)"
n!

p(n,t,T) = <: exp[—Q(t,t + T)] :> . (3.33)

This probability distribution describes the likelihood of detecting n photons in a

time interval T'. It can be expressed in terms of exclusive photon counting densities:
t+T tn t2
t tn—1 t1

where gy, (t1,ta, ..., tn; (t,t +T]) is the exclusive photon counting probability density.
on(ti,ta, . tn; (t,t + T])At1Ats...At,, is the probability of detecting n photons in
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time intervals (t1,t1 +Atq), [to, ta+ Ata), ..., [tn, tn + At,] and only at these intervals.
The time intervals do not overlap and they fall inside (¢, ¢+ 7. It is called exclusive
because no other photons are detected apart from the n photons. In the non-
exclusive probability distribution, it does not matter whether there are more photons
detected or not. The above equation is telling us that the probability of counting
n photons in the time interval (¢,¢ 4+ T is a sum over all possible ways the photon
countings are distributed in time.

It can be shown from Eq. (3.33) and Eq. (3.34) that the exclusive photon counting
probability densities take the form:*

on(t1,to, o tn; (t,t +T)) = <: e—Q(t+T7tn)f(tn) . f(t2)e—ﬂ(t2,t1)j(tl)e—A(tl,t) ;>7
(3.35)

where I(t;) = eEC) () B (t;) and

Oty t;) = /tﬂ dr'1(t").
ti

Eq. (3.35) has a straightforward interpretation if the fields are treated classically.
I (t;) corresponds to the probability of detection, which is proportional to the in-
tensity, and e=tit) is the probability of there being no detection in time interval
(ti,t;]. The quantum mechanical expression Eq. (3.35) can be obtained from the
classical expression by going through the same steps we went through in going from
Eq. (2.70) to Eq. (2.77).

Our objective now is to build a bridge between the exclusive photon counting

distribution and the master equation by unravelling the master equation.

3.2.2 Unravelling the master equation

At this point it is convenient to introduce a superoperator notation. Superoperators
operate on operators rather than states. Using the superoperator notation we can

write:

p(t) = Lp(t). (3.36)

4 Actually, one starts from the non-exclusive probability density, which can be derived from
Eq. (3.33) (or the Kelley-Kleiner formula, which is obtained while deriving Eq. (3.33)), and uses
a relationship between the exclusive and non-exclusive probability densities to get to this result.
Discussion of this is given by Carmichael [24] and references therein.
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For example, the master equation could be Eq. (3.32), in which case £ contains all
the details in Eq. (3.32). We can write down the formal solution to Eq. (3.36) as

p(t) = e p(0). (3.37)

Now, we make a formal substitution £ = (£ — ) + S, and then expand the master

equation as a Dyson series, treating S as an interaction term:
p(t) = elE=9+8l p(0)

o0 t tn t2
n=0"0 0 0

x L= tn—tn1)g ... SeL=5) 5(0).  (3.38)

So far, this expression does not tell us anything useful, but we will soon make it
useful by providing a link between this unravelling and the exclusive photon counting
distribution. To make the understanding easier, we will work with a specific example:

a damped cavity in a vacuum reservoir.

3.2.3 Connection between the exclusive counting probability and
the master equation

We want to put the exclusive photon counting distribution, Eq. (3.35), into the
form that is convenient to compare with Eq. (3.38). For concreteness, we work with
a specific case. The system consists of a field in a cavity. The cavity is coupled
to a vacuum reservoir through one mirror only; the other mirror is assumed to be

perfectly reflecting. For this system our master equation is

p(t) = —iwhlata, p(t)] + % (2aﬁ(t)aT —atap(t) — p(t)cﬁa) : (3.39)

as derived earlier.

Expansion of the exclusive counting probability

Let us now look at the exclusive photon counting probability. We first give a re-

definition: @y, (t1,t2, ..., tn; (t,t + T]) = Prec), specifying that it is the probability
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density for a particular measurement record.
Prec) = <; e—Q(t-i-T,tn)j(tn) . f(tz)e—ﬁ(tz,t1)f(t1)e—f2(t1,t) ;> ) (3.40)

We introduce a new operator, such that the intensity operator can be written as

A N

I(t) = EDRED (1). (3.41)

~

£ is just a rescaled version of E, to simplify the equation. We now expand the

exponentials in Prgc). First let us look at
<: f(tl)e_ﬂ(tl’t) :>
0 t1 tm th . 5
=S [ty [Tty [Cane [ £, )
0 0 0 0
x E () E (0)ED (1)ED (11,) € (t1,-1) --- ED(#)x(0)| , (3.42)

where the expectation value is now taken by the trace. x(0) is the total density
matrix of the system and the reservoir at time ¢ = 0.

& consists of the source term, from the cavity, and the free field term, which
always exists outside the cavity: when we detect the light coming out of a cavity the
free field term is invariably added [33]. For a vacuum reservoir, however, the free
field does not contribute to the photon counts, i.e., the vacuum cannot make the
detector click. For this reason, the free field terms contribute nothing to Eq. (3.42)

in the case of a vacuum reservoir. We can see this explicitly by substituting
&= és + éR, (3.43)

into

< (O
[ee} t1 tl t/ N ~
/ a, / oy [t [EO@)ED 60O 1)

(EXOED @) -+ ED (11, NED E,)ED (1), (3.44)

m:O

which is a rearranged version of Eq. (3.42). Note the operators are already normal

ordered. Then, because the operators are time ordered, i.e., ] < th < --- <t/ , and
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because free-field operators () commute with the source field operators (£s) at
earlier times [33], we can move all the free field terms to the immediate left (creation
operators) and right (annihilation operators) of the density operator x(0). Thus,

when acting on the vacuum reservoir, their contribution to Eq. (3.44) is zero.

This means that we can make the substitution
£ — &, (3.45)
in Eq. (3.44) to get

Q(t 1)
t1 tm th Al A(— A(—
=> (1" /0 |ty |t |80 00ET ()8 (6)

m=0

S

 F(tr)e O
o0

x - ECDXOEST (1) -+ E (t,)ES () ESV (1), (3.46)

Note that we still have x(0) rather than p(0) even though all the operators inside the
trace are system operators. This is because, due to the interaction between system
and reservoir, the system operator at time ¢t depends on the reservoir operator at

earlier times.

Superoperator notation; re-summation of exclusive counting probability

Now, we use superoperator notation to recast Eq. (3.46) into a form that is easier

to apply the Born-Markov approximation to. First, we introduce S such that

SO = ES(0)0E5(0), (3.47)
and L, where
LO = i[H 0) (3.48)
TRt Tr '

Whence, we can write

Es(t) = LEs(1), (3.49)
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from which we obtain the formal solution

Es(t) = eME5(0). (3.50)
Equation (3.46) is in the Heisenberg picture — the time dependence is in the op-
erators. We want to convert to the Schrédinger picture, so that we can describe
the evolution of the state. Using Eq. (3.47) and Eq. (3.50), the Schrodinger picture

version of Eq. (3.46) is written as

>0 t1 tm tl? / / /
e Z(—l)m/ dt;’)’l/ dt;n—l . / dt&tr [SEL(tl_tm)SeL(tm_tmfl) .
0 0
L SelBh) Sy (0)] L (3.51)

We now make the Born-Markov approximation, as we did when we derived the
master equation; this makes a change L — £ , which allows us to take the trace
over the reservoir, and replace the density operator x(0) with p(0). After making
the replacements, we re-sum the expansion.® Doing the summation we obtain an

expression
<: f(tl)e_ﬂ(tl’t) :> = trg [Se(ﬁ_s)tlp(O) . (3.52)

Note that the trace is only over the system variables now.

So far, we have concentrated on a small part of Eq. (3.40), we now state the

result for the full expression. The answer is, not surprisingly,

Prrc) = trs eL=S)t=tn) g .. §e£=S)(ta=t) §o(£=5)t ()

= trg [Krec(t)p(0)]. (3.53)

)

Interpretation of the master equation in terms of quantum trajectories

Comparing Eq. (3.53) with Eq. (3.38), we can immediately recognize the similarity.
In fact, we can rewrite Eq. (3.38), in the right definition of S, as

o(t) :nz:% /0 b, /0 "t /0 ® dt1 Ko (t)p(0). (3.54)

5To do the summation we only have to recognize that this is a Dyson series - cf. Eq. (3.38).




46 CHAPTER 3. QUANTUM TRAJECTORY THEORY

Note, for the moment, that this equation takes the form of a sum over all measure-
ment records. For example, if the initial state was an n-photon Fock state, it gives
a sum over all the different ways n photons, and only n photons, are detected in the
time interval (0, ¢].

To simplify things a bit, we now convert to the interaction picture. Instead of £
we have £, giving

5(t) = Lp = % (2aﬁ(t)aT — atap(t) — 5(75)@*@) . (3.55)

There is one thing we have ignored so far — the finite speed of photons. To take
it into account, we have to shift the time origin: if a photon enters the detector at
time ¢, it must have left the cavity at some earlier time ¢ — 7, where 7 is the time
that light takes to travel from the cavity (mirror) to the detector. Thus, making the

change t — t' =t — 7, we get
x gt t ty
sty =Y [ e, [Mat e [t Rawo®(-n), (3.56)
n=0’"T —T —T
with
Krec(t) = L=t ~11) g ... §eL=S)th—t)) g (L~S)t; (3.57)

We interpret Krgc(t')p(—7) as the unnormalized conditional density operator,
conditioned on the measurement records described by Krgc(t'). Then Eq. (3.56)

takes the form of a sum over the conditional density operator

() = 3 wlpe)] L)

e tr[pe(t)]”

= Z Prec)pe(t'), (3.58)
REC

where j.(t') = Krec(t')p(—7) is the unnormalized conditional density operator, and
Pric) = tr[pc(t')] is the probability density of obtaining the particular measurement
record, as shown earlier in Eq. (3.53).

In this section we have shown that the master equation, in the Born-Markov
approximation, is equivalent to Eq. (3.58), which is interpreted as a sum, over all
possible measurement records, of the conditional density operator. This is the basis

of quantum trajectory theory. We will see a way to numerically create measurement
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records through Monte-Carlo simulation, evolving the state as we go along. But
first, we will show that for a large class of master equations, taking the Lindblad
form, the evolution preserves the pureness of the state. That is, if the initial state
is pure the state remains pure throughout its entire evolution. However, it should
be mentioned that this feature is not generally true, even for the Lindblad form. If
the detection is not perfect — so we lose some photons that are emitted — the pure
state evolves into a mixed state, reflecting our ignorance of the exact state, due to

information loss.

Pure state evolution

For the field in a damped cavity described by the annihilation operator a, the output
field impinging on the detector is given by ﬁ(ég+g r). Correspondingly, S changes

into
SO = \/7a0/7a'. (3.59)
From this and Eq. (3.55) we can see that
(£ —8)0 = —%[aTa, Ol,, (3.60)
where [, ]+ denotes the anticommutator. This implies
LN = e=3alatHhe—Falat (3.61)
We now introduce a non-Hermitian Hamiltonian
Ay = —ihZata, (3.62)

2

with which Eq. (3.61) is turned into
N0 = et Oen st = B(H)OB(1). (3.63)
Using Eq. (3.59) and Eq. (3.63), we can rewrite Eq. (3.57) as

Krec(t)O = KREC(t,)OIN(fT{EC(t/)y (3.64)
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where

Krec(t') = Bt —t,)JB(t, —t,_y) -+ JB(thy — t})JB(t}), (3.65)

n—

with J = ,/ya. The reason we have introduced H B, B (t'), and J is that we can give
a straightforward interpretation of Eq. (3.65): B(t; — t;) describes the evolution of
the system from time ¢; to ¢;; the form of B (t; —t;) is that of the evolution operator
introduced in undergraduate quantum mechanics courses, the only difference being
that the Hamiltonian is non-unitary. The non-unitarity arises from the fact that our
system is an open system and does not change the fact that B is a time evolution
operator. J describes the jump or collapse of the state when the photon gets ab-
sorbed in the detector; we call it the jump operator. With these interpretations of
B and J , Eq. (3.65) describes a process where there are no photons emitted up to
time ¢}, then a click in the detector (corresponding to an emitted photon from the
cavity), no photons up to time ¢}, then another click ...etc... until time ¢’

Now assume that the initial state of the field in the cavity is pure, i.e., p(—7) =
p(—=7) = |[1)(x|. In this case, the unnormalized conditional density operator p.(t')

takes the form

pe(t') = [d@mac) () (Yrec) ()], (3.66)

where

[@mec)(t')) = Kruc()|d(~7)) (3.67)

is the unnormalized conditional state. The probability of a measurement record is

given by

PrEc) = <¢(REC)(t/)‘Q;(REC)(t,)>‘ (3.68)

3.2.4 Photoelectric detection of a Fock state in a cavity

In this section, we will see how we can generate the measurement records numerically
for the photoelectric detection scheme; we then apply the method to the case of a

Fock state in a cavity.5

5This may not seem to fit a scattering type scenario, but the scattering picture is recovered when
we think about how the photons got into the cavity in the first place, i.e., there was a non-vacuum
input some time in the past.
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Note that the photon counting record is described by probabilities, implying the
process of emission and detection are random. In a computer simulation, we will
have to deal with random numbers to take this into account. From the formalism
we have developed so far, we can work out the probability that an emission occurs
in a time interval [t,t 4 At), given a particular measurement history. We start with

the joint probability of the measurement history plus emission, given by

P(REC+emission) = <1/}(REC) (t)’JT']"&(REC) (ﬂ)At (369)

The conditioned probability is the probability of the emission occurring given a
particular measurement history. It can be calculated by dividing the joint probability

by the probability of getting the particular record, i.e.,

P(REC+emission)
Prec)

(Yrme) (D1 T 9 mnc) (1) At
(rEc) ()Y ®EC) (1))

= (wruc) ()T T [Pwrec) (1) At. (3.70)

9

P(emission|REC) =

We can now specify the procedure to solve for lzﬁ(REC) (t)) by numerical simula-
tion. Our problem is this: given an unnormalized conditional state |1[_)( rEC)()) at
time ¢, what is the unnormalized conditional state |¢pgc)(t+ At)) at time ¢ + At?

The following procedure allows us to answer this question:

1. Specify a small time step At” and compute the conditioned probability
Plemission|REC) = (W (t)|JT T[4 (t)) At by normalizing the conditional state.

2. Generate a uniform random number r between 0 and 1.

3. Ifr< (z;(t)]JTJh;(t»At, apply J to the state, i.e., collapse it.
(¢ + Ab) = TJimec) (1) = vAakigrec) (1)). (3.71)

4. If r > (P(t)|JV I (t))At, evolve the state with the non-Hermitian evolution

operator, B(t’) = e_%“T“At, for a short time step At, i.e., compute

[D(t + At)) = (1 - %aTaAt) (1)), (3.72)

"At has to be small enough, such that PlemissionrEC) < 1.
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Starting from an initial state [(0)) = |n), we can iterate this procedure to find
the conditional state at time ¢, as well as the probability of obtaining a particular
measurement record. These paths the conditional state is going through are called
the quantum trajectories, the term coined by Carmichael [24]. Note that we did
not worry about the retardation time. However, this does not cause a significant
problem; all we have to do is remember that when a photon enters a detector at
time t, we infer that the collapse had happened already at time ¢t — 7. All it does is

change the time origin, so let us ignore the problem altogether.

5 2 @ g 2 (b)
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Figure 3.1: Conditioned mean photon number for a damped cavity initially contain-
ing a two-photon Fock state. (a) Single trajectory. (b) Average of 10,000 trajectories.

Figure 3.1 shows an example of a quantum trajectory. On the y-axis we have the
conditioned mean number of photons inside the cavity; the x-axis is a scaled time
variable. We start with a two-photon Fock state in the cavity and iterate according
to our procedure, calculating the average number with respect to the conditioned
state at each time step. Let us look at Figure 3.1(a). The conditioned mean number
starts at 2 and remains at 2 until it drops down to 1 near xkt = 0.25. From then
on, the conditioned number stays at 1, until it drops down to zero around st = 0.7.
The interpretation from quantum trajectory theory is this. Until xt ~ 0.25, the
conditioned mean number is 2 since we know we started with 2 photons in the
cavity. Then around xt = 0.25 the photoelectric detector has clicked, indicating
that a photon has left the cavity. Then, our knowledge about the intracavity field
has changed: we know it has one photon now. This change of knowledge is indicated
by an abrupt change of the conditioned mean number from 2 to 1. The same thing
happens around st = 0.7, except that this time there is no photon left in the cavity;

there will be no more detections.
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Note the interpretation we make: the conditioned state is the state we infer from
the measurement. Consequently, whatever average we take from it is the inferred
quantity. This procedure and interpretation is very appealing because it is just what
our intuition tells us.

The quantum trajectory approach is equivalent to the master equation approach
as far as it is averaged over many trajectories; but what about the single trajectories?
We have created an artificial, and ideal, environment which detects everything out
of a system allowing us to infer the state perfectly. The quantum trajectory theory
puts together the artificial environment, quantum theory and Born-Markov approx-
imation. As far as the three ingredients are correct, the quantum trajectory theory
yields the correct answer. Experimentally, these ideal conditions, especially the ideal
environment, can never be reached, but we can extract some useful information from

these idealized numerical experiments.

3.2.5 Balanced homodyne detection

This section develops the quantum trajectory theory of balanced homodyne detec-

tion, following the work of Carmichael [24, 34].

Figure 3.2: Model of the balanced homodyne detection scheme.

Figure 3.2 shows the balanced homodyne detection scheme. Again, we have
a Fock state |2) in a cavity of damping rate k = /2. The intracavity field is a
single-mode field with the mode annihilation operator a and frequency wg. The
leaked field is the input to the balanced homodyne detector. The local oscillator
field & exp(—iwpt) is treated as a classical field, so & is an ordinary complex

number. If we wanted to be more rigorous, we could use a coherent state for the
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local oscillator field, but since we work with normal-ordered operators the answer
will not be affected.

When the field inside the cavity leaks out it is superposed with the local oscil-
lator field using a 50/50 beam splitter. The two superposed fields are measured by
separate photoelectric detectors, denoted by P and M. The fields entering P and
M are composed of the local oscillator field and the input field. These fields, which

will be described by the annihilation operators b and ¢, can be written as

1
b= —2(510 +V2ka), (3.73a)

1
V2

as we have already seen in Chapter 2. Consequently, the jump operators are

(E1o — V2ka), (3.73b)

c

Jp = %(510 +V2ka), (3.74a)

_ b
V2

This changes the superoperator S. In fact, we now have two of them, Sp and Sy,

Jur (E1o — V2ka). (3.74b)

Sp=Jp-Jh, (3.75a)
S =Ju-Jl, (3.75b)

When we have more than one jump operator, or jump superoperator, I@REC(t)

changes to something like

where the arrangement of Sp and Sy; changes for different measurement records.

Obviously, £ — S is changed also, resulting in a change to Hp:
3 3 o1 2 : T 1 2
Hp — Hp — Zh§|510| = —ih(ka'a + §|510| ). (3.77)

Suppose there are n photons counted in time interval (0,¢]. For a given record,

we have a propagator

Krec(t) = B(t — tp)JnB(ty — tn_1)--- JoB(ty — t1)J1 B(t1), (3.78)
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where J; € Jys, Jp corresponds to the ith jump. We can now apply the procedure of
the previous section to evolve the conditional state, but there is a slight complication.
There are now two types of jumps, hence different probabilities for each type of jump,
corresponding to the detection in P or M. The two probabilities Pp and Py are
given by

Pp = (mec)(t)|ThIpldmec) () At (3.79a)
Par = (Gicy ()| T3 Indmec) () At, (3.79b)

where Pp is the probability of there being a detection in [t',t' 4+ At) at the detector
P, and similar for Py;. Now the procedure is modified as follows. When we generate
a random number to decide whether there will be a jump or not, we compare the
random number r with P = Pp + Pj;. If r > P there is a free evolution to next
time step, if r < P we have two choices: if r < Pp, we make the jump Jp; if
Pp < r < Pp+ Py, we make the jump Jys. (Exchanging the subscripts P and M
gives the same results.)

Having described the procedure, we are not actually going to use it exactly as
described. The problem is, in experiments, the local oscillators are lasers — because
they provide good monochromaticity and phase — and lasers have high intensities,
whereas the input fields are weak. Since the &), part of the jump operator does not
change the conditional state, the conditional state only suffers a little change at each
jump. We have many collapses, due to large &, but with a little changes at each
one. Obviously, this is very undesirable in simulations.

We will overcome this problem by coarse graining over time: we choose our time
step At to be sufficiently large that many jumps occur, but small compared with the
timescale on which the state of the source, or input, changes appreciably. Essentially
we are choosing a time step which is small enough to take the change in conditional
state as infinitesimal, but not any smaller.® Note that in such a time interval At,
we have a lot of jumps at the detectors P and M; denoting the number of jumps
qp and qyr, we have qp ~ qur ~ (1/2)|E|?At > 1. We take the limits At — 0 and
|E1o| — oo such that |£,[2At > 1 and expand the propagator

KREC(At) = B(At - tQP+QA1)JQP+QA4B(tQP+q1M - tQP-i-QM—l) T
- JyB(ty — t1) 1 B(t1), (3.80)

8At/|E| is infinitesimal but At is not.
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where

B(ti — t;) = e~ sl at 3l ti—t;) (3.81a)
Jie{Jp,Ju} (3.81b)

Our limit is such that we discard all the terms with (A¢)™ for n > 1, apart from any

multiples of |E,|>At. Rewriting Jp and Jys as

510
—(14+J), 3.82
%) (352)
where J = v/2ka/&),, we can write
~ 1 & qP+qnm
K At) = —= A -
(A1) = exp (- lewPar) (S2)
X [e—m*“<At—th+qM>(1 £ ) (14 J)eralat] (3.83)

There are gp + qpr terms of (1 & J) altogether, gp with +J and gp; with —J, and
qr(1—qpr)/2+am(1 —qm)/2 = gqpam = (gp — qur)* — (gp + qar) quadratic terms J2.
Higher orders of Js vanish in the limit of infinite oscillator strength we are taking.

So we have

e—naTa(At—th+qM)(1 £ J) L (1 £ J)e—mﬂatl

(ap —am)? — (ap +am)

r = a?. (3.84)
lo

1
=1— rkalaAt + T\/Z/{(L—i— 3

lo

The next step is to write gp and ¢ps as the sum of a mean and a fluctuation:

1 1
_ 1t * t 1
ap = 5 (€ + Vora') (€0 + VEra)) At 51l A, (3.854)
1 1
_ = * t B 1
M =5 <(51o 2ka") (& 2f£a)>REC At + \/§|510|AWM7 (3.85b)

where %|510\AWP and %\Slo\AWM are the Poisson fluctuations, the shot noise,
from the local oscillator field. Since for large mean number the Poisson distribution
approaches the Gaussian distribution, we can take AWp and AW} to be Gaussian

random numbers with zero mean and variance At.
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From Eqgs. (3.85) we have

ap — qm = || (\/ 2/€<€i0aJr + e_i6a>REcAt + AW) , (3.86)
where
1
AW = —(AWp — AWyy), 3.87
\/5( P M) (3.87)

which is, again, a Gaussian random number with variance At and zero mean. In the
limit At — 0, the AW term becomes a Wiener increment.? So using the Ito rule,
(AW)? = At, we get

(gp — qm)? = |E|* At (3.88)
Finally, we have
ap + au = [E0?At, (3.89)

keeping the dominant terms only. Putting Eq. (3.83), Eq. (3.84), Eq. (3.86),
Eq. (3.88) and Eq. (3.89) together, we obtain

- lieuPAt @ qp+am o
Krpc(At) =€ 2 NG 1 — ka'aAt

+V2k (\/ 26(e?a’ + e Ya) ppo At + AW) e_wa} . (3.90)
Redefining the conditional state as

W:)REC(t)} _ 51;(qp+qM)€%|&O‘2t|1ZREC(t)>, (3.91)

removes the factor outside the square bracket in Eq. (3.90), allowing us to write a

stochastic differential equation

dlrec(t)) = | ~rafalt + (Gel€,|) )V 2k adq| [brro (1), (3.92)
where
dq = Gel&y| (\/ﬂ(@iecﬂ + e Ya)rpc At + AW) , (3.93)

9See Gardiner [35] about Wiener increment and Ito calculus.
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is the infinitesimal charge deposited in the output of the balanced homodyne detector
(cf. Figure 3.2). G is the gain and e is the electronic charge.

Eq. (3.92) with Eq. (3.93) is our final result. It is the stochastic Schrédinger
equation for balanced homodyne detection in quantum trajectory theory. Figure 3.3
shows the conditioned photon numbers calculated from this stochastic Schrodinger
equation; the result agrees perfectly with Figure 3.1(b) showing the equivalence
between the two different methods. The difference between the two methods was
our different choice of S, hence different unravelling of the master equation. As we
would expect, all the different unravellings — corresponding to different choices of
S — yield the same answer. Note, however, that the physical interpretation of a
trajectory can be given, for a given experiment setup, only if the choice of § is such
that the jump operators (comprising S) correspond to the field operators impinging

on the detectors.

Conditioned mean number

0 T T T 1
0.0 0.5 1.0 1.5 2.0

xt

Figure 3.3: Conditioned photon numbers calculated by the stochastic Schrodinger
equation [Eq. (3.92)], for an initial two-photon Fock state. 10,000 trajectories were
averaged.



Chapter 4
Quantum teleportation

Before we talk about quantum teleportation, it will be helpful if we ask ourselves a
question first: can we clone a quantum state? In other words, can we create a copy
of a quantum state without destroying the original state? Classically this is easy.
All we have to do is measure all the properties of the system, hence finding out the
state, and make a copy. In quantum mechanics, however, it is generally impossible to
measure all the properties of a system due to the Heisenberg Uncertainty Principle
(HUP). If the system is in an eigenstate of an observable, there exists a measurement
to discover its state (e.g. a photon counting experiment for a number state), but
generally the system is in a superposition of non-orthogonal states, for which no set of
measurements that can obtain all the information exists. Quantum states are usually
destroyed by the very process of measurement, making subsequent measurement of
the same state impossible.

So we cannot measure all the properties to make a copy, but is there a way to cre-
ate a clone without actually measuring the state, i.e., without obtaining information
about the state? The answer is no; it has been proved that cloning a quantum state
is an impossibility [36]. But the question leads us to a new interesting hypothesis:
we cannot clone a quantum state, but maybe we can create a copy if the original
state is destroyed in the process, and no information about the original state is ob-
tained. This is exactly what Bennett et al. [4] found. They found that by obtaining
minimal information about the original system and using quantum entanglement
they can move the quantum state from one system to another. If the two systems
are far apart, the state is teleported.

This chapter first introduces quantum entanglement, the essential ingredient in

quantum teleportation, and then explains the spin-state teleportation of Bennett et

o7
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al.. Finally, the teleportation will be extended to continuous variable systems.

4.1 Entanglement

An entangled state was first introduced in a classic paper by Einstein, Podolsky and
Rosen (called the EPR paper in most literature) [1]. Their main interest, however,
was not on the entangled state itself; they merely used it to prove the incomplete-

1" The importance of entanglement was immediately

ness of quantum mechanics.
recognized by the Austrian physicist Erwin Schrédinger, who hailed entanglement

as [38]

...the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought.

In fact, it was Schrodinger who introduced the term ‘quantum entanglement’.

In this section, we use David Bohm’s version of the EPR, state, rather than the
original EPR state. This will make the analysis easier, because Bohm’s version has
correlations in spin, whereas the original version has correlations in the continuous
variables position and momentum; the Hilbert space of the state decreases enor-
mously by using Bohm’s version. The EPR-Bohm state (for simplicity we will call
it the EPR state from now on) can be created by a source emitting two electrons

(see Figure 4.1).

S-G magnet

Figure 4.1: EPR source creates two electrons, traveling in opposite directions and
having opposite spins. The electrons go to Alice (A) and Bob (B), who then pass
them through Stern-Gerlach magnets. The electrons move up or down depending
on their spin.

Angular momentum conservation forces the two electrons to have opposite spins;

when one electron has spin up the other must have spin down and vice versa. So

'They used the idea of ‘local realism’ in proving the incompleteness, but thanks to Bell we now
know that it is rather the concept of local realism which we must abandon. EPR were wrong in
concluding that quantum mechanics is incomplete. A readable introduction on this subject is given
in Sakurai [37].
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the EPR state can be written as
1
V2

where the arrows represent spin up or spin down in the z direction, and 1 and 2

[EPR) = — ([ 11) l2) = L1)[ T2) ), (4.1)

denote electron 1 and 2 respectively.

Now let us analyze the measurement results obtained by Alice and Bob: if Alice
gets spin up Bob gets spin down, if Alice gets spin down Bob gets spin up. So far
there is nothing peculiar; this is just a classical correlation: to see what the classical
correlation is, consider the following situation. There are two marbles of different
color, say red and blue. They are in a black box so when Alice and Bob come and
take one marble each they do not know which marble they have. When Alice and
Bob go back to their rooms and look at their marbles, they must have different
colored marbles: if Alice gets red Bob has blue and vice versa. This is a classical
correlation between the colors of the marbles. The EPR state works exactly the
same, so long as measurements of the spin are made in the z-direction only; the
colors red and blue correspond to spin up and spin down.

To see the difference between the quantum entanglement and classical correla-
tion, let us note that we can also measure the x component of spin by rotating
the magnet.? Now there are four different measurement schemes, because each S-G
magnet can detect the x or z component of spin. The results are summarized in
Table 4.1.

Alice ‘ Bob H Alice ‘ Bob ‘

x: T r: ] z:T|xz:Tor]
x: ] z: 1 z:|l|lx:Tor]
x:T|lz:Tor] | z:17 z: |
x: |l lz:Tor] | z:| z: 7

Table 4.1: Measurement results for Alice and Bob.

The table tells us all possible measurement results; for example, if Alice measured
the z component of spin and obtained ‘up’, there are two possible cases: Bob mea-
sures the x component and invariably gets ‘down‘, or Bob measures the z component

and gets ‘up’ or ‘down’ randomly. Now suppose that the EPR source emits the en-

2The EPR state looks the same when spin components are taken in the z direction, i.e., Eq. (4.1)
works for both z and z component of spin.
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tangled pairs regularly, allowing Alice and Bob to perform a series of measurements;
they write down the directions and measurement results. After a while they will
have a string of directions and arrows; suppose that Alice and Bob meet, later on,
with their results to compare them. They will notice a very peculiar fact: whenever
they happened to have measured the same component, they invariably obtained
the opposite spins. However, when they have measured different components, there
exists no correlation. This observation seems to suggest that, somehow, Bob’s mea-
surement result depends on what component Alice decided to measure. Electrons
have communicated to tell each other which kind of S-G magnet they went through,
even if the electrons are separated by a space-like distance. This communication
between electrons is what Einstein called ‘spooky action at a distance’.

So, we ask, is this really true? Is ‘action at a distance’ the only possible ex-
planation? Can we not extend the marble analogy to explain this? For this case,
we can. Let us see how. Suppose that marbles are more sophisticated; their two
hemispheres have different colors. Northern hemispheres have blue or red, southern
hemispheres have green or yellow. Now, suppose when the marbles are created in
the factory it was made so that for a given pair of marbles, the colors in the same
hemispheres are perfectly correlated (different color), while the colors between the
different hemispheres have no correlation. This situation is represented in Table 4.2.

From the similarity of this table and Table 4.1, we can see that this ensemble of mar-

| Alice | Bob | Alice | Bob |

S: Y| S:G N:R|S:Y/G
S:G| S:Y N:B|S:Y/G
S: Y| N:R/B||N:R| N:B
S:G|N:R/B||N:B| N:R

Table 4.2: The marble analogy of entangled states. N (northern hemisphere) can
have one of the two colors R (red) and B (blue), S (southern hemisphere) can have
one of the two colors Y (yellow) and G (green).

bles behaves in the same way as an ensemble of EPR pairs if we say that measuring
the z component corresponds to looking at the northern hemisphere and measuring
the z component corresponds to looking at the southern hemisphere. Everything is
predetermined (at the factory), but we still get the same behaviour as for the EPR

pair.
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So, for this case, there is no ‘spooky action at a distance’ required. This does not
rule out quantum mechanics, however, since both theories give the same prediction,
either is as right as the other. After the EPR paper, this was recognized by most
physicists and caused trouble. They knew the concept of probability (amplitude)
in quantum mechanics is fundamentally different to those of classical mechanics,
but they could not find any evidence that ruled out ‘hidden-variable’ theories. The
situation continued until John S. Bell entered the scene in 1964. He recognized
that there is a statistical difference between the ‘local hidden-variable theory’ and
quantum mechanics, one that can be observed. Bell found an inequality that prob-
abilities obey, which can be used to settle the score once and for all. This is the
celebrated Bell inequality [39]. The Bell inequality has been tested experimentally in
many ingenious ways [40, 41, 42], declaring quantum mechanics triumphant.® Local

hidden-variable theories are not reconcilable with experiments.

4.2 Quantum teleportation

In this section we study the proposal of Bennett et al., which opened up the field of
quantum teleportation. As we have seen in the previous section, an entangled pair
of particles show non-local correlations; that is, a certain property of one particle
depends, instantaneously, on both the outcome and choice of measurement on the
other particle at a distant location.

At first sight, there seems to be a problem; we know that information cannot
travel faster than light,* and certainly, electrons ‘communicating’ instantaneously
sounds like a contradiction. Of course, there is no contradiction; although there is
a non-local correlation between the pairs, it cannot be used to transmit any useful
information.

To see that there is no contradiction, consider the following example. Suppose
Alice and Bob share a collection of EPR pairs, Alice is trying to send to Bob some
information, using the collection of entangled pairs. Furthermore, Alice and Bob
can only align their S-G magnets in two directions x and z. To make communica-
tion possible, Bob has to have a promised sequence of measurements (say x,z,r,z),
otherwise his data is a completely random sequence. Also, Alice can only control

her measurement sequence — the results are uncontrollable. Their hope is that when

3 Actually, in the experiments, a generalized type of Bell inequality called the CHSH inequality
[43] is used. However, the principles are the same.

1By special relativity, the speed of any signal is bounded by the speed of light, since the signal
must be a physical object.
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Alice uses a different measurement sequence, Bob would get different measurement
results. As an example, suppose that Alice measures x, =, z, x and gets ‘up’, ‘up’,
‘down’, ‘up’, then Bob will get ‘down’, ‘up or down’, ‘up’, ‘up or down’ (see Table

4.3). Contrary to their hope, there are already four possible sequences (Table 4.4)

Alice Bob
x: 1 x: |
x:T|z:Tor]
x| xz: T
x:T|z:Tor]

Table 4.3: Possible pair of measurement results. = and z denote the x and z direction,
respectively, and T and | denote the spin measurement results ‘up’ and ‘down’,
respectively.

for Bob, for Alice’s particular sequence of measurements. Furthermore, the same
sequence of Bob’s results could come from a number of different measurement se-
quences of Alice. For example, look at the fourth column of Table 4.4: Bob measures
‘down’, ‘up’, ‘up’, ‘down’. This particular sequence can arise from Alice measuring

either x, z, xz, z or z, z, 2, .

direction | 1 |2 |3 | 4
z JNr
z T
e [T [1]1
ER SRR AN

Table 4.4: All the possible results of Bob.

This particular example shows there is no contradiction, that superluminal com-
munication, using quantum entanglement, is impossible. We can also see that any
other scheme will fail as well, because, in the end, no matter what Alice does, Bob
can only get a random sequence of data not allowing him to infer the direction of
Alice’s measurement sequence.

Although we cannot communicate instantaneously using the EPR pair, it can
assist in teleportation of a quantum state. The proposal of Bennett et al. [4] is
summarized here, showing how quantum entanglement can be used to assist tele-

portation. First, let us specify the situation. Initially Alice and Bob share the EPR
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pair with the state given by
1
V2

where the subscripts 1 and 2 refer to Alice and Bob, respectively. Alice is given

[EPR) = —=([T1) l2) = [ 11)]12)), (4.2)

a particle, which has a property that can be represented by a dichotomic variable
(e.g. the polarization state of a photon or spin of any spin 1/2 particle), with state
|¢). Neither Alice nor Bob know the quantum state of the particle, but Alice has to
teleport this state to Bob, without sending the particle itself.

As we have seen at the start of this chapter, this cannot be done in a straight-
forward way, namely, with Alice finding out what the state is, then passing this
information to Bob. This would violate the no-cloning theorem. The proposal of
Bennett et al. was, instead of obtaining information about the state |¢), to use en-
tanglement to pass what they called the ‘quantum information’: the information

which cannot be written down or replicated at will. In their own words, Alice could

... divide the full information encoded in |¢) into two parts, one purely

classical and the other purely non-classical...

where the ‘non-classical information” would be transmitted through quantum entan-
glement. The situation is depicted in Figure 4.2. The question mark represents the

unknown state |¢).

Classical
Channel
Alice Bob

? EPR

Source || Quantum
Channel

Figure 4.2: Schematic representation of teleportation.

Initially, the state that describes the total system is given by
[total) = |¢)|EPR), (4.3)

which is a pure product between the unknown state and the EPR state. Because

they are in a pure product state, nothing interesting can happen. No measurement
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can transfer information about the unknown state to Bob’s share of the EPR pair.
So our next step is to create a correlation between the states. This is done by
performing what is called the Bell-operator measurement: Alice performs a joint

measurement such that she measures one of the four states given by

|ﬂf§§>>=%(|mu2>i|¢1>|T2>), (4.4a)
|¢§:§>>=%(|T1>|T2>i|¢1>|¢2>). (4.4b)

Note that these four states form a complete orthogonal basis for particles 1 and 2,
i.e., any (spin) state for the particles 1 and 2 can be written as a superposition of

these four states. Let us write the unknown state as

[¢) =l To)+ Bl lo), (4.5)

then Eq. (4.3) becomes

otal) = Z=(1 o) 1)l 2 ) = 1ol 1)l T2))
+ L0 1)) =10l b T2)). (1.6

Now we change the basis to the Bell states given in Eq. (4.4). Upon this change the

total state becomes
1 _
total) = 5 [ [6)(=al T3 ) = 81 1)) + [€6)(=al 1) + 8l 1s))  (47)
@57} Al 1s )+ 61 13 ) + 125 )l Ls ) - 81 15))] -

If Alice measures one of the four Bell states given in Eq. (4.4), Bob obtains one of

the four states given by

—alT3) =Bl 13), —al 13 ) + 8| 13 ),

al l3)+06]13), al l3) =06 13).

By performing a joint measurement (Bell-state measurement), Alice has sent the
quantum information to Bob.

Alice now has to send her measurement result to Bob, namely which of the
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four Bell states she has obtained. Note that this measurement result does not reveal
information about the input state (it does not depend on « or 3 at all); nevertheless,
this information is vital to complete the teleportation. Once Bob gets the classical
information he can perform a unitary operation to get the original state back. For
example, suppose that Alice detected |\If((£)>, then Bob has the original state except
for the overall minus sign, which is irrelevant (an overall phase factor does not change
the state). If Alice detected |<I>(()I)>, Bob will get «| |3 )+ /3| T3 ) in his hand, then he
has to apply a spin flipping operation to get the original state back.®? Other results
of Bell-state measurements for Alice mean other unitary transformations for Bob.
Because of this need of classical information, the whole teleportation process cannot

happen instantaneously.®

In this section we have seen how we could teleport an arbitrary spin-state of a

spin-1/2 particle. The whole process can be summarized as five steps:
1. Alice and Bob initially share an EPR pair.
2. Alice gets an unknown state that she has to teleport.
3. Alice performs a joint measurement on the unknown state and the EPR state.
4. Alice sends the measurement result to Bob.

5. Bob performs a unitary operation, on his share of the EPR pair, and gets the

unknown state in his hand.

Experiments have been done on teleporting the polarization state of a photon [44,
45], and were successful in showing the validity of quantum teleportation.

So far, we have restricted ourselves to teleportation of spin-1/2 variables. We
have no way of teleporting any states that live in a bigger Hilbert space. In quan-
tum optical language, we can teleport the polarization state of photons, but we
cannot teleport other interesting features: whether the state is in a coherent state,
a squeezed state or a thermal state. To do this, we have to extend our analysis to

continuous variables. This is the topic of the next section.

SHow we can do this operation depends on what kind of particles we are using. For example, if
we use photons, we can use a half-wave plate for this particular operation.
5More correctly, it cannot happen at speeds faster than light.
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4.3 Continuous variable quantum teleportation

In this section, we will deal with continuous variable quantum teleportation (CVQT).
CVQT allows us to teleport a much broader range of states, since any quantum
optical state can be represented by continuous variables.

CVQT was first proposed in 1994 by Vaidman [8]. Essentially, he used the
original EPR state (which has perfect correlations in position and momentum) to
show that one can teleport quantum states that can be represented by position and
momentum variables. After four years, in 1998, Braunstein and Kimble [9] came up
with a quantum optical protocol for CVQT. Their entangled source was the two-
mode squeezed state, which, in the limit of infinite squeezing, becomes the EPR
state. Their protocol forms the basis of the teleportation protocol in this thesis, so
we shall study it in detail.

Basically, the procedures are the same as in teleportation of dichotomic vari-
ables. Alice and Bob share an EPR pair; Alice also gets the state to be teleported;
she performs a joint measurement and sends the information to Bob; Bob then
performs a unitary operation (Figure 4.2). The difference is in the EPR pair, the
detail of Alice’s measurements (because we are dealing with continuous variables
we have infinitely many entangled states, rather than four Bell states) and hence
Bob’s operation. We should now look at the detailed analysis, done in the Wigner
representation.

The Wigner representation of the two-mode squeezed state (the quantum optical

analogue of the EPR state) is given by [9]

4 _
WEPR(Za; Pa> Tb, D) = 7 exp {—e?"[(xq — 25)> + (Pa + pb)°]
—e™ [(zq + ) + (pa — p0)%]},  (4.8)
where x, and p, refer to the z and p quadratures of the mode that goes to Alice,

and similarly xz;, and pp are the quadratures for Bob. In the limit of infinite 7, the

above equation becomes

WEePR(Za, Pa> b, Pb) = C6(xq + x5)0(Pa — Db), (4.9)

where C is just a normalization constant. This Wigner distribution has exactly
the same form as the Wigner distribution of the original EPR state. This limit,

however, is not realizable even in the ideal situation (it requires infinite energy), so
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instead of this Wigner distribution, we will use Eq. (4.8). Using Eq. (4.8) for finite
r corresponds to using entangled states which are not maximally entangled.

Having the pulses of light described by Eq. (4.8), initially shared between Alice
and Bob, Alice now obtains another light pulse, which is to be teleported. The
quantum state of the light pulse is represented by the Wigner function Wi, (x., pc).
At this moment the total state is represented by

Wtotal ($c,pc, Za,Pas ':Ub)pb) = Win(xca pC)WEPR(wav Pa, Ty, pb) (410)

Because the total state is a direct product between the input and EPR states, the
Wigner functions are merely multiplied.

Carrying on with teleportation, Alice performs a joint measurement: she first
entangles the two modes of light z., p. and z4, ps, by passing them through a 50/50
beam splitter. The resulting output mode quadrature operators, x4, pq and x, pe,

can be written as’

Tq= %(xc + Z4), (4.11a)
pa = %(pc + Pa); (4.11b)
Te = %(xc — Zq), (4.11c)
Pe = %(pc — Pa); (4.11d)

which, combined with Eq. (4.10) gives

Wtotal(xd7pd7 Te, Pe .’Bb,pb) -

Win <%(33d + xe), %(pd + pe)> WEPR <%(33d — ), %(pd — De), «Tb7pb> :
(4.12)

After entangling the two modes of light, Alice measures x4 and p.. Calling the
measured values g, and gy, this step corresponds to making the substitutions x4 —

gz, Pe — Gy and integrating over the variables pq, z. in the Wigner function. Defining

"In real life, it is difficult to control the phase factor to get exactly this transformation. If we
get a different transformation Bob’s operation must change.
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the complex Gaussian as

1 _ 2
Go(a) = —exp< ’:' ) (4.13)
the state after the measurement can be written as
Wgotal(ab) =4NG, () /d2acW}n(aC)GT(\/§(qz +iqy) + tanh(2r)ay, — o), (4.14)

where v = cosh(2r)/2 and 7 = 1/2cosh(2r). N is a normalization constant, which
is required because the conditional output state is not necessarily normalized (after
the substitutions 4 — ¢z, pe — ¢y). We have also introduced a shorthand notation
a =z +1p.

From this we can see that as 7 — oo, tanh(2r) — 1 and 7 — 0, meaning that the
complex Gaussian G becomes a delta function. Then, all Bob has to do is displace
the output Wigner distribution by \/i(qx + iqy). We will call this final state the
output state. It is given by

Wout (a5) = Wigga (0 — V2(ga + igy)). (4.15)

This ends the teleportation procedure proposed by Braunstein and Kimble. A sum-

mary of the procedure will be useful:

1. Alice and Bob share a two-mode squeezed state.

2. When Alice gets the input state (an unknown optical state), she mixes the
input light pulse and squeezed light pulse by passing them through a 50/50
beam splitter. Then she measures the z and y quadratures of each output light

pulse. (Balanced homodyne detection is used to measure the quadratures.)
3. Alice passes the information (g, q,), obtained in Step 2, to Bob.

4. Bob displaces his share of the two-mode squeezed state by \/E(qz +iqy).

In this chapter, we started from quantum entanglement, explained dichotomic
variable teleportation, then finished with continuous variable teleportation. It should
be mentioned, however, that the version introduced in this section is not a complete
version.

The version in this section is single-mode teleportation; the two modes of the

two-mode squeezed state have the same spatio-temporal structure, the input mode
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is mode-matched (spatio-temporal mode matching®), and frequency-matched to the
two-mode squeezed state.

The more complete version is broadband teleportation, taking into account the
finite bandwidth of the squeezing and the input light, making it easier to compare
theory with experiments. The extension of the Braunstein and Kimble scheme to
the broadband case was given by Loock, Braunstein and Kimble [6].

The broadband nature does not pose too great a restriction, however; if the
bandwidth of the input state is narrow (called quasi single-mode) compared with
the bandwidth of the squeezed state, then we could treat the teleportation as single-
mode teleportation around the frequency of the input light pulse.® The difficulty in
an experiment is with Bob holding on to his EPR share; since the squeezed light
pulses are traveling at the speed of light it is a very difficult job.

8See Section 5.1, and for a more concrete discussion, Raymer et al. [46], about mode matching.
9This requires the central squeezed frequency to be the same as the central input mode.
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Chapter 5

Fock state teleportation:

methods of analysis

We now have all the theoretical machinery we need to investigate quantum telepor-
tation in detail. In this chapter, a teleportation protocol implementing the scheme
of Braunstein and Kimble will be introduced and explained in detail. Then nu-
merical and analytical methods are used to investigate the protocol. The stochastic
Schrodinger equation of the protocol will be developed, and then solved numerically.
We will confine ourselves to Fock state inputs; we choose Fock states for two rea-
sons: (1) it is one of the simplest states, if not the simplest, one might think of in
numerical simulations; (2) it is a non-classical state, unlike coherent states. More
will be said about non-classicality later. The analytical expressions are obtained
from the Wigner function analysis, as in Braunstein and Kimble [9], as well as from
solving the SSE directly.

Our focus is on a theoretical study of teleportation, especially the teleportation
of a Fock state. Experimental realization of our protocol suffers some problems,
one being that the generation of a Fock state of the electromagnetic field is very
difficult, and we do not have a readily available method yet. There is also the
problem of keeping Bob’s share of the entangled state at his location while waiting
for Alice’s results. This is quite a formidable challenge, mainly because light travels
at tremendous speed. All the experimental teleportations up to now employ the
continuous feed-forward mechanism where everything runs continuously in time,
including Alice’s feed-forward of her results to Bob. Coherent state teleportation
was done in this way by Furusawa et al. [5] and Bowen et al. [10].

The above problems, however, are only experimental; in principle the problems

71
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can be, and probably will be, solved. Thus studying the single-mode (or quasi single-
mode) teleportation protocol described in this chapter is not entirely without merit.
Our focus is on the single-shot results, rather than on the ensemble averages, as it
has been so far; the single-shot results can also tell us, when taken along with the
probabilities of obtaining the measurement record, what the average is going to be,
as well as whether the teleportation works shot by shot, and if they do, how well it

works.

5.1 Teleportation protocol

This section introduces the teleportation protocol, and explains a few detailed top-
ics with regard to it. The topics discussed are mode matching, the EPR state,

displacement, and non-classicality of the Fock states.

[eHdQy, J [e*dq,

Qv | Qy

Figure 5.1: Teleportation scheme.

Figure 5.1 is a schematic representation of the protocol we investigate. Initially,
a Fock state is prepared in a cavity with damping rate s, k tells us how fast light
leaks out of the cavity — the higher the damping rate the faster the leak. The EPR

state is imagined to be prepared in another cavity with the same damping rate.’

!More realistically we can include a model, such as the optical parametric oscillator, which
generates the entangled light pulses.
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a,b, and c¢ are the annihilation operators for the two modes of the EPR state and
the input Fock state, respectively. All three modes have the same frequency. At
time ¢t = 0, the input field and one of the entangled fields, the fields described by the
mode annihilation operators ¢ and a respectively,? start to leak through the cavities
— as represented by the arrows at the bottom of the diagram. The field in mode
b, Bob’s mode, stays in the cavity. Following the arrows in the diagram, fields in
modes a and ¢ pass through a 50/50 beam splitter, producing the two output fields
in modes d and e. Subsequently, the x and y quadratures of the output fields are
measured — the results are called @, and @), in the diagram. The measurement
results are then passed to Bob, who displaces the field in mode b by @, +iQ,. The
quadratures are measured with two balanced homodyne detectors; the results @,
and @, correspond to the integrated photocurrents coming out of each detectors.

Kt

Note that there is an integrating factor e ™" involved; the inclusion of this factor is

required by the mode matching.

Mode matching

The concept of mode matching was introduced earlier in Chapter 2 when we intro-
duced the balanced homodyne detection scheme. It simply states that the mode of
the local oscillator field has to be matched to that of the input field, both spatially
and temporally, meaning they must overlap in space and time completely for per-
fect detection. This is because we want exactly the same contributions from the
local oscillator field and the input field; a wider and/or longer local oscillator field
compared with the input field would certainly be undesirable.

Now, let us go back to our protocol and assume the spatial modes are matched.
How do we match the temporal modes? If the local oscillator field is fed continuously
in time, it is certainly not mode matched to the input field, which is a pulse. One
way to mode match the two fields is to simply put the local oscillator field in a cavity
with damping rate x. For the local oscillator field, which is essentially a classical
field, this corresponds to a decaying amplitude. That is, &, — e "&,. If we put
this into Eq. (3.93), the infinitesimal charge acquires the integrating factor.

There is also another probability. Actually, it is unnecessary to put the local

2Here, a little warning should be given about the notation. a,b,c,d,e are the annihilation
operators, and a,b,c,d,e denote the respective modes. Thus, a is the annihilation operator for the
mode a. The difference is that the mode names are in the normal font, whereas the annihilation
operators are written in the math font. At any rate, it should be clear from the context which one
is being used.
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oscillator in a cavity but we can run the local oscillator without the decaying ampli-
tude and introduce the integrating factor later when we integrate the photocurrents
— both ways are equivalent. In practice the latter method is adopted because it is

easier to use.

Two-mode squeezed state

Before we develop quantum trajectory theory of the protocol, we need to know what
the EPR state is. It was already mentioned that the quantum optical analogue of
the EPR state is the two-mode squeezed state — specifically, it is the two-mode
squeezed vacuum state. The two-mode squeezed state can be made from two sepa-
rate squeezed states, by mixing them using a 50/50 beam splitter. To create a two-
mode squeezed vacuum state, we prepare two squeezed vacuum states, one squeezed
in the z quadrature, and the other in the p quadrature, each squeezed by the same
amount. From the definition of the squeezing operator given in Chapter 2, we can

work out the squeezed vacuum states:

1S2) = S()|0) = exp | 5 (a? — al)] J0), (5.1a)
1S5 = S(=1)[0) = exp |5 (a3 — af?)] [0); (5.1)

The total state before the mixing is given by
r 2 2
1S2) © 18,) = exp { 5[(a} = al*) = (a3 — af)]} 10,0). (5.2)

After passing them through a beam splitter the annihilation operators transform

according to

(a +0), (5.3a)

ay =

[\V]

ag = ﬁ(a -b), (5.3b)

where a and b are the annihilation operators of the beamsplitter output modes.
Substituting these into Eq. (5.2), we obtain the two-mode squeezed vacuum state,
given by

ITMSV) = exp {r(ab - aTbT)} |0, 0),

= STM(T)|0,0>, (5.4)



5.1. TELEPORTATION PROTOCOL 75
where
St (r) = exp [r(ab - aTbT)] (5.5)

is the two-mode squeezing operator. Note that the vacuum state of modes a1 and as
transforms to the vacuum state of modes a and b; it is obvious from the physics that
the vacuum state is invariant under this transformation. That this state is equivalent
to the EPR state introduced earlier is proved, in the Wigner representation, in

Appendix C.

The displacement

If we look at the end of Chapter 4, the Wigner function analysis of Braunstein and
Kimble showed that the displacement should be v/2(q, + iqy), assuming ¢, and g,
corresponds to x4 and p.. Yet we claimed earlier in this section that the displacement
has to be @, + iQ,. This discrepancy arises from the fact that the measured values
@, and @, are not exactly the same as the x and p quadrature amplitudes as usually
defined. We can see the exact displacement required by considering a special case:
teleportation of a classical field with an unentangled EPR source (r = 0). In this
case, each of the two modes are in the vacuum state, completely uncorrelated. The
teleportation procedure now amounts to measuring the amplitude of the input field
and displacing the vacuum field by the measured amplitude.

From Section 5.2.1, we can see that the infinitesimal charge is given by [cf.
Eq. (5.11b)]

dgs = Vklc+ N rpcdt + dW,

= 2V/kxo(t)dt + dW

if the EPR state is unentangled so that the mode a is in the vacuum; z.(t) stands for
the expectation value of the quadrature operator. Now suppose that the input field
is in a classical state (coherent state). Then z.(t) becomes a classical amplitude,

decaying exponentially at rate k, i.e., we can write

Q: = /OO dt2v/kx.(0)e e
0
1
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and

1
Qy = ﬁpcm)
For x = 1 our displacement should be Q; + i(Q),. From now on we will assume that
k = 1, without loss of generality; it just changes the unit of time.
The result is that between the simulation and the Wigner function analysis there

exists a relation

\/§Qm = Qq- (5'6)

Non-classicality of Fock states

It was claimed that the Fock states are non-classical, but in what sense is it non-
classical? What is a classical state? In the literature, non-classicality usually refers
to the non-existence of a positive-definite P distribution.® The P representation is
similar to the Wigner representation, in that the P function acts like a probability
distribution. The difference is that the P distribution gives us normal-ordered oper-
ator averages rather than symmetric-ordered ones. Since photoelectric detection is
intimately related to normal ordering — because the main process is the absorption of
photons — it is in turn related to the P distribution. If the P distribution of a state is
a positive-definite function, as it is for all mixture of coherent states, the state can be
considered classical* in the sense that the sub-Poissonian statistics or anti-bunching
are impossible. To put it another way, those states that have positive-definite P rep-
resentations can be described by the semiclassical theory of photoelectric detection,
hence they are called classical states; states that cannot be described by a positive-
definite P distribution cannot be described by the semiclassical theory, hence they
are called non-classical states.

In our case, however, the non-classicality of a Fock state refers to the existence
of a negative region in the Wigner distribution (shown in Figure 5.2 for a one-
photon Fock state). If we are worried about the details of the detection process, this
definition of classicality does not suffice; we have to resort to the P distribution.

However, if we take the detection as granted, and just say that the balanced ho-

3The P representation or Glauber-Sudarshan P representation was introduced independently
by Glauber [47], and Sudarshan [48], concerned with the representation of mixed coherent states
describing a general laser output.

4In addition, the P distribution cannot be more singular than a é-function if it represents a
classical state.
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modyne detectors measure the quadratures, then, because the quadrature operators
are symmetrically ordered, we can think of the Wigner distribution as a probability
distribution of the x and p quadratures. This means we could think of the quadra-
tures as pre-existing statistical quantities, unlike observables in quantum mechanics.
This is what stochastic electrodynamics (SED) [49] does; it treats the quadratures
as real predetermined quantities and adds the vacuum fluctuations by hand, treating
them as real fluctuations. This certainly fails when we think about the photoelectric
detection process, since the vacuum never makes a detector click. However, the ex-
pectation values of any function of x and p can be calculated this way, yielding the
right answer. So, in our protocol, where two balanced homodyne detectors are used,

the negativity of Wigner distribution provides a good definition of non-classicality.

WYV
i
20X

Figure 5.2: Wigner representation of a one-photon Fock state.

Continuous variable teleportation has been studied within SED for classical input
states — classical in the Wigner sense — by Carmichael and Nha [50]. This could be
done because the two-mode squeezed state is classical in the Wigner sense, although
it is not classical in the P distribution sense. This cannot be done, however, for a
Fock state input because the Wigner distribution of a Fock state can take negative
values. Thus we can expect features that cannot be described by a real fluctuating

field to happen in the teleportation of Fock states.
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5.2 Simulation

In this section we first develop the quantum trajectory theory of the teleportation
protocol which results in a stochastic Schrodinger equation. We then talk about

how it can be solved numerically.

5.2.1 Stochastic Schrodinger equation for the protocol

We are now left with the task of deriving the stochastic Schrodinger equation as
promised at the start of this chapter. Having seen the derivation of the stochastic
Schrédinger equation for balanced homodyne detection, our derivation will not be
too difficult; the only complication is that we now have two balanced homodyne
detectors rather than one. We will assume that the two local oscillators have the
same strength, although they have to have different phases. When we write the
propagator as in Eq. (3.80), instead of two kinds of jumps, Jp and Jys, we have
now four kinds of jumps, Jp1, Jy1, Jp2, and Jyre, 1 and 2 referring to different

detectors. Consequently, instead of J defined below Eq. (3.82), we will have

Ji= 2 (c+a), (5.72)
éﬁo

Jo = 2 (c—a), (5.7b)
éﬁo

where we have used x = 1. With these changes Eq. (3.83) becomes

qtot
Kric(At) = e zléul*At <%> [e_(CTCJr“Ta)(At_t‘“‘”)(l F Tt )

(L e Ceralatet) (g 4 g em(Ceralan ) (5 g)

where ¢t = qp1 + qu1 + gp2 + qu2 and J,,, € {J1, J2}. After expanding this term
in a similar way to what we did below Eq. (3.83), and then applying the same limits

regarding the local oscillator strength and coarse graining of time, we obtain

1—(cfe+a'a)At + (gp1 — aan) 1 + (ap2 — qur2) o

(gp1 — qm)

(gp2 — qmr2)
éﬁo (C

=1—(cfe+ala)At + z
lo

(c+a)+ —a), (5.9)
for the terms inside the square brackets of Eq. (5.8). Again, the terms of higher

order in the jump operators disappear; one way to think of this is that the coarse
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graining was taken such that only one jump of the source (not the local oscillator)
occurs within At, and such that two jumps, J; and Jo, do not occur within the
same time interval. We now follow exactly the same steps as we did towards the
end of Chapter 3: write the ¢’s as a mean plus fluctuations, put them into Eq. (5.9)
and put the corresponding result into Eq. (5.8). Doing that gives us the stochastic

Schrédinger equation for the teleportation protocol:
ddprc) = {~(cfe+ ala)dt + (dq, — idgy)c + (dg, + idgy)a} [brec), (5.10)
with

dq, = ((cT + ) rpc + (@ + CL)REC) dt + dWy, (5.11a)

dg, = i ((J — Orpo — laf — a)REc) dt + dw,. (5.11b)

6 = 0 and 6 = 7/2 has been put in for dg, and dg,, respectively —cf. Eq. (3.93). The
expectation values denoted ( )rpc are to be taken with the normalized conditional
state; the ¢ in Eq. (5.11b) comes from exp(in/2) = i, and dW, and dW, are two
independent Gaussian random numbers. |z/:JREc> is an unnormalized conditional
state similar to the one given in Eq. (3.91), but the detail is not important; we will
evolve the unnormalized state, normalizing only to find the expectation values. The

only change the different normalization makes is that we cannot write

Prec) = @RECWEJREC% (5.12)

which has no direct consequence for us, since we are not directly interested in this
quantity. Later on, we will be interested in finding the probability distribution of
Alice’s measurement records (), and @,, but there again, it is not this quantity
we are interested in. The probability given above does not give the probability
distribution of Alice’s measurement results, since there is likely to be more than one
trajectory that leads to the same values of @, and @,; we will find the probability

by going over many trajectories.

5.2.2 Numerical simulation

The simplest way to solve Eq. (5.10) is to use numerical simulation, implementing
the Monte-Carlo technique. First, we choose a small time step dt, and then evolve

the conditional state through a series of discrete time steps using Eq. (5.10). At each
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step we have to generate two Gaussian random numbers, dW, and dW,,, with mean
zero and variance dt. To generate the random numbers, an algorithm from Ref. [51]
was used, which generates pseudo-random (rather than truly random) numbers. It
is believed that this pseudo-randomness does not change our results; the belief is
supported by the fact that the probability distributions from the simulations match
those from the analytically calculated distributions. See Section 6.3.

Quantum states are represented in the Fock state basis, an obvious choice given
that our input state is a Fock state. The initial states consist of the input Fock state
and the two-mode squeezed state. The Fock state representation of the two-mode

squeezed state is given by

|7,ZJEPR> = @ Z(—l)" tanh”(r)|n,n>, (5.13)
n=0

where, as mentioned earlier, r is the squeezing parameter of the squeezed beams
that constitute the EPR state. A higher squeezing value means better correlation,
or entanglement, as can be seen from Eq. (4.8).

Since Eq. (5.13) specifies an infinite series, we need to truncate the series at some
point. The truncation was made such that the last term of the series is less than
one thousandth of the first term for any given value of r. For a good squeezing
value, say r ~ 2,5 about 200 terms are needed in the series, and since there are
two modes we will need 200 x 200 matrix for keeping the coefficients, which, to give
the total number of storage spaces we need, has to be further multiplied by the
number of photons in the input Fock state. However, for a small value of squeezing,
e.g. r = 0.7 (about 50% noise reduction), only 15 terms are needed, making the
simulation quite efficient. A time step dt = 0.001 was chosen going through 10, 000
steps, which means the total time of evolution is ten, providing ten cavity lifetimes
for each trajectory — remember, x = 1. All the simulations are done with Visual

Fortran. The code is provided in Appendix F.1.

Displacement in simulation

In the simulations, the displacement was made by calculating the matrix elements of
the displacement operator, and then doing the matrix multiplication with the output
state before displacement. An iterative method, which is suitable for computers, was

used to calculate the matrix element. The method is described here.

SFor this value exp(—r) ~ 0.13, meaning about 90% noise reduction in a selected quadrature.
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First, note that

(m|D(a)]0) = (m|a) = exp (-O‘—> L (5.14a)
and consequently,

(0ID(a)}n) = (ol D @)]0)* = exp (121 Za)" (5.14b)
2 vl
where we have used Df(a) = D(—a). We will now derive relationships that will
allow us to calculate (m|D(a)|n) given (m — 1|D(a)|n — 1) and (m|D(a)|n — 1) or
(m — 1|D(a)|n). The first one is

(m|D(a)|n) = (m|D(a)—=|n —1),

(vm{m —1|D(e)|n — 1) — a*(m|D(a)|n — 1)), (5.15a)
and the second one is, similarly,

(m|D(@)|n} = (m — 1|—=D(a)ln),

N
(vn{m — 1|D(a)|n — 1) + a{m — 1|D(a)|n)). (5.15b)

1
= 7
Combining Egs. (5.14) and Egs. (5.15), we can iteratively build up the matrix rep-
resentation of the displacement operator. For example, we can calculate (m|D(«)|1)
and (1|D(«)|n) by first using Eqgs. (5.15) to obtain

(m|D(a)|1) = vm(m — 1|D()|0) — a"(m|D()|0),
(1[D(a)[n) = vn(0|D(a)ln — 1) + (0| D(a)|n),

then substitute Eqgs. (5.14) into the above equation to calculate the matrix ele-
ments. Once we finish this, we can repeat the procedure to find the matrix elements
(m|D(«)|2) and (2|D(a)|n), which can in turn be used to calculate the next ma-
trix elements. This process is continued until we obtain all the matrix elements we
require. The code was checked by looking at the Wigner distribution of a given

state before and after the displacement, using the fact that the Wigner function of
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a displaced state (displaced by «) is the same as the Wigner function of the state
without displacement shifted by o = x + ip.

Wigner function plots

Once a displaced output state is calculated, the state is written out in the form
of a density operator, and then passed out in an ASCII text format. This density
operator (or the matrix elements of it) is then read by another program written
in Fortran, which produces the Wigner functions that can be plotted by a plot-
ting program such as ORIGIN. The original Wigner-plotting code was provided by
Howard Carmichael, which only needed a minor touch. The full working to get the
expression for the Wigner function in terms of p,,,, the matrix representation of the

density operator p, is quite cumbersome, forcing us to give only a brief sketch.

The characteristic function can be written as
Xs = tr [pexp (iz*aT + iza)} )

Lo S x
= exp <—§|z| )Z Z PrmChen (2)Crm (—2), (5.16)

k=0n,m=0

where

ckn(2) = (k| exp (iza) |n),
n! 1

iR R — n> k.

= (i2 K (n— k)

Here, N is the upper limit of the Fock state basis. When the above equation is put
into the definition of the Wigner distribution [Eq. (2.42)], we find that we have to
solve integrals of the type

1 e
I = /d2z exp <—§|z|2> (iz)P(iz")le"* @ ¥, (5.17)

The solution of this integral plus Eq. (5.16) and Eq. (2.42) gives, after a lot of
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rearranging,
N n
*\ 2 —2|a? _1\yn—l n!|2a|2l
Wiasa®) = 2e001 Do DU Ty
n=0 1=0
Al - 1 m—I n'm' 2R 2 *\n—m-1 2 l
+z_%z_:0p”mlz;(_ G T D =) e (2ary = 2a)') |

(5.18)

The fact that the density operators are Hermitian, i.e., ppm = was used to

Prons
derive this result. The computer program wigplot which calculates this function

numerically, is given in Appendix F.2.

5.3 Analytical methods

5.3.1 Wigner function analysis

In Section 4.3 we have seen that the output Wigner distribution is given by
Wout (o) = ANG, (o) / d2acVVin(ac)GT (Qz +1Qy + tanh(2r)oy, — ), (5.19)

where v = cosh(2r)/2, 7 = 1/2cosh(2r), and

1 _ 2
Gy(a) = —exp ( |:| ) . (5.20)
This can be expanded to give

8 2(x? + p?
Wout (25, pb) = N; /d:vcdchm(:cc,pc) exp [_(bipb)}

cosh(2r)
x exp [—2 cosh(2r)(Qy + xp tanh(2r) — xc)z]
x exp [—2cosh(2r)(Qy + py tanh(2r) — p.)?] . (5.21)

Our objective is to solve the integrals in Eq. (5.21) for a Fock state input, which
has the Wigner function (see, for example Barnett [52], p. 120.)

l

21 !
I/Vin(xmpc) = _ﬁ eXp JI +pc Z 7]{:)'@41%‘7:% +pg)k7 (522)
k=0
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where [ is the number of photons in the Fock state. Thus, we are required to solve

an integral of the type

K(n) = [ doudpela? + 2)" exp [-2(a2 +12)]
x exp [—2 cosh(2r)(Qy + p tanh(2r) — z.)?]
x exp [—2cosh(2r)(Qy + py tanh(2r) — p.)?] . (5.23)

K (n) is worked out in Appendix B, and shown to be equal to
-1\"7 (=1)"n! 2AB? 2A2B?
Kn)=(_—) I\ 2" - Lo (=222, 24
() <2> 2(1+A)n+leXp< 1+ 4 1+ A4 (5:24)

where A = cosh(2r), B? = (Q, + zp tanh(2r))? + (Qy + pp tanh(2r))?, and L,, is the
Laguerre polynomial [53]. Combining Eq. (5.21) — Eq. (5.24), we obtain

Wout(xbapb) = Nexp |:_

l
I ok 2A2B2
szzo( 2 k!(l—k)!(1+A)k+1Lk< 1+A>

2(22 + p?) exp _2AB?
A A+1

(5.25)

This is our final result, the output Wigner function for an I-photon Fock state input.
From this equation we can work out the single-shot output results, which will be

compared with the results from the simulations in the next chapter.

5.3.2 Solving the stochastic Schrodinger equation

In this subsection we solve the stochastic Schrédinger equation [Eq. (5.10)]
dlrpo(t) = {~(cfe+ ala)dt + (dg, — iday)c + (dq, +iday)a} [rpc(t)), (5.26)
with
t !
Q:(t) :/ e tdq, (5.27a)
0

t
Qy(t) = /0 e dg),. (5.27b)
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The primes in dg), and dqz’/ is to remind us that dg, and dg, depends on ¢t and the ¢
must be primed for the integration. To solve the SSE we first define a new ket |y)
such that

[brec(t)) = exp [~(ce+ ala)t] [x(0), (5.28)

with which we can rewrite Eq. (5.26) as

dlx (1))

= exp [(CTC + aTa)t} [(dqe — idgy)c + (dqy + idgy)a] exp | —(cfc+ aTa)t] (),

= [(dgy — idgy)ce™ + (dgy + idgy)ae™"] |x(1)),

- [d(g*c + dc}a} (1), (5.29)

where dQ = exp(—t)(dgy, + idg,). Caution is required in solving this equation; since
d@ is a stochastic quantity, Eq. (5.29) does not obey the rules of ordinary calculus.
Specifically, dQ contains a Wiener increment dW [Egs. (5.11)], so we cannot ignore
(d@)2 as we would do normally. Keeping this in mind, it is not too difficult to see
that Eq. (5.29) has the solution (Appendix E)

(o) = exp (—2ac | “ate 4 Qa + @e) IO,

0
= exp [ac(e_% — 1)+ Qa+ Q*c] [x(0)). (5.30)

A quick way to see this is by taking the differential of |x(¢)) and noting that, following
the Tto rule, dQdQ* = 2exp(—2t)dt and dQdQ = dQ*dQ* = 0. The final solution
to Eq. (5.26) is then given by

\iREc(t)) = exp —(cTc + aTa)t] exp [ac(e_% -1+ Qa + Q*c] \QZREC(O». (5.31)

The output state before displacement is given by the state described in the above

equation in the limit of a long time, i.e.,

Yrec(0),
¥(0)), (5.32)

lout) = N|0g4,0.)(0q4, 0| exp(—ac + Qa + Q*c)

|
= N|0g,0.) (04, 0| exp(—ac + Qa + Q*c)]
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where we have used the fact that®
Tim exp |—(cfe+ aTa)t] — (04, 00) (0, 0] (5.33)
—00

where [0,4,0.) is the vacuum state of the modes a and ¢. N in Eq. (5.32) is a
normalization factor, such that (out|out) = 1.

For a general input state

lin) =" cnln), (5.34)
n=0
we have

[¥(0)) = [in) ® |TMSS)
1

oo

= o () mzn;() cm(—1)" tanh™ (r)|m) @ |n, n). (5.35)
Then Eq. (5.32) becomes
|out) N i cm(—1)" tanh™(7)(04, 0c| exp(—ac 4+ Qa + Q*c)|m,n,n)
= m\ r a>Ye| €XPl—a s 1y )
cosh(r) = P

(5.36)

where we have not written down the vacuum states for modes a and c¢. From now on
the output state refers to the state of mode b only. The above equation is our final

solution of Eq. (5.26), the state at Bob’s location before he makes the displacement.

Special case, Q; = @, =0

Our next aim is to show the connection between Eq. (5.36) and the Wigner repre-
sentation of the output state (before displacement). However, before we move on,
there is one interesting result we can easily see: if the input state is a number state,

|m), and @, = @, = 0, the teleportation is perfect. We will prove this now.

5This result can be shown easily by thinking about the operator acting on an arbitrary state
expanded in number states.
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In this special case, Eq. (5.36) becomes

lout) = & Z(—l)" tanh”(1)(0g4, 0.| exp(—ac)|m,n,n), (5.37)
n=0

from which (noting that (0,4, 0.| exp(—ac)|m,n) = (—=1)" ) we get

lout) = tanh™ (r)|m) = N'|m), (5.38)

N

sh(r)
where N’ is a new normalization constant. Equation (5.38) is saying that, for Fock
state teleportation, whenever Alice obtains @), = @, = 0, Bob gets the input Fock
state.” Note that this result only holds true for Fock state teleportation (it works for
a Fock state input, since the EPR state has a perfect correlation in photon numbers).
Similar results do not hold true for other input states, as can easily be seen from

the working.

5.3.3 [Equivalence between the simulation and the Wigner analysis

Now we show the equivalence between the stochastic Schrodinger equation (sim-
ulation), and the Wigner function analysis. This will be done by comparing the
characteristic functions from Eq. (5.36) and Eq. (5.19).

Characteristic function from the solution of the stochastic Schrédinger

equation

We first recast Eq. (5.36) into a form that is easier to compare with the Wigner
method. Noting that

(0] = (0]e=9", (5.39)

we can rewrite Eq. (5.36) as

lout) = N Z Emsn (1)(0g, 0c| exp(—Qch) exp(—ac + Qa + Q*¢)|m,n,n), (5.40)

m,n=0

"Note that in this case, Bob’s displacement is exactly zero.
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where
(—=1)™ tanh"(r)
() = A ) 5.41
sn(r) cosh(r) (5.41)
Now, using the Baker-Hausdorff theorem [31], we can see that
exp(—Qct) exp(—ac) = exp(—ac) exp(—Qcl) exp(—Qa). (5.42)
Putting this into Eq. (5.40) we obtain
lout) = N Z cm5n(1)(04, 0c| exp(—ac) exp(—Qc') exp(Q*c)|m, n, n),
m,n=0
=N > cnsa(r){0a, 0| exp(—ac) De(=Q)m, n, n), (5.43)
m,n=0

where N’ = N exp(|Q|?/2), and D.(—Q) is the displacement operator for the mode
c. Defining |in — Q) = D.(—Q)|in) = D(—Q) >°°°_, ¢n|m), we can rewrite the

m=0

above equation as

lout) = N’ i 5 (1)(04,0.| exp(—ac)|in — Q,n, n). (5.44)
n=0
We can expand [in — Q) in terms of number states, |in — Q) = >0 _o dm|m), giving
lout) = N’ i $n(7)dm (04, 0. | exp(—ac)|m,n,n),
m,n=0
=N’ i (=)™ s (1) dpm|m). (5.45)
m=0

Note that as r — 00, (—1)™s,,(r) becomes constant, i.e., it does not depend on
m,® which means that |out) = Y°°_ d|m), i.e., it becomes the displaced input
state. Thus, in the limit of infinite squeezing, which means maximum degree of
entanglement, teleportation is perfect as we expect.

We now find an expression for the characteristic function of the output state
described in Eq. (5.45), so we can compare it to the characteristic function of the

output state obtained from the Wigner function analysis. The characteristic function

8tanh(r) — 1, so (—=1)™sm(r) — 1/ cosh(r).
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of this state is?

Xout(za Z*) _ <Out|eibz+ibfz* |0ut>,

o)

= > O sa(r)en] [sm(r)em] (nle T ). (5.46)

m,n=0

Using real variables rather than complex variables, it can be written as

Xout (1,0) = > (= 1)™ s, (r)en]* (s (r)em] (e DDy (5.47)

m,n=0

where we have used z = u + .

5.3.4 Characteristic function from the output Wigner distribution

Our objective now is to manipulate

1 1
Wout(332,p2) =N / dzredpgWin <ﬁ(qgc + $e)a ﬁ(pd + Qy)>

1 1
x W) —(qz — xe), —=(Pa — 5.48
EPR <\/§(Qz e) \/ﬁ(pd Qy)> (5.48)
into the form that has the same characteristic function as the one in Eq. (5.47).
To this end, we first rewrite Eq. (5.48) so that it shows the characteristic function

explicitly. Using the definitions of the Wigner distribution [Eq. (2.42)] and the

characteristic function [Eq. (2.43)], we have

N
Wout (2, p2) = oy /dmedpddUdv Xin (te; Ve) XEPR (Ua, Va, Up, Up)
X exp {_\/EZ [uc (qgc + .735) — Ve (pd + Qy)]}

X exp {—\/52' [Ug (qe — Te) — va (Pa — qy)] — 2i(upzy — vbpb)} ;
(5.49)

where [ dudv refers to the integration over all three modes (a,b, and ¢) of u and v.

Integrating over the variables x,. and pg, we obtain delta functions é(u. — u,) and

“Note that we have the subscript ‘out’, instead of s [Eq. (2.43)], where s refers to symmetric
ordering. There are other characteristic functions for normal and anti-normal ordering — see, for
example, Walls [13] p. 62. The subscript out refers to the (output) state.
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d(ve + vg). Further integration over the variables u. and v, leaves us with

2N
Wout (T2, p2) = — /duadubdvadvain(um —Va) XEPR (Ua; Va, U, Vp)

X exp [—2\/5@' (quug + qua)} exp [—2i(upzy — vppp)] . (5.50)

Now all we have to do is prove that

Xout(ub’ Ub) X /duadvaxm(uaa _Ua)XEPR(uaa Va, Up, Ub) €xp [_2\/5’5 (qua + vaa)] .

(5.51)
First, note that (see Appendix D.4),
Xin(um _va) €xp [_2\/§i (QIUCL + vaa)] = Xin_ﬁq(um _va)7 (552)
where
Xin vz (ta: —va) = (in — V2qleitaleralreale=alin — /g (5.53)
Rewriting Eq. (5.53) using Eq. (5.6) gives
Xin—Q(u‘l’ —'Ua) — <lIl _ Q|eiu(a+a7)+v(a—a7) |1I1 _ Q> (554)
Then, Eq. (5.51) becomes
Xout (u7 U) X / duadvaxin_()(um _va)XEPR(Um Vq, Up, vb)' (555)
We now expand Xgpr(Uq, Vg, Up, Up) and rewrite it in a different form:
XEPR(ua) Va, Up, 'Ub)
o0
_ Z sn(r)*sm(r)<n, n‘eiua(a—i-aT)—i—iub(b—i-bT)—va(a—aT)—vb(b—bT) |’I’)’L, m),
m,n=0
0 .
= > 5n () 5 (1) 0 O (g ) e g
k,l,m,n=0
« <kb‘6iub(b+bT)_vb(b_bT) |lb>7
o
=) XEPRa(ta, Vo) XEPRD (U, v3), (5.56)

k,1=0
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where
XEPRa(Ua, Va) = Z Sn(T)*5n,ksm(r)5mz(nale’““ (at+al)— ““(“_“T)|ma>, (5.57a)
m,n=0
and
XEPRb (Up, vp) = (™ EHD=0 =001,y (5.57b)

We also need to use a relation (see Appendix D.2)

Xop (U, =) = X (U, V), (5.58)

where if |¢0) = > 00 cm|m), [¥) = 300 c,Im). And another relation (see Ap-
pendix D.3)

X (U, V) = X, (—u, —v), (5.59)

where [1,) = 32°°_ (—1)™¢,,[m). Combining the expansion [in—Q) = >°°°_, d,,|m)

m=0

and Eq. (5.55) — Eq. (5.59), we obtain

Xout(u U Z /duadvaxln Q’( uay_va)XEPRa(uayva)XEPRb(“ba”b)a (560)
k,1=0

where in — Q. refers to the state

in— QL) = > (=1)"d},Im (5.61)

m=0

Finally, from the result (see Appendix D.1)

[ dudocy(—u,~vxsta,) = [Wlo)E, (5.62)
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we see that Eq. (5.60) becomes

Xout(u7U
5 S ST (D) S ()] S i (1)) (RO =0
k,l=0 m,n=0
o Y (=)™ dy 5 (1)) [ S (1) g [0 D70 070D g (5.63)
m,n=0

where s,,(7) is given by Eq. (5.41). Apart from normalization, which is irrelevant
since the Wigner distribution has an overall normalization factor, this equation
matches exactly with Eq. (5.47), thus proving that the stochastic Schrodinger equa-

tion and the Wigner function analysis are equivalent to one another.



Chapter 6
Fock state teleportation: results

Using the methods of Chapter 5, we will present various results for the teleportation
of Fock states. Three qualitative features will be shown: (1) the single-shot output,
(2) the fidelity, and (3) the probability distribution of Alice’s measurement results.
Numerical and analytical results will be shown and compared.

All the results in this chapter are in the interaction picture, since all the results
from Chapter 5 are in the interaction picture. The free Hamiltonian terms are
just the free evolution term, so the interaction picture is equivalent to working in
a rotating frame. This has the effect of rotating the Wigner function around the
W, or z, axis; thus when we look at the Wigner function of the output state in the

interaction picture, we are looking at the still-shot picture of a rotating graph.

6.1 Single-shot output states

Figure 6.2 shows examples of the output Wigner distribution for a one-photon Fock
state input obtained from the simulations. The output states are single-shot results,
i.e., the states at Bob’s location after a single run of the teleportation protocol.
For comparison, the Wigner function of a one-photon Fock state input is given in
Figure 6.1. The three graphs in Figure 6.2 show the Wigner functions of the output
states for different squeezing parameters, for r = 0.1, r = 0.7 and r = 2.0. @,
and @, refer to Alice’s measurement results; these numbers are given because the
output states depend on them. The n,,,, refers to the truncation number that was
used to represent the two-mode squeezed state. It increases rapidly as the squeezing
parameter increases; r = 2 requires n,q, = 190, whereas only n,q, = 20 is required
for r = 0.7.
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Figure 6.3 shows the analytical results corresponding to the simulation results
shown in Figure 6.2. Comparing these results to those from the simulation shows
good agreement for r = 0.1 and r = 0.7 case, whereas the r = 2.0 case shows
discrepancy. The discrepancy is a little bit misleading because in this particular
example the analytical and numerical results differ only by a rotation, which is not
a general feature; by comparing other single-shot results for » = 2.0, it was checked
that discrepancies take different forms for different runs. One possible reason for this
difference could be the numerical error due to the truncation, because the truncation
error is larger for a higher value of r.

The Wigner distributions clearly show that, as the squeezing parameter is in-
creased, the quality of the teleportation also increases. This is just what we had
expected, since the quality of entanglement increases as the squeezing parameter is
increased. In fact, it can be shown that the von Neumann entropy [54] (the standard
measure of entanglement for pure states [55]) for a two-mode squeezed state is given
by [56]

Erunss = cosh?(r) logy[cosh?(r)] — sinh?(r) logy [sinh? (1)]. (6.1)

Erpss is an increasing function of r since cosh(r) is always greater than sinh(r),
which means that the entropy (the degree of entanglement) is an increasing function

of r.
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Figure 6.1: Wigner representation of a one-photon Fock state.
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Figure 6.2: Single-shot results of a one-photon Fock state input obtained from nu-
merical simulations, for (a) r = 0.1, Q, = 0.5, @, = 0.46 and Ny, = 10. (b)
r=0.7, Qy = —1.55, Qy = 0.41 and npq, = 20. (c) 7 = 2.0, Q, = 1.37, Q, = 1.50
and 74, = 190.
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Figure 6.3: Single-shot results of a one-photon Fock state input obtained from the
analytical expression, for (a) r = 0.1, @, = 0.5, Q, = 0.46. (b) r = 0.7, Q, = —1.55,
Q, =041 (c) r =2.0, Q, = 1.37, @, = 1.50.
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6.2 TFidelity

Definition and methods of calculation

Fidelity is a measure of how closely the output state mimics the input state. For
pure states F' = |[({in|tout)|? is a natural candidate for fidelity. F is the probability
that the output state passes an experimental test of being the same as the input
state, where the test is carried out by a third party — usually called Victor for verifier
— who knows the input state. The fidelity defined by F' also has some intuitively
satisfying properties: if the input state is the same as the output state the fidelity
is 1, if they are orthogonal the fidelity is 0; the output state is completely different
to the input state, in the sense that there exists a measurement that can distinguish
one state from the other.

In the simulations it is very easy to calculate the fidelities for Fock state inputs,
since we are in the Fock state basis. Once we obtain an output state described by
lout) = > ¢p|n), we simply calculate |c,,|? to get the fidelity for the input state
|m). In the Wigner distribution analysis we use the fact that the overlap integral
of Wigner distributions gives the trace of the product of the corresponding density

operators [Eq. (D.4)], i.e.,
AA 1 2 * *
tr (PinPout) = — [ d°aWin(a, o™ )Wyt (o, ™). (6.2)
0

From the Wy, obtained in the previous chapter and Eq. (6.2) we can work out the
analytical expression of a conditional fidelity distribution, F'(Q.,Qy), for a given
input state. Here, by conditional fidelity we mean the fidelity for given values of @,
and @)y. Rather than carrying out the calculation analytically, we do a numerical
integration, using Eq. (5.25) to work out Woyt.

In quantum teleportation the output states, and hence the fidelities, depend on
Alice’s results @, and @),,. In fact, for a Fock state input, it turns out that the fidelity
depends only on q = ,/Q2 + Q%/, because the phase information cannot change
the result for a phase-independent input state. Figure 6.4 shows the simulated
conditional fidelity distribution for a one-photon Fock state input with » = 0.7.
The simulation result was obtained by running 200, 000 trajectories, computing the
conditional fidelities at each run. To collect the data, bins are created for both @,
and @, ranging from —4 to 4 with spacing dg = 0.05, and at the end of each run
the conditional fidelity is recorded in the appropriate bin according to the values of
Q. and @, obtained for the run. If the value of either @, and/or @, lies outside
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the range, the data is discarded.

Conditional Fidelity

Figure 6.4: Conditional fidelity distribution for a one-photon Fock state input and
r = 0.7. 200,000 trajectories.

Radial conditional fidelity distribution

We see that the fidelity depends only on the radial distance of @, and @, from

the origin. Thus, we introduce q = /Q2 + Q?J and compute the radial conditional

fidelity distribution. The results are shown in Figures 6.5, 6.6, and 6.7 for various
input Fock states.

The simulation data is collected in a similar manner to that described earlier,
changing the bin to depend on q rather than @, and @), with dq = 0.005 and range
0 — 5. An analytical calculation is also carried out in the manner described above,
but we change to the radial coordinate system with dQ,d@, — 2mqdq. This has the
consequence that the radial distribution is given by qF'(q), not F(q), where F'(q) is
obtained from F(Q,,Q,) using q = 1/Q2% + Q2.

Analytical and numerical results are shown on separate axes for visibility. For the
vacuum and a one-photon Fock state input the two results agree very well with each
other, whereas for a two-photon Fock state input there are discrepancies. Graphs
showing the analytical and numerical results on the same plot are shown in Figure
6.8 and Figure 6.9. The results for the vacuum input are not given but they agree

very well, as in the case of the one-photon Fock state input shown in Figure 6.8.
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Figure 6.5: Radial conditional fidelity distribution for the vacuum state input.
100,000 trajectories.
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Figure 6.6: Radial conditional fidelity distributions for a one-photon Fock state
input. 100,000 trajectories.
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Figure 6.7: Radial conditional fidelity distributions for a two-photon Fock state
input. 100,000 trajectories.
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Figure 6.8: Radial conditional fidelity distributions for a one-photon Fock state
input. Overlap of the simulation and analytical results. 100,000 trajectories.
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Figure 6.9: Radial conditional fidelity distributions for a two-photon Fock state
input. Overlap of the simulation and analytical results. 100,000 trajectories.
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The discrepancies for the vacuum and one-photon cases are due to the lack of
simulation data, resulting in fluctuations or noise in the data. A sudden drop of
fidelity to zero occurs because no data was obtained for that particular value of
q. Looking at Figure 6.9, there is a clear difference between the numerical and
analytical results, which is not due to the sampling noise; the simulation result for
r = 0.1 goes down for small g, but the analytical result goes up steeply. Also the
r = 1.0 case shows visible differences. These discrepancies must be due to numerical
errors, since we have shown already that the stochastic Schrodinger equation agrees
exactly with the expression obtained from the Wigner function analysis (for the
conditional output states).

As it was said earlier, we are working in the interaction picture or a rotating
frame. Does this affect the fidelity? The answer is ‘NO’. This is because the input
field as well as the output field oscillates in the Schrodinger picture, and so the input
and the output oscillates at the same frequency. In experiments, the frequency of
the local oscillator field is made to be the same as that of the input field, which

essentially introduces the transformation to the rotating frame.

Analyzing the fidelity curves

A close look at Figures 6.5, 6.6 and 6.7 shows us a few interesting features. In
the following discussion we accept that the simulation results are supposed to be
identical to the analytical results and any discrepancies arise from factors such as
the lack of simulation data (fluctuations), and numerical errors.

One thing we note immediately is that for a nonzero squeezing parameter tele-
portation is perfect, i.e., the fidelity is unity, if ¢ = 0. This is true even if the
squeezing parameter is very small, so that Alice’s share of the EPR state is almost
the vacuum state. Apart from this discontinuity the conditional fidelity curves seem
to gradually expand from the r = 0 case as r is increased. The discontinuity stems
from the fact that we are looking at the conditional fidelity, the fidelity between the
input and the output once a particular measurement result is obtained. The infor-
mation missing here is the probability of obtaining a particular measurement result.
Indeed, if we look at the ‘average fidelity’ for a given g, defined as a product of the
probability (of obtaining the q) and the conditional fidelity, there is no discontinuity;
the probability of obtaining q = 0 decreases with r (see the next section). Going
back to the conditional fidelity distribution, if » < 1, the fidelity curve is almost

identical to the r = 0 case except near q= 0, where the measured result forces the
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output state to be the same as the input Fock state.

Note that for the vacuum input there is no discontinuity. This is because if
r = 0 the EPR state is two uncorrelated vacuum states; whatever Alice does, Bob
always has a vacuum state. This is the classical limit of teleportation, in which no
entanglement exists and the whole procedure reduces down to measurements of the
z and p quadratures of the input state followed by the displacement, determined
from the measured values, of the vacuum state. Anyway, the implication is that if
the input state is in the vacuum state, the r = q = 0 case gives perfect teleportation
unlike the other input states.

We can also see that increasing r results in a higher conditional fidelity for a
given input state. Furthermore, the conditional fidelities for higher r are always
greater than those for lower r at every value of q. Intuitively, this makes sense, since
a bigger value of  means a higher degree of entanglement, as discussed at the start
of this chapter.

Another fact worth noting is that as the number of photons in the input state
is increased, the conditional fidelity curves get narrower, meaning that the range of
q for good teleportation decreases. A heuristic argument supporting this fact can
be given as follows. To teleport a Fock state with a given number of photons, we
require an approximately equal number of photons at Bob’s location; but a large
number of photons means a high value of r for the EPR state, and thus, we need a
higher value of r to teleport a higher numbered Fock state.

The final fact we mention is the shift of the r = 0 and r = 0.1 curves in Figure
6.6 and Figure 6.7. This feature is easily seen by analyzing the r = 0 case. For r =0
the output states are simply displaced vacuum states, displaced by @, +i@Q,; then,
as the input photon number gets higher, we need a larger displacement to obtain a
higher fidelity.
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6.3 Probability distributions of (), and @,

The probability distributions of @), and @, tell us the likelihood of obtaining certain
values of @, and Q. Figure 6.10 shows the probability distribution for a one-photon
Fock state input with r=0.7, obtained from 200,000 trajectories. Note that the
distribution is very noisy, and to get a better distribution we need to run a lot more
trajectories. Looking at the radial probability distribution (using the cylindrical
symmetry of the distribution) would help reduce the noisy fluctuations — since it
is equivalent to averaging the distribution below over the circumference of a circle

with a given radius — so we will work with radial probability distributions in this
section.

0.0010
0.0008
0.0006

0.0004

Conditional Fidelity

0.0002

0.0000, *

Figure 6.10: Probability distribution of Alice’s measurements for a one-photon Fock
state input and » = 0.7. 200,000 trajectories.

In the simulations all we have to do is add unity in the appropriate bin of g
on each run, which can be done in the same way as we did when we extracted the
conditional fidelity from the simulations. Analytically, the calculation is done with
the Wigner function, which is equivalent to treating Alice’s measurement scheme as
an ideal measurement of z4,p. [9]. To find the probability distribution we proceed
in a similar way to when we worked out Wy, in Chapter 5. This time, however

we have to integrate out x;, and pp, since the measurement results of Alice do not
depend on what happens to Bob’s field.! We could just integrate over Wy, but it

IThis is because Alice’s measurements are local measurements.
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is easier to integrate over x; and pp first. Integrating Wgpgr over the variables x

and pp, we obtain the Gaussian distribution

2 -9 2 2
exp | —2%a * Pa)
m cosh(2r) cosh(2r)

Thus, the probability distribution is given by

2 1 1
P(xq,pe) = m /dpdd%mn <E($d +z¢), —=(pa +pe)>

2
_(xd - me)2 - (pd - pe)2:|
cosh(2r) ’

xexp[

which, for a Fock state input [see Eq. (5.22)], becomes

I
P(qz,qy) = ﬁh(%) > (=t (;ﬁ) %2k/d$dp (g2 + )2 + (p+ ,)7]"
k=0

[(Qz - .73)2 + (p - Qy)2] } )
(6.4)

X exp{—(% +2)" = (p+q) - cosh(2r)

where we have substituted ¢, and ¢, for x4 and p., respectively. This integral can

be solved by a change of variables, ' = = + ¢, p' = p + ¢, which gives

l
4 eI\ 1 k
P . — _1l k _Zk/d /d/ 12 /2
(q 7Qy) 7T2 COSh(2T) kZ:O( ) <k> k' X p (.’1}' +p )

< exp {—:ﬂ P (200 — ') + (24 — ) } (65)

~ cosh(2r)

Looking at Eq. (B.1) and Eq. (B.3), we can see that this integral is equal to K (k,1/2)
with A = 1/2, B, = 2¢,,B, = 2qy and A = 1/2cosh(2r). Using the result from
Appendix B, we obtain

l
P (e, qy) = m D (=niF (i) %ZkK(k, 1/2),

k=0
l k+1
4 YA cosh(2r)
== -1 —2"k! | ——————— 6.6
72 cosh(2r) k:O( ) <k> Sl cosh(2r) (6.6)
—4(q; +q;)

X exp

. —4(q; + q)
1 + cosh(2r) k cosh(2r)(1 + cosh(2r)) |’
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l

_ 4 —4(g2 + g¢y) g
7 (1 + cosh(2r)) Xp 1+ Cosh(;ﬂ)) kz:%(—l)l b <k:>
2cosh(2r) \* —4(q2 + ¢2)
g <1+Tsh(2r>> L <Cosh(2r)(1 i cth(2r))> ' (6.7)

Finally, to compare with the probabilities obtained from the simulations, we note
that v2¢, = Qz, V2qy = Qy.

As we did for the conditional fidelity distributions, three plots are shown in
Figures 6.12, 6.13: for the vacuum, a one-photon and a two-photon Fock state input.
The analytical curves are obtained by plotting Eq. (6.7). Again, the analytical and
simulation results are shown on different axes. The two results agree well with one
another, this time even for the two-photon Fock state input. To show how well they
agree with one another, Figure 6.11 is shown below, which shows the overlap of the
simulation and the analytical curves on the same axis.

The figures on the next two pages show the probability distribution for different
inputs and different squeezing parameters. They show the trend that as the input
photon number, or the squeezing parameter, increases, the peak of the graph shifts
towards higher q. This makes sense, since the value of q tells us the strength of the
input field plus Alice’s share of the EPR pair, and the photon number of the input
state (or the squeezing parameter) is proportional to the strength of the input state
(or Alice’s share of the EPR pair). The shift means that the larger the input photon
number (or 7), the smaller the chance of getting q = 0, i.e., perfect teleportation.

Note that as r is increased, the probability distribution gets broader. This is
because the average photon number in Alice’s share of the EPR pair increases with

increasing r, and consequently a broader range of q becomes accessible for Alice.
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Figure 6.11: Radial probability distribution for a two-photon Fock state input and
r = 0.7. Overlap of the simulation and analytical results. 200,000 trajectories.
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Figure 6.12: Radial probability distribution for the vacuum state input. 100,000
trajectories.
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Figure 6.13: Radial probability distributions for: (a) a one-photon and (b) a two-

photon Fock state input. 100,000 trajectories.
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Chapter 7

Conclusion and future directions

7.1 Conclusion

In this thesis a single-mode continuous variable quantum teleportation protocol was
introduced following the work of Braunstein and Kimble [9]. A quantum trajectory
treatment of the protocol was developed, yielding a stochastic Schrodinger equation
(SSE). Numerical simulation was used to solve the SSE, studying teleportation of
Fock state inputs extensively. An analytical expression for the conditional output
state, conditioned on the measurement results of Alice, was derived from the SSE,
but an analytical expression for the probability distribution of Alice’s measurements
has not been found.

Also, as in the proposal of Braunstein and Kimble, Wigner functions were used
to find analytical expressions for the conditional output state and the probability
distribution of Alice’s measurement results. The conditional output state thus found
was shown to be equivalent to the conditional output state obtained from the SSE.
This fact was proved for an arbitrary input state.

The Wigner representation of the conditional output state was used to give a
visualization of the states. A few chosen single-shot results were shown, calculated
both numerically and analytically, demonstrating clearly that as the squeezing pa-
rameter increases the quality of the teleportation also increases. The fidelity was
introduced as a measure of the quality of teleportation, and the conditional fidelities
(the fidelity between the input and the conditional output) for the Fock state inputs
were investigated.

The study of Fock state teleportation revealed that the teleportation protocol

behaves as we expected: as the squeezing parameter is increased (meaning higher
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degree of entanglement for the EPR pair), the conditional fidelity increases. One
unexpected property of the Fock state teleportation was that for any non-zero r,
Q. = @y = 0 always gives perfect teleportation. This fact was proved analytically,
and the proof shows clearly that the property is unique to Fock state inputs; it is
the perfect correlation in photon numbers of the EPR state that causes this effect.

The above property seemed strange, because it meant that even for very small r,
for which the situation is almost identical to » = 0, there is a prominent difference
in the conditional fidelity curve; a spike near q= 0. This discontinuity was found to
have come from the fact that we are looking at the conditional fidelities, the fidelity
given the measurement record was obtained. The key point here is that it is very
unlikely to get q ~ 0, and when we look at the ‘average fidelity’, the conditional
fidelity multiplied by the probability density, there is no discontinuity.

The probability distributions of Alice’s measurement results for the input Fock
states were shown and analyzed. An analytical expression for the probability distri-
bution was found from the Wigner function method given by Braunstein and Kimble
and shown to agree with the simulation results. No proof has been given, however,
that the expression found from the Wigner function method is equivalent to the
SSE.

Our investigation showed that quantum trajectory theory gives the same an-
swer as the Wigner function analysis for this protocol and either could be used to
analyze it. We have concentrated on the single-shot quantities such as single-shot
output states or conditional fidelities and obtained some specific results for Fock

state teleportation.

7.2 Future directions

Improvements can be made to the simulation program. It was shown that the
conditional output state obtained from the simulation does not match the analytical
result for a two-photon Fock state input. We think the discrepancy arises from the
numerical error and probably gets bigger for higher photon Fock state inputs and
superposition states that contain them. Thus, to use the computer simulation for
other states, the source of error has to be found first. Also the efficiency of the
simulation program should be increased before it can be used to run a large number
of trajectories for higher photon Fock state inputs or a large value of r, which requires

a large number of basis states.
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Another interesting thing is to prove the equivalence between the SSE and the
Wigner analysis completely by calculating the probability distribution from the SSE.
A similar proof is given by Howard Carmichael for the heterodyne detection scheme
[34], in which case the probability distribution is equal to the @ function [17].

The effect of nonideal detectors could be studied, although in this case quantum
trajectory theory cannot describe the evolution of a pure state and we must resort to
density operators, which requires higher computational power. Nonideal detectors
can be modeled by introducing beam splitters before the ideal detectors, as described
in Braunstein and Kimble. These authors studied teleportation of an ensemble of
coherent state superpositions in the nonideal case, but no single-shot results were
calculated. A study of the teleportation of other non-classical fields (such as Fock

states) in the nonideal case could be carried out.
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Appendix A

Evaluation of Eq. (3.26)

We want to prove that

/ dr exp[—i(w — wp)7] = Té(w — wp) + ¢ P . (A.1)
0 wo — W
To prove it, we start from
t : _ _ _
/ dr expl—i(w — wo)7] = sinf(w —wo)t] z'l cos(w wo)t]7 (A.2)
0 w — Wo w — Wwo

and take the limit ¢ — oo. We now consider a slowly varying function f(w) and
anticipate an integration with respect to w over the product of this function and the

above expression, i.e., we want to evaluate

7 os) [ dresiito - (A3)

in the limit ¢ — co. Then, from Eq. (A.2), we obtain two integrals. The first one is

[e.9]

lim dw f(w)

t—o0 0 w—wO

sin[(w — wo)t] ' (A)

Note that in the limit £ — oo, the sine function is oscillating rapidly, so unless w = wy

the integral is very small. Thus, the slowly varying function f(w) only contributes
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near w = wy, allowing us to take it out of the integration, i.e.,

R e
= mf(wo),
= /OO dwmd(w — wo) f(w). (A.5)
0

The second line follows from evaluating the integral; the calculation can be found
in Arfken and Weber [57] (see page 425)

The second integral we want to solve is

1 — cos[(w — wo)t]

tlim dw f (w)

< Jo w — Wy

/ do T i / dw CZS (“;O_WO)t]. (A.6)

Let us have a look at the second expression on the second line. In the limit £ — oo

the cosine term oscillates rapidly, making the integral negligible unless w = wy.
When w — wyp, the cosine term approaches unity, making the integral the same as
the first one on the second line. So the effect of the second integral is to subtract
the singularity in the first integral, which is exactly what the Cauchy principal value

does [57]. So we can write

[e.9]

lim [ duof(e) il w0t P/OOO RRICN (A7)

t—oo w — W W — wo

where P denotes the Cauchy principal value. Combining Eq. (A.2), Eq. (A.5), and
Eq. (A.7) we get

P

wo —w’

/000 dr exp[—i(w — wo)7] = o0 (w — wp) + i (A.8)

thus proving Eq. (A.1).



Appendix B
Working out K(\, 1)

To prove Eq. (5.24), we introduce a shorthand notation:
F\) = /d;vdp exp [—2A(2% + p?)] exp { —24[(By — 2)* + (By —p)*]}, (B.1)
with which we can define K (n, \) as
K(n)=K(n,1), (B.2)
where [see Eq. (5.23) for the definition of K(n)]
K(n,\) = (;)n C;ZZ = <_71>nF(”)()\). (B.3)

Note that Eq. (B.2) is only true if we have

A = cosh(2r), (B.4a)
B, = Q. + x tanh(2r), (B.4b)
B, = @Qp + ptanh(2r). (B.4c)

F(X) can easily be evaluated, giving

—_

22
exp <—2AB2 + 2)\A+i > ,

2\AB?
exp <— Y > , (B.5)

A+ A
1
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where B2 = B2 + Bz. We will assume that the general result can be written in the

n 2 2 2
FR) =5 O+ Ayt SPAT A ) I\ A ) (B.6)

form

and solve for g,,. To this end, note first that F("t1) is the derivative of F(" with

respect to A, i.e.,

ntl) dF™)
POy = =
7 (=1)"n! 2)\AB? 2A2B?
T2 (r Ayt P <_ A+A> g”</\+A>
2422 242B2\ () + A) %9n (%i—ﬁ?)
+(n+1)()\+A)g"<A+A>_(n+1) |

But from Eq. (B.6), we also have

7 (=) (n 4+ 1) 2\ AB? 2A2B?
3 v Py ) e ) B0

F(n—i—l) _

Comparing Eq. (B.7) and Eq. (B.7), we obtain a relationship

2A2% B2 2A2% B2 2A2% B2 2A2%B?
In+1 = dn +

At A At A)  mrnoram T a
2A2B?
_(A+4) dgn( XA ) (B3)
(n+1) d\ ’ )
which can be written, through a change of variable, in the form
z z  dgn(z)
n =g, n . B.

We now use the relations (Abramowitz and Stegun [53] Eq. (22.8.6) and Eq.
(22.7.12))

dLy ()
dx
m+1)Lpti1(z) = (2n+1—2)Ly(x) — nlp_1(x), (B.10b)

x =n(Ly(x) — Lp—1(x)), (B.10a)

where L,, is the Laguerre polynomial with integer n. These relations can be combined
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to eliminate L,,_1(z), giving

dLy(z)
dx

x =—(n+1—x)Ly(z)+ (n+1)Lyyi(x). (B.11)

This equation is equivalent to

mdLn(—x)

I =—(n+1+2)L,(—x)+ (n+1)Lps1(—2), (B.12)

and thus, by comparing Eq. (B.12) to Eq. (B.9), we see that g,(z) = L,(—=x).
Substituting g, (xz) = L,(—=) into Eq. (B.6), and then substituting the result into
Eq. (B.3) we obtain

(-1\"7 (=1)"n! 2AB? 2A2B?
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Appendix C

Two-mode squeezed state

In general, two-photon devices such as the non-degenerate parametric amplifier can
produce the non-classical effect called squeezing. For example, a two-mode squeezed
state can be produced by a non-degenerate parametric amplifier; the single-mode
squeezed state introduced in Chapter 2 is obtained in the degenerate case. The
effect of squeezing can be represented by the squeezing operator [13, 58]. In this
section, we derive the Wigner function for the two-mode squeezed state by using the

squeezing operator.

C.1 Preliminary

First we solve a useful integral using matrix notation. The result will be useful in

calculating the Wigner function of the two-mode squeezed state. The integral is

1
/da:dy exp (naT — 577A77T)7 (C.1)

where n = (x,y), @ = (a1, 2), and A is any 2 by 2 matrix. x and y are real values,

and T denotes the transpose. Now assume that A is diagonalizable, i.e.,
A=UDUT, (C.2)

where U is a unitary matrix and D is a diagonal matrix. Let us define x’ such that
nU = (2/,y') = n' and similarly aU = «'. Substituting these into Eq. (C.1), we
obtain

/da:’dy’ exp (/T — %n'Dn'T), (C.3)
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where the Jacobian is unity because the transformation is unitary.

d 0
0 dy)’
as written in the first line of Eq. (C.4). Provided that d; and dy are positive, the

Using D = Eq. (C.3) becomes two independent integrals of " and ¥/,

integrals converge:

1 1
/d:v’ exp (o2’ + §d1x’2) /dy' exp (ahy + §d2y/2)’
2 1
= exp(=aUD U ),
Td p(5 )
2T

dida

1
exp(iaA_laT). (C4)

Thus, the solution of Eq. (C.1) can be written as

2
Vdidsy

1 1
/da:dy exp (na® — EnAnT) = exp(EaA_laT). (C.5)

C.2 Wigner function for a two-mode squeezed vacuum

C.2.1 Two-mode squeezing operator

The unitary two-mode squeezing operator is defined as [Eq. (5.5)]
St (r) = exp [r(alag - a{a;) ) (C.6)
where a’s are annihilation operators. Our two-mode squeezed vacuum state is then,
) = St (r)[0). (C.7)

Before we work out the Wigner function for this state, it is useful to determine how

a and a' are transformed by this unitary operator. Denoting

v (r)arStar(r), (C.8)

1(r) = Sk
= ST, (MagSrar(r), (C.9)

as(r)



C.2. WIGNER FUNCTION FOR A TWO-MODE SQUEEZED VACUUM 123

we obtain the differential equation

C%al(r) = ST (malad — araz, a1)Sra(r),
= =S}y (N abSrar(r) = —al(r), (C.10a)
and similarly
L as(r) = —al(r), (C.10b)
d% 1(r) = —az(r), (C.10c)
di b(r) = —ai(r). (C.10d)

Solving these differentials equations, we get

a1 (r) = aj cosh(r) — a; sinh(r), (C.11a)
az(r) = ag cosh(r) — aJ{ sinh(r), (C.11b)

and the complex conjugates of these equations.

C.2.2 Wigner function

The Wigner function for a two-mode field is defined as

1
Wi(ag,as) = — /d2a1d2a2tr pexp{i(zfai + z1a1 + z§a; + 22a2)}] ,

x exp{—i(z1a] + z100 + 2505 + za2)}, (C.12)

which is just a straight forward generalization of the Wigner function for a single-
mode field. Using p = |¥)(¢)|, where ) is a two-mode squeezed vacuum state

[Eq. (C.7)], the trace in the integral becomes
(0,0] exp{i[zfal () + z1a1 (r) + z3ab(r) + 22a2(r)]}|0,0). (C.13)
Substituting in Egs. (C.11) and rearranging the equation we get

(0, 0| exp{i[2] (r)aJ{ + z1(r)a; + z’z"(r)a; + 22(7)az]}|0,0), (C.14)



124 APPENDIX C. TWO-MODE SQUEEZED STATE

where z1(r) = 21 cosh(r) — 23 sinh(r) and 2z2(r) = 23 cosh(r) — 2§ sinh(r). Using the

Baker-Hausdorff relation this expectation value can be written as

. ) . . 1
<07 0|€ZZ1 (r)al eiz1(r)ar giz; (r)ad etz2(r)az |0’ 0> exp |:—§(|Z1 (7“)|2 + |Z2 (T)|2):| ’

= exp [—%(|z1(7“)|2 + |22(r)|2)} ) (C.15)

Substituting Eq. (C.15) into Eq. (C.12), we obtain
1 1
Wias,az) = % [ Eartazess [~3(a()F +1220)P)
X exp [—i(z]a] + z101 + 2505 + zo09)] . (C.16)
Now we write this integral in terms of z1 = x1 4+ ip1 and z9 = z9 + ips:

|21(7“)|2 + |22(7“)|2 = (|z1|2 + |z2|2) cosh(2r) — sinh(2r)(z129 + 271 23),
= cosh(2r)(z? + 23 + p? + p3) — 2sinh(2r)(z122 — p1p2). (C.17)

Then,
_ L 1 2., .2, .2 2
W(p,v) = - dx1dpidzadps exp 5 cosh(2r)(z] + x5 + pi + p3)
x exp [—sinh(2r)(z1z2 — p1p2)] exp [—i(z1p1 + prvn + Topo + pars)], (C.18)

where 1 = aq +of , v = (g —aj) , p2 = as + ab, and v2 = i(ae — a3). We
now look at the x1,zs integration only, since the pi,po integration is the same as

the x1, z9 part. Thus, we need to solve

1 1
7= — /dazldxg exp {—E[cosh(Qr)(:c% + 23) — 28inh(2’l")331$2]}
x exp {—i(z1p11 + Tap2)} (C.19)

To solve this, we cast it into the matrix form

1
I = /dmldajg exp <7],uT — 577A77T> , (C.20)
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cosh(2r)  —sinh(2r) ) AL
. A has

where n = (21 x2), p = (—iur —ius), and A =
n= (oL e2), p= (i —ip) <—sinh(21") cosh(2r)

a determinant of one, thus it is invertible, and it has the eigenvalues e*" and e~2".
h(2 inh(2
Using Eq. (C.5) and A~ = C'OS (2r)  sinh(2r) , we obtain
sinh(2r)  cosh(2r)
2 Lo 2 .
I= —exp —5[(,u1 + p5) cosh(2r) + 2sinh(2r)uypo] ¢ - (C.21)

Similar working for the pi, ps integration gives us

4 1
W = 2 exp {—5[0@ + ,u% + y% + 1/22) cosh(2r) + 2sinh(2r) (1o — 1/11/2)]} .
(C.22)
Finally, substituting the pu’s and v’s in terms of a’s and expanding the cosh and sinh

in terms of 2" and e~ ?":

4 _
W= —exp{—e (@1 —22)* + (01 +p2)"] — € [(w1 +22)" + (1 = p2)]}
(C.23)
This is the Wigner function for a two-mode squeezed vacuum state. Note that as r

increases W tends to Cd(z1 + x2)0(p1 — p2).
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Appendix D

Properties of the characteristic

function

In this appendix we prove a few properties used in Section 5.3.4.

D.1 Property 1

[ dudorcy(u,~0)xotuso) = 7l(wlo). (D)

We can prove this property by using Eq. (2.49). Rewriting this equation using real

variables, we get
Xs(u,v) = /da:de (x,p)exp [2i(xu — pv)]. (D.2)
Substituting into the Lh.s of Eq. (D.1) gives
/dudvxw(—u, —v)Xxg¢(u,v)
= / dudvdzdpdz’dp' Wy, (z,p) Wy, (2, p') exp [2iu(z — ') — 2iv(p — p'))] ,
= 2 /dmdpdw'dp’Ww (z,p) Wy (2, 9) 6(z — 2")o(p — p'),

= 72 /dmdew (z,p) Wy (z,p) . (D.3)
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We can now use the well-known property!

n [ dads Wi (2.5 Wo (2,0) = (610} (D)
which gives us

[ dudoxcy(u,~opxstu,) = 7l(uio). (D5)

Thus, we have proved Eq. (D.1).

D.2 Property 2

Xy (U, =) = Xopr (U, V), (D.6)

where, if [¢) =Y 0°_cp|m), [¢) = > 0 ¢k |m). First, note that

m=0"~m

[e.e]

X, =) = Xy (2",2) = D chemnle™ T m). (D.7)
m,n=0
Then, using (See Eq. (4.28) of Carmichael [19])
okt (iz*)"(iz)™
eizra +iza _ Z my (aTnam)s’ (D.S)
m,n=0
where s stands for symmetric ordering, we can write
00 Lo\
. (i27) (iz)
X (U, —v) = Z cncmT<n|(aTkal)s|m>. (D.9)
m,n,k,l=0 o
Because the expectation value is real, we have
(nl(a™a")slm) = (m|(a™a"){|n) = (m|(a®a");|n), (D.10)

!See, for example, Schleich [17] or Carmichael [19]. The latter uses the same definition of the
Wigner distribution as given in this thesis; the result can be seen from Eq. (4.84) and Eq. (4.75b)
in the book.
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where the second equality follows from the property of symmetric operators. Sub-
stituting this into Eq. (D.9), we obtain

>0 iz (iz)F
=)= S caem LU ol gh, 1y,

k!
m,n,k,l=0
— (Z cm(m|> ez’z*aT—i-iza (Z cZ\n)) ’
m=0 n=0
= xy (u, ), (D.11)

where [¢)') is as defined below Eq. (D.6).

D.3 Property 3

X (U, V) = X, (—u, —v), (D.12)

where [¢,) = > 7 (—1)™¢m|m). Again, we use Eq. (D.8) and write

> N i2*)F (iz)!
)= 3 chen ELEL ittty m). (D.13)
m,n,k,1=0 o

Now, note that for a given m, and n, the only terms that survive are given by

| — k =m —n. Given this we can write

= ) () s i)k (iz)!
Xl = D0 (0B, CEAEE k1),

. —iz*)k(—iz)!
= 3 e SELEE gkl i),

k!
m,n,k,l=0
S * —iz*al—iza > m
= Z(—1)6n<nl> € (Z(—l) lem>>,
n=0 m=0
= Xw*(_u7 _U)a (D14)

hence proving Eq. (D.12).
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D.4 Property 4

We want to prove Eq. (5.52). To this end, we expand the characteristic function

and rearrange the equation:
Xin (1, —0) €xp [—zﬁi (gutt + qu)} ,
— (in| exp [z’u(a +al)+v(a— aT)] lin) exp [—2\@ (qett + qu)] :
= (in] exp {iul(a — vV2q,) + (! = V2q,)] + vl(a — iv2q,) — (o' +iv2q,)] } fin),

= (in| exp {z’u[(a —V2q, —iV2q,) + (a — V2q, +iV2¢q,)]
+ol(a - V20, — V20,) — (o +iv2q, — V2q,)] } fin),

= (inf exp {iuf(a — Q) + (o = Q)] +vl(a — Q) — (af — Q)] } im),

= (in|DT(—Q) exp [w(a +ah) +v(a - aT)} D(~Q)|in), (D.15)

where Q =v2(q, + iqy), and D is the displacement operator. Thus, defining
lin — Q) = D(—Q)|in), we have proved that

Xin (4, —v) exp [—2\/52' (qeu + qu)] = Xin—\/iq(% —v). (D.16)



Appendix E

Stochastic calculus

In this appendix, we show that the stochastic Schrodinger equation (SSE)

dlx(t)) = [dQc+dQal [x(¢)). (E.1)
has the solution
Ix(t)) = exp <—2ac /0 dt'e ™ + Qa + Q*c> 1x(0)), (E.2)

where Q is a stochastic quantity which we will write as Q = f(t)dt + dW, + idW,,.
Here, f(t) denotes an arbitrary, but not stochastic, function of ¢, and dW, , denote
(independent) Wiener increments. The solution was provided by Carmichael [59].

To solve the equation we have to know whether it is to be interpreted as the Ito
or Stratonovich SDE (stochastic differential equation). In our case, the SSE has to
be interpreted as an Ito SDE, since our SSE has been derived on the assumption that
dW's are white noises. If we had derived the SSE for a real noise (non-white noise)
process, and then had taken the limit of white noise, we would have to interpret the
SSE as a Stratonovich SDE. The way to see that our SSE is an Ito SDE is to derive
the master equation back from the SSE. To derive the master equation, we have to
use the fact that:

1. |x(t)) is statistically independent to the Wiener increment dW, where the

Wiener increment is the future increment.
2. dW;dW; = §;;dt, where i,j € {x,y} and the higher order terms are zero.

The second fact is called the Ito rule, and is unique of the solutions of Ito SDEs
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[35]. The derivation of the master equation, starting from the SSE for homodyne
detection scheme is given in [60].

We will now prove that Eq. (E.2) is indeed the solution of Eq. (E.1), using the
Ito rules. The solution can be best seen by first assuming that the answer can be

obtained using ordinary calculus, i.e., we assume that the answer is
x() = exp (Qa + Q") [x(0)), (E:3)

and checking if this answer is right even when Q is treated as a stochastic quantity.

Taking the differential of both sides, we need to consider
d {exp (Qa + Q*c)] = exp [(Q +dQ)a + (Q* + d@*)c] — exp (Qa + Q*c) . (E.4)
To this end, we expand the first term on the r.h.s to obtain
exp [(Q +dQ)a + (Q* + d@*)c] = exp (Qa) exp (Q*c)
s 1o s o Ao Lo s o
X 1+an+2(dQ)a + - 1—|—dQc+2(dQ)c+-~ ,  (E.5)
and note that according to the Ito rule we have

(dQ)* = (dQ*)* =0, (E.6a)
dQdQ* = 2¢2dt. (E.6b)

Equation (E.6a) follows from the fact that dWW, and dW, are independent, hence
dW,dW, = 0 from the Ito rule. dW? = dt is used to derive both Eq. (E.6a) and
Eq. (E.6b). Higher order terms vanish as in ordinary calculus. Putting Eq. (E.6a)
and Eq. (E.6b) into Eq. (E.5), we obtain

exp [(Q +dQ)a+ (@ + dQ")e]
= exp (Qa) exp (Q*C) (1 + dQa + dQ*c + 26_2tdtac) , (E.7)
which means that
d|x(1)) = (an +dQte+ 26_2tdtac) Ix(1)). (E.8)

Thus, we need an extra term in Eq. (E.3). The extra term needed is exactly
exp (—Zac fg dt’e‘2tl), thus proving that Eq. (E.2) is the solution of Eq. (E.1).



Appendix F

Computer codes

F.1 Main code

Code for solving the SSE. It calculates the output state, conditional fidelity and
probability distribution.

C code for quantum trajectory of continuous variable quantum teleportation
C for a fock state input

integer timestep, n, base, inputbase, dispbase

parameter (timestep=10000,n=50000,base=20, inputbase=1,dispbase=10)
!base = largest number for fock state basis for squeezed state
real*8 kappa,dt,probjump,r(2),avgno(0:timestep) ,ksqrt

real*8 model(0:timestep),rsqz,avgnumber (0:timestep),dtsqrt,sqrt2
real*8 norm,Qx,Qy,dQx,dQy,adga(0:timestep-1),bdgb(0:timestep-1)
real*8 inputcoeff(0:inputbase),cnorm,cdgcexpt (0:timestep-1)
real*8 adgaexpt(0:timestep-1),bdgbexpt(0:timestep-1)

real*8 bmodel(0:timestep-1),amodel(0:timestep-1),tr,tra

real*8 cdgc(0:timestep-1),gxreg,qyreg,newfrequency(-40:40,-40:40)
real*8 frequency(-40:40,-40:40),fid(-40:40,-40:40)

real*8 fiddist(-40:40,-40:40,1:10000),radiusreg

real*8 newradialfreq(1:50),radialfreq(1:50),radialfid(1:50)

complex*16 wavefn(O:inputbase,0:base,0:base),alpha
complex*16 apsi(0:inputbase,0:base,0:base)
complex*16 adgpsi(0:inputbase,0:base,0:base)
complex*16 bpsi(0:inputbase,0:base,0:base)
complex*16 bdgpsi(0:inputbase,0:base,0:base)
complex*16 adgapsi(0:inputbase,0:base,0:base)
complex*16 bdgbpsi(0:inputbase,0:base,0:base)
complex*16 rho(0:dispbase,0:dispbase),output(0:base)
complex*16 aexpt,bexpt,adgexpt,bdgexpt,dispoutput(0:dispbase)
complex*16 displace(0:base,0:base)

complex*16 cdgcpsi(0:inputbase,0:base,0:base)
complex*16 avgrho(0:dispbase,0:dispbase)

integer i,jumpno,ISEED,j,k,1,p,Qxint,Qyint,radiusint

!---set parameters---!

kappa = 1.0D0

ksqrt = dsqrt(kappa)

dt = 0.001D0

dtsqrt = dsqrt(dt)

sqrt2 = dsqrt(dfloat(2))

rsqz = 0.7D0 !squeezing parameter

open(1,file=’rho.dat’)
open(3,file=’fiddist.dat’)
open(4,file=’radialfidelity.dat’)

do j=1,n !loop for ensemble

if (mod (j,5000)==0)then
print *,j

endif

Qx =0
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Qy =0

wavefn = 0 !reset
!--set up initial two-mode vacuum squeezed states—-!
wavefn(:,0,0) = dfloat(1)/cosh(rsqz)
do k=1,base
wavefn(:,k,k) = -tanh(rsqz)*wavefn(:,k-1,k-1)
enddo
! !

=== set up initial input state-----
inputcoeff (inputbase) = 1
do i=0,inputbase

wavefn(i,:,:) = inputcoeff (i)*wavefn(i,:,:)
enddo
! !
do i = 1,timestep !loop for alice’s measurements

r(1) = gasdev(15)
r(2) = gasdev(17)

!-——calculate alpsi>,a+|psi>,blpsi>,b+|psi>-—-!

la,a+ and a+a
do k=1, inputbase
adgpsi(k,:,:) = dsqrt(dfloat(k))*wavefn(k-1,:,:)
apsi(k-1,:,:) = dsqgrt(dfloat(k))*wavefn(k,:,:)
adgapsi(k,:,:) = k*wavefn(k,:,:)
enddo
adgapsi(0,:,:) =0
apsi(inputbase, :
adgpsi(0,:,:) =0
'b,b+ and b+b
do k=1,base
bdgpsi(:,k,:) = dsqrt(dfloat(k))*wavefn(:,k-1,:)
bpsi(:,k-1,:) = dsqrt(dfloat(k))*wavefn(:,k,:)
bdgbpsi(:,k,:) = k*wavefn(:,k,:)
cdgepsi(:,:,k) = k*wavefn(:,:,k)

enddo
bdgbpsi(:,0,:) =0
bpsi(:,base,:) =0

bdgpsi(:,0,:) =0
cdgepsi(:,:,0) =0

!---first compute expectation values and norm---!
norm = sum(wavefn*conjg(wavefn))
aexpt = sum(conjg(wavefn)*apsi)
adgexpt = conjg(aexpt)
bexpt = sum(conjg(wavefn)*bpsi)
bdgexpt = conjg(bexpt)

! 1
V- check photon numbers after homodyne measurement------------ !

adgaexpt (i-1) = sum(conjg(wavefn)*adgapsi)/norm
bdgbexpt (i-1) = sum(conjg(wavefn)*bdgbpsi)/norm
cdgcexpt (i-1) = sum(conjg(wavefn)*cdgcpsi)/norm

dQx = dt*ksqrtx((aexpt+adgexpt) + (bexpt+bdgexpt))/norm +dtsqrt*r(1)

dQy = -dt*ksqrt*imag((adgexpt-aexpt) - (bdgexpt-bexpt))/norm +dtsqrt*r(2)
Qx = Qx + dQx*exp(-ixkappa*dt)

Qy = Qy + dQy*exp(-ixkappaxdt)

!--use stochastic schrodinger equation to evolve wavefn--!
wavefn = wavefn-kappa*(adgapsi + bdgbpsi)*dt + ksqrt*(dcmplx(dQx,-dQy)*apsi +dcmplx(dQx,dQy)*bpsi)
! !

enddo !'end of alice’s measurements

adga = adga + adgaexpt
bdgb = bdgb + bdgbexpt
cdgc = cdgc + cdgcexpt
output = wavefn(0,0,:)

[ RSt run victor’s measurement,displacement----- !
alpha = demplx(Qx,Qy)
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!---number state representation of displacement op-—-!
displace(0,0) = exp(-alpha*conjg(alpha)/2)
do k = 1,dispbase

displace(k,0) = alpha/dsqrt(dfloat(k))*displace(k-1,0) !calculate first column,<m|a>, where |a> is coherent state

displace(0,k) = -conjg(alpha)/dsqrt(dfloat (k))*displace(0,k-1) !calculate first row, <-a|n>
enddo

do k=1,dispbase
1-—<k|D(a) |k>--!
displace(k,k) = (displace(k-1,k-1)#*dsqrt(dfloat(k)) + alpha*displace(k-1,k))/dsqrt(dfloat(k))
1

do 1=k+1,dispbase
displace(l,k) = (displace(l-1,k-1)*dsqrt(dfloat(k)) + alphaxdisplace(l-1,k))/dsqrt(dfloat(1l)) !column
displace(k,1) = (displace(k-1,1-1)*dsqrt(dfloat(k)) - conjg(alpha)*displace(k,1-1))/dsqrt(dfloat(l)) !'row
enddo

enddo

!---now apply the displacement to output field---!

do i=0,dispbase
dispoutput (i) = sum(displace(i,0:base)*output)
enddo
! '

cnorm = sum(dispoutput*conjg(dispoutput))
do k=0,dispbase
do 1=0,dispbase
rho(k,1)=dispoutput (k) *conjg(dispoutput (1)) /cnorm
enddo
enddo
avgrho = avgrho + rho
!----end of victor’s measurement,displacement------- !

V- fidelity distribution -----------------—- !
if (Qx.gt.0)then
if(Qx.gt. (4.0))then
Qx = 4.0
else
Qx = Qx + 0.05
endif
else
if (Qx.1t.(-4.0))then
Qx = -4.0
else
Qx = Qx - 0.05
endif
endif

if(Qy.gt.0)then
if(Qy.gt.(4.0))then
Qy = 4.0
else
Qy = Gy + 0.05
endif
else
if(Qy.1t.(-4.0))then
Qy = -4.0
else
Qy = Qy - 0.05
endif
endif
Qxint = int(Qx*10)
Qyint = int(Qy*10)
£id(Qxint,Qyint) = fid(Qxint,Qyint) + real(dispoutput(inputbase)*conjg(dispoutput(inputbase))/cnorm)
frequency(Qxint,Qyint) = frequency(Qxint,Qyint) + 1
fiddist(Qxint,Qyint,frequency(Qxint,Qyint)) = real(dispoutput(inputbase)*conjg(dispoutput (inputbase))/cnorm)
|t end of calculating fidelity distribution -------------- !

Vo radially symmetric conditional fidelity !
radius = dsqrt(Qx**2+Qy**2)
radiusint = 1 + int(radius*10)
if (radius.LE.5) then
radialfid(radiusint) = radialfid(radiusint) + real(dispoutput(inputbase)*conjg(dispoutput (inputbase))/cnorm)
radialfreq(radiusint) = radialfreq(radiusint) + 1
endif

enddo !end of ensemble run

| mmmm e fidelity as a function of gx and qy !
newfrequency = frequency
do i=-40,40
qxreg = ix0.1d0
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do j=-40,40
qyreg = j*0.1d0
if (frequency (i, j)==0)then

newfrequency(i,j) =1

endif

write(3,300) gxreg,qyreg,fid(i,j)/newfrequency(i,j),frequency(i,j)
enddo
enddo

newradialfreq = radialfreq

do i=1,50

radiusreg = i+0.05

if (radialfreq(i)==0)then
newradialfreq(i) = 1
endif

write(4,400) radiusreg,radialfid(i)/newradialfreq(i),radialfreq(i)

enddo

do i=0,dispbase

do j=0,dispbase
write(1,100) avgrho(i,j)
enddo

enddo

close(1)

close(3)

close(4)

do i=0,dispbase
tr = tr + avgrho(i,i)

enddo

print *,tr

100  format( e20.10)
200 format( 5e20.10)
300 format( 4e20.10)
400  format( 3e20.10)

end

! randomnumber generators

FUNCTION gasdev(idum)
INTEGER idum
REAL gasdev
c USES ran3
INTEGER iset
REAL fac,gset,rsq,vl,v2,ranl
SAVE iset,gset
DATA iset/0/
if (idum.1t.0) iset=0
if (iset.eq.0) then
1 v1=2.*ran3(idum)-1.
v2=2.*ran3(idum)-1.
rSQ=V1kk2+v2%*2
if(rsq.ge.1..or.rsq.eq.0.)goto 1
fac=sqrt (-2.*log(rsq) /rsq)
gset=vi*fac
gasdev=v2x*fac
iset=1
else
gasdev=gset
iset=0
endif
return
END

FUNCTION ran3(idum)
INTEGER idum
INTEGER MBIG,MSEED,MZ

REAL ran3,FAC
PARAMETER (MBIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)

INTEGER i,iff,ii,inext,inextp,k

INTEGER mj,mk,ma(55)

SAVE iff,inext,inextp,ma

DATA iff /0/

if (idum.1t.0.or.iff.eq.0)then
iff=1
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mj=

abs (MSEED-abs (idum) )

mj=mod (mj ,MBIG)

ma(
mk=
do

11 con
do

12

13 con
ine:
ine:

65)=mj

1

11 i=1,54

ii=mod(21%i,55)

ma(ii)=mk

mk=mj-mk

if (mk.1t.MZ)mk=mk+MBIG

mj=ma(ii)

tinue

13 k=1,4

do 12 i=1,55
ma(i)=ma(i)-ma(1+mod(i+30,55))
if (ma(i).1t.MZ)ma(i)=ma(i)+MBIG

continue

tinue

xt=0

xtp=31

idum=1

endif

inext=
if (ine:
inextp:
if (ine:
mj=ma(
if (mj.
ma(ine:
ran3=m,
return
END

F.2

inext+1
xt.eq.56)inext=1
=inextp+1
xtp.eq.56)inextp=1
inext)-ma(inextp)
1t.MZ)mj=mj+MBIG
xt)=mj

j*FAC

Wigner plot
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This code takes a density operator as input and produces the Wigner distribution
as its output.

C This progr:
C this progr:
C rho is suc
parame
parame
parame

double
double
double
double
double
double
double
double

intege:
pi=3.1

am is a little modification to howard’s wigner function plotting program
am creates Wigner.dat from rhoss.dat, which is a given denstiy matrix

h that rhonm = conjg(rhomn)

ter (mphoton=10,nn=mphoton+1)

ter (xmin=-4.0,xmax=4.0,ymin=-4.0,ymax=4.0)

ter (nxstep=50,nystep=50)

complex rho(0:mphoton,0:mphoton)

precision logfact(0:mphoton),tr

precision xstep,ystep,x,y,xy,logxy,logfactor
precision Qfn,sumQfn,Wig,sumWig,sign

complex al,logal,logall(0:mphoton)

complex clogfactor,clogfactorl,clogfactor2
precision mumax,numax,mustep,nustep,mu,nu,munu
precision factorn,factorm

r i,j,n,m,k,1,nwig,minusn,minusl,ii
4159265358979323

open(unit=1,action="read’,file=’rhoss.dat’,status=’o0ld’)

do i=0

do j=

read

100 form:
end d

end do

,mphoton

0, mphoton
(1,100)rho (i, j)
at( €20.10)

o

close (unit=1)

!print
do i=0
tr =
enddo
print

*,rho
,mphoton
tr+rho(i,i)

*,tr

logfact(0)=0.0

do n=1
logfa
end do

open (4

sumWig:

,mphoton
ct(n)=logfact (n-1)+0.5%log(real(n))

,file=’Wigner.dat’,status=’unknown’)

=0.0
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xstep=(xmax-xmin) /real (nxstep)
ystep=(ymax-ymin) /real (nystep)
do i=0,nxstep
x=xmin+real (i) *xstep
do j=0,nystep
y=ymint+real (j)*ystep

XY=X*XHY*Y
al = cmplx(x,y)

Wig=0.0
xy=2.0%xy
logxy=log(2.0%xy)
minusn=-1
do n=0,mphoton
minusn=-minusn
logfactor=-xy-logxy
minusl=-1
do 1=0,n
minusl=-minusl
logfactor=logfactor+logxy
sign=real (minusn*minusl,8)
Wig=Wig+sign* (rho(n,n))*exp(logfactor+2.0D00* (logfact (n)-logfact (n-1)-2.0D00*logfact(1)))

end do
end do
!print *,Wig
logal=log(2.0%al)

logall(0)=0.0
do n=1,mphoton
logall(n)=logall(n-1)+logal

end do

do n=1,mphoton

minusn=-1

do m=0,n-1
minusn=-minusn
minusl=-1
do 1=0,m

minusl=-minusl

clogfactor=-xy+logall(l)+conjg(logall(n-m+1))+logfact(n)+logfact (m)
* -2.0%(logfact (n-m+1) +logfact (m-1)+logfact (1))

sign=real (minusn*minusl)

Wig=Wig+2.0*sign*real(exp(clogfactor)*rho(n,m))

end do
end do
end do
Wig=2.0*Wig/pi
sumWig=sumWig+Wig

write(4,300)x,y,Wig
end do
end do
close(4)
print *,sumWigk*xstep*ystep

300 format(3(2x,e12.5))

stop
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