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Abstract

Stochastic electrodynamics is applied to treat continuous-variable teleportation. The ap-

proach circumvents the operator algebra that would otherwise be present in a quantum

calculation. It brings advantage in the ease with which a broadband treatment of telepor-

tation may be given.

We derive the teleported squeezing spectra and intensity correlation function for both

coherent and squeezed vacuum input states. It is shown that the squeezing spectra observed

by Victor (the independent verifier) reproduce those obtained from a quantum trajectory

formulation of teleportation. Stochastic electrodynamics is expected to fail, however, in

its treatment of photo-electron counting experiments. Indeed it miscalculates the intensity

correlations measured at the teleporter output.
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Preface

On many occasions has the author found himself in a quandary trying to decide on what

material to present. This report has not given the author a chance neither to be expansive

or to expatiate on certain topics as he would have liked. In compromising, he has tried to

be comprehensive with the selected topics.

The readership of this work is defined at the level of a graduate student with conven-

tional background knowledge on non-relativistic quantum mechanics and quantum optics.

It also assumes familiarity with all computational tools that have been employed in the

calculations. For most part this involves concepts of stochastic processes and preferably

stochastic calculus, although this is not essential. Complex analysis is required for integrals

that appear in the final derivation of the intensity correlation function in Chap. 6. We do

however treat this as an adjunctive calculation and the integrals may be referred to as known

results.

An Overview

The thesis begins with an introduction to what the author feels every researcher, in either

the area of quantum information science or quantum/atom optics (and perhaps related

areas) ought to appreciate — quantum non-locality. Holding such a substantive place in our

understanding of nature, the fundamentality of quantum non-locality is manifested through

uncountable quantum information networks proposed by physicists today. We introduce the

principle of one such network — quantum teleportation. Among the many facets of quantum

information processing protocols, teleportation utilizes non-locality to assist the sending of

information over large distances; the details of which are revealed in Chap. 2. The attention

then drifts towards stochastic electrodynamics and its application to teleportation within a

quantum optical setting. The third chapter is intended to be transitory. The analysis and

historical account of the subject presented up to the end of Chap. 3 brings the reader up to

date and adequately confident to examine teleportation by the more intriguing methods of

Chap. 4–6. The transitions between time and frequency domains in our analysis are shown

below:

Chapter 3

Chapter 4

Chapter 5

}

Chapter 6

Time domain

⇓
Frequency domain

⇓
Time domain
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Each of Chap. 5 and 6 is based on a measure of the success of teleportation while Chap. 4

discusses some preliminary assumptions and derives the teleporter output as a function of

known inputs in frequency space. In quantifying teleportation, no attempts are made to use

“fidelity”, as the word has been assigned specific definitions within quantum information.

This thesis will relinquish the word to cease ambiguity as to whether it is the technical

definition that has been referred or the faithfulness of teleportation.

Teleportation will be verified upon examining the squeezing spectra and intensity corre-

lation function at the output. The two quantities are derived in Chap. 5 and 6. We close this

report by summarizing the results obtained in the investigation thus far, and draw some con-

clusive statements regarding the applicability of stochastic electrodynamics to teleportation

in Chap. 7. Possible future elaborations are also suggested therein.

A Note of Caution : I have not taken care with the use of the word “mode”, and unfortu-

nately the word is ubiquitous in physics, especially within optics. Technically a mode of the

optical field is labelled by a particular frequency, direction of travel, and its polarization. For

the majority of the content, we will not be so assiduous with the precise definition. We shall

adapt to using mode as synonymous with frequency. However, in Sect. 4.1.2 where a density

of modes g(ω) is used to convert a set of discrete field statistics is into the continuum, the

word mode will come to denote all three properties just mentioned. Even more confusing,

the word “mode” as used to differentiate single-mode and multi-mode teleportation does not

refer to the frequency content of the light at all. All fields are in fact broadband, i.e. multi-

frequency. Mode here refers to the use of distinctive pulses of light for teleportation and

leads to a dissimilarity in the sequence of steps taken to accomplish teleportation. This is a

remark in need to be pointed out if one intends to delve into the literature of teleportation.

In general, the meaning of “mode” should be read under context.
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Chapter 1

Entanglement: A Departure

from Classical Physics

The year 1935 brought to physics perhaps one of the most renowned controversies known of

science. The year 1935 was when Einstein stood against profound notions widely accepted

by the scientific community but to which he could not concede, these notions being non-

locality and indeterminism as proclaimed by quantum mechanics. Einstein, along with two

younger supporters, formally put forward his objection, which later became known as the

EPR paradox, bearing the name of those who had such radical thoughts about physical

reality: A. Einstein, B. Podolsky, and N. Rosen [1].

Unfortunately for EPR, this was also the age of quantum dominance. Quantum mechan-

ics had flourished so vigorously churning out spectacular predictions that most workers in

the field did not question the fundamental nature of the theory they were using, i.e. the

probabilistic interpretation of quantum mechanics. The estimable EPR paradox arguably

known to every graduate student of physics today, had played a subordinate role then, except

for Schrödinger, Bohr1, and perhaps a few of equal rank who communicated with Einstein.

The problem, the incompleteness of quantum mechanics, which EPR had so much faith in,

was disconnected from the core physics community. There was no impetus in the hearts of

many towards any form of resolution. We now discuss the EPR paradox at some length.

1.1 The Einstein-Podolsky-Rosen Paradox

In establishing any theory, or in the case of EPR, a repudiation of another, assumptions are

made. Unlike other situations where the assumptions (or approximations) at the outset may

often be judged reasonable or not, based on how sensitive they are to variations of pertinent

parameters in a model, the assumptions of EPR were no more than an asseveration of their

intuition. Let us set out the premise of their argument:

1An initial reply to the 1935 EPR paper is documented, for example in [2]. Since then Niels Bohr was

known to have communicated with Einstein on the foundations and interpretations of quantum mechanics

until the time of his passing.

1



2 CHAPTER 1. ENTANGLEMENT: A DEPARTURE FROM CLASSICAL PHYSICS

• Reality

EPR claimed, as a sufficient condition of physical reality, the following [1].

If, without in any way disturbing a system, we can predict with certainty (i.e., with

probability equal to unity) the value of a physical quantity, then there exists an element

of physical reality corresponding to this physical quantity.

An “element of physical reality” is a variable assigned to a physical quantity which

describes it at a particular location. The value of this variable is one of the set of

possible results of measuring the physical quantity. It is clear then, in the theory of

quantum mechanics, that such elements of reality refer to eigenvalues of observables.

• Locality

Locality is often said to be “no-action-at-a-distance”. It postulates that the action of

measuring one system at one location, does not instantaneously disturb or “influence”

another system at a spatially separated location to the former.

• Completeness

Einstein certainly had no doubts about the correctness of quantum mechanics; it was

the completeness of the theory which had irritated him. EPR considered the following

to be a necessary criterion for a theory to be complete:

Every element of the physical reality must have a counterpart in the physical theory.

EPR argued that quantum mechanics was incomplete on the grounds of “local realism”,

which was the combined territory of reality and locality. Due to D. Bohm and Y. Aharonov,

the important workings of the EPR paper are encapsulated in a simple thought-experiment

involving two particles (Fig. 1.1) [3]. Consider a source capable of producing two spin-1/2

particles, flying apart in opposite directions with total spin of zero. Denoting the spin of
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Fig. 1.1: Bohm’s version of the EPR paradox. Two particles are emitted into pure linear motion.

particle j (j = 1, 2) along the direction of a unit vector n by sjn, Bohm’s recapitulation of

the EPR argument proceeds as below:

Suppose two observers, Alice and Bob, each with a Stern-Gerlach magnet standing at

opposite ends awaiting particles 1 and 2 respectively. Assuming the particles could travel

arbitrarily large distances without being disturbed, Alice and Bob choose to station them-

selves sufficiently far apart so that after the initial interaction in the source, each particle

could be considered an independent system on arrival. Suppose Bob now awaits particle 2

with his Stern-Gerlach magnet orientated to measure the z component of its spin. He finds

s2z = h̄/2. By locality, Bob’s act of measuring particle 2 could not have causally affected

particle 1. Furthermore, conservation of total angular momentum allows Bob to predict with
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certainty the z component of the spin of particle 1, thus meeting the criterion of reality;

the element of reality in this case being s1z. We see then, given the initial condition, a

local realistic argument interprets the evolution of a physical system to be predetermined;

expressive of Einstein’s thought that the laws of physics be deterministic.

Now suppose Bob now orientates his Stern-Gerlach magnet to first measure s2z and

then s2x, at the same location in space. By the same token, Bob now has knowledge

of both s1z and s1x. There should then exist two elements of reality, one being s1z and

the other s1x. This was an attack against Heisenberg’s uncertainty principle; namely that

precise knowledge about one of any two observables represented by non-commuting operators

precludes knowledge of the other. In other words, the element of reality corresponding to

either the z or x component of spin for particle 1, did not enter quantum theory, for if both

elements of reality did, both eigenvalues would be simultaneous permissible. Einstein thus

proposed that either

(1) the quantum mechanical description of reality given by the wave function is not com-

plete or,

(2) when the operators corresponding to two physical quantities do not commute the two

quantities cannot have simultaneous reality.

Since, abiding by their definition of reality, the above example demonstrates that (2) is false,

EPR, in accordance with their necessary condition for a theory to be complete, condemn the

wave function of quantum mechanics as holding an incomplete description of reality. The

physics mainstream remained oblivious to EPR’s claim for almost 30 years, until finally in

1964 while working at CERN, J. Bell put to rest all speculations regarding alternatives to

quantum mechanics — the so called local hidden-variable theories — with his definitive

statement today renowned as Bell’s inequality.

1.1.1 Defying Locality and Reality

It was in a series of three papers, motivated by the EPR paradox, that Schrödinger intro-

duced the concept of quantum entanglement, and at the same time presented to the world

his famous “cat” [4], [5]. Formally, An entangled state is a state of a compound system whose

subsystems are not probabilistically independent [6]. One such state is

|ψ〉 = c(1) |α1〉 ⊗ |η2〉 + c(2) |β1〉 ⊗ |χ2〉 , (1.1a)

where |ψ〉 describes a two particle system with probability amplitudes c(1) and c(2),

∣
∣c(1)

∣
∣
2
+
∣
∣c(2)

∣
∣
2

= 1 . (1.1b)

Each subsystem is labelled by an arabic subscript, and satisfies

〈α1|β1〉 = δαβ , 〈η2|χ2〉 = δηχ . (1.1c)

An entangled state is often said to be one that is impossible to factorize into a product,

|a〉⊗ |b〉 where |a〉 and |b〉 may be general superpositions for subsystem 1 and 2 respectively.

This was also put forth qualitatively2 by Schrödinger in 1935 as the following theorem:

2Schrödinger’s theorem is a defining feature of entanglement but does not quantify entanglement by any

means of numbers or measures.



4 CHAPTER 1. ENTANGLEMENT: A DEPARTURE FROM CLASSICAL PHYSICS

An entangled state can never be factorized and a factorized one can never be written as

an entangled one.

A proof may be found in Ref. [7].

Let us put the above definitions, i.e. (1.1), in the context of Bohm’s two-particle setting.

The scenario is described by the spin-singlet state

|ψ〉 =
1√
2

(

|↑1n, ↓2n〉 − |↓1n, ↑2n〉
)

, (1.2)

where |↑1n, ↓2n〉 = |↑1n〉⊗|↓2n〉, |↓1n, ↑2n〉 = |↓1n〉⊗|↑2n〉 with ↑jn and ↓jn denoting sjn = h̄/2

and sjn = −h̄/2 respectively. Note the vital attribute that no direction in space is preferred

by spin-singlet states. This very fact is the essence of entanglement. We can draw upon an

analogy whereby macroscopic objects may be entangled. Consider three pairs of balls, each

ball is entangled with one other in colour; the white entangled with the black, the red with

the blue, and finally purple with green. Alice and Bob now each pick out a ball each from a

sack and walk off in opposite directions with their balls completely enclosed in their hands.

After some distance, Bob decides to loosen his palm and look at his ball. It is white. Alice

also decides to look at her ball, and finds it to be black. One could well argue that Alice

just coincidentally grabbed the black ball out of the sack; i.e. the colour of Alice’s ball was

predetermined.

The real factual situation described by quantum mechanics is frightening, for there were

six balls initially to be picked from. So let us return all the balls to the sack and bring

Alice and Bob to the origin where they are allowed to pick again, without looking, a ball

at random. This time Bob looks at his ball and finds its colour to be purple. To his

astonishment, after returning to the sack Bob learns that Alice held a green ball. The

analogous situation to (1.2) with our entangled balls is simple. The moment of revelation at

either Alice’s or Bob’s end turns the colour of the ball in the other’s palm into that of the

entangled colour. That is, suppose Alice looks first and finds her ball to be black, she knows

Bob must now hold a white one, and if her ball was blue, Bob’s will be red. The role of n in

(1.2) which observers may choose by orientating their Stern-Gerlach magnets is played out

by the myriad of colours one could make available in our balls. The carriage of the ball by

Alice or Bob then labels the particle number j. The spin, or more generally the state of the

particle corresponds to the endowed colours in our analogy, while the measurement process

is the very act of looking at the ball.

An exceedingly non-classical property that is assumed in the foregoing discussion can now

be brought to the fore from Bohm’s two-particle system, i.e., the measurement postulate in

quantum mechanics, which when tied with the conservation of spin (or any other property)

so inimically confronts our intuition regarding locality. We demonstrate in the next section,

how the comfort-zone of local realism that Einstein (or us) had insisted was demolished.

1.1.2 Superluminal Communication

So does the above imply that faster-than-light communication can be made possible with

spin-entangled particles, or for that matter, any variable which can be made to possess such

non-local correlations ? Perhaps Einstein had introduced the condition of locality into the

EPR paradox to pre-empt special relativity being overthrown by quantum mechanics. It

should be recognized that to establish communication, a sender must somehow modulate
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a physical attribute of some material body. That modulation must then arrive on the

doorsteps of a receiver, who is able to read the sender’s deliberateness in the signal. Such

a task can not be accomplished solely by the shared correlation in the hands of Alice and

Bob. At best, Alice and Bob can agree to measure only sjz prior to departure from the

source, and assign Alice as the sender. She can then change the quantization axis which

she measures as a form of encoding. However, the distant Bob has no way of telling Alice’s

modulation; all Bob sees is a string of s2z values. Thus, no useful information is transferred.

In addition, special relativity is in no sense violated by the non-locality of entanglement.

The implication of Einstein’s theory of special relativity is clear: that no moving objects

with finite rest-mass can attain the speed of light. So either the disturbance transmitted

from Alice to Bob has no mass, or, nothing really did propagate — neither violating special

relativity.

1.2 Hidden-Variable Theories and Bell’s Theorem

We now outline the development of interpretational subtleties in quantum mechanics.

1.2.1 The Meaning of Hidden-Variables

Should one come to terms with the fundamental framework of quantum mechanics — i.e.,

that the description of physical reality can only be furnished by probabilities of possi-

ble events ? Some have been uneasy and have suggested that the stochastic nature of

quantum mechanics implies that there are, floating around, unknown variables, hidden-

variables, which must accommodate the probabilities obtained from the time-dependent

Schrödinger equation while remaining unobserved. These variables when specified, would

render dispersion-free states for the observables of a system (i.e. without uncertainties).

In other words, with knowledge of the hidden-variables one could predict which of the set

{a1, a2, . . . an} satisfying

Â |ψ〉 = ai |ψ〉 , i = 1, 2, . . . , n , (1.3)

would result from a measurement of a system in the state |ψ〉, corresponding to an observable

represented by Â, with unit probability, thus providing a fully deterministic theory of the

type Einstein had envisaged.

Prior to the EPR declaration against the completeness of quantum mechanics, hidden-

variable considerations had already raised a suspicion that quantum theory may not be

safe from any loopholes. The first attempt to dispel such thoughts came from the brilliant

mathematician J. von Neumann, who presented a proof in 1932 that hidden-variable theories,

local or not, could never reproduce the predictions of quantum mechanics, i.e. hidden-

variable theories are impossible [8]. Both von Neumann and EPR’s claim had stimulate

no effort on the part of others, to pin down in precise terms whether one theory should be

preferred over the other. Finally by 1952 D. Bohm had explicitly constructed a non-local

hidden-variable theory yielding results in parallel to those predicted by quantum mechanics

[9], [10]. That Bohm could concoct such a hidden-variable description meant von Neumann’s

1932 proof required further scrutiny.
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1.2.2 An Inequality to Rule Them All

Two prodigious results arose from the mind of J. Bell. The first came in 1964. A mathemat-

ical condition was derived for the two-particle spin system which eliminated the possibility

of having a local realistic theory [11]. The second was Bell’s reassessment of von Neumann’s

proof in which an imprudent assumption was identified. The assumption was shown to be

an unnecessary restriction to impose on hidden-variable theories [12]. We follow the argu-

ment of Bell that led to his critically acclaimed relation. Let us return to the fashionable

spin-singlet scenario of Bohm, this time with Bob measuring the spin component of particle

2 at an angle α to the z-axis. The measurement direction will be confined to the xz-plane

for simplicity (Fig. 1.1) and the measured spin component denoted by s2α.

A successful general proof to show that local hidden-variable theories are impossible must

embody determinism, provided by hidden-variables, conventionally written as λ. Thus there

should exist a probability density function p(λ) with the normalization,

∫

Λ

p(λ) dλ = 1 , (1.4)

where λ is a continuous variable λ ∈ Λ. Each pair of particles has a definite but undetectable

value of λ, where p(λ)dλ is the probability that a pair will have their hidden-variable be-

tween λ and λ + dλ. It must also be assumed that Alice’s and Bob’s measurements be

independent. In no sense shall s2α have any dependence on the orientation of Alice’s Stern-

Gerlach apparatus and neither shall Alice’s measurement depend on Bob’s. Bell began by

considering the correlation between s1z and s2α,

f(α) ≡
∫

Λ

s1z(λ) s2α(λ) p(λ) dλ . (1.5)

By considering another measurement of the spin component lying at an angle β to the z-axis,

we may write

f(α) − f(β) =

∫

Λ

[s1z(λ) s2α(λ) − s1z(λ) s2β(λ)] p(λ) dλ . (1.6)

Since the two particles must conserve spin; s1α(λ) = −s2α(λ), s1β(λ) = −s2β(λ),

f(α) − f(β) =

∫

Λ

s1z(λ) [s1β(λ) − s1α(λ)] p(λ) dλ

=

∫

Λ

s1z(λ) s1β(λ)

[

1 − 4

h̄2 s1β(λ) s1α(λ)

]

p(λ) dλ , (1.7)

where we have also noted [s1β(λ)]2 = h̄2/4. The magnitude of (1.7) must satisfy

∣
∣
∣f(α) − f(β)

∣
∣
∣ ≤

∫

Λ

∣
∣
∣s1z(λ) s1β(λ)

[

1 − 4

h̄2 s1β(λ) s1α(λ)

]

p(λ)
∣
∣
∣dλ . (1.8)

Since s1β(λ)s1α(λ) = ±h̄2/4; we must have
[
1 − 4 s1β(λ)s1α(λ)/h̄2

]
≥ 0. The probability

distribution is also positive definite, in which case the integrand of (1.8) has to be

∣
∣
∣s1z(λ) s1β(λ)

[

1 − 4

h̄2 s1β(λ) s1α(λ)

]

p(λ)
∣
∣
∣ =

[
h̄2

4
− s1β(λ) s1α(λ)

]

p(λ) . (1.9)
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Thus (1.8) becomes

∣
∣
∣f(α) − f(β)

∣
∣
∣ ≤ h̄2

4
+

∫

Λ

s1β(λ) s2α(λ) p(λ) dλ . (1.10)

Given that we have restricted Bob’s and Alice’s measurements (s2α and s2β) to be coplanar,

the expectation value defined by (1.5) will only be a function of the relative angle between

Alice’s and Bob’s measuring device with respect to the z-axis. That is we may write
∫

Λ

s1β(λ) s2α(λ) p(λ) dλ = f(α− β) , (1.11)

and (1.10) is written more compactly as

∣
∣
∣f(α) − f(β)

∣
∣
∣− f(α− β) ≤ h̄2

4
. (1.12)

This is Bell’s inequality. A statement which every local realistic theory must respect.

The question of whether a local hidden-variable theory can be devised to reproduce the

predictions of quantum mechanics may now be laid down quantitatively. Can we establish a

contradiction of Bell’s inequality by quantum mechanics ? Let us calculate the corresponding

average values in (1.12) within the formalism of quantum theory. When Alice observes

s1z =−h̄/2 or s1z = h̄/2, Bob must find particle 2 to be described by the respective spinors

|↑2z〉 =̇

[
1

0

]

, |↓2z〉 =̇

[
0

1

]

, (1.13)

where X =̇Y means Y is a representation of X . The operator ŝ2α can be written as a linear

combination of ŝ2z and ŝ2x,

ŝ2α = ŝ2z cosα+ ŝ2x sinα

=̇
h̄

2

[
cosα sinα

sinα − cosα

]

(1.14)

where we have represented spin operators using Pauli matrices. The eigenspinors of ŝ2α

corresponding to eigenvalues s2α = h̄/2 and s2α = −h̄/2 are respectively given by

|↑2α〉 =̇

[

cos (α/2)

sin (α/2)

]

, |↓2α〉 =̇

[

− sin (α/2)

cos (α/2)

]

. (1.15)

Hence the eigenstates for the second particle’s z component may be expanded as

|↑2z〉 = cos
(α

2

)

|↑2α〉 − sin
(α

2

)

|↓2α〉 , (1.16a)

|↓2z〉 = sin
(α

2

)

|↑2α〉 + cos
(α

2

)

|↓2α〉 . (1.16b)

It is now possible to find the conditional probabilities that form the expectation value for

ŝ1z ŝ2α from (1.16), which is

fqm(α) = − h̄
2

4

(∣
∣ 〈↑2α| ↑2z〉

∣
∣
2 −

∣
∣ 〈↓2α| ↑2z〉

∣
∣
2 −

∣
∣ 〈↑2α| ↓2z〉

∣
∣
2
+
∣
∣ 〈↓2α| ↓2z〉

∣
∣
2
)
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= − h̄
2

2

[

cos2
(α

2

)

− sin2
(α

2

)]

= − h̄
2

2
cosα . (1.17)

It now remains to show that fqm(α) violates the inequality of (1.12). We choose the case of

α = 2β, for which the quantum mechanical prediction is only consistent with that given by

a local hidden-variable theory if,

∣
∣
∣fqm(2β) − fqm(β)

∣
∣
∣− fqm(β) ≤ h̄2

4
=⇒

∣
∣
∣ cos(β) − cos(2β)

∣
∣
∣+ cos(β) ≤ 1

2
. (1.18)

Equation (1.18) is shown by the blue curve in Fig. 1.2, which clearly demonstrates the

incompatibility of quantum theory with Bell’s inequality. Out of the genius of Bell, we are
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Fig. 1.2: Bell’s inequality as calculated from quantum mechanics for the spectrum of spin components
specified by β. A violation of (1.12) is clearly shown for some intervals of β.

led to conclusively vindicate quantum mechanics of its postulated inadequacies. The theory

may be reinstated more formally:

No theory, while retaining both locality and reality, may replicate the predictions of quan-

tum mechanics for experiments involving such entangled states.

1.3 In the Spirit of Bell

Unfortunately Bell’s mathematical demonstration based on Bohm’s thought experiment

against local realistic theories was inapplicable to realizable experiments. Since any in-

validation (or verification) of a theory must ultimately rest upon experiments, equation

(1.12) was generalized. This later result is of great practicality and is the form by which

Bell’s inequality appears in the literature. It is referred to as the CHSH inequality (or

generalized Bell’s inequality), named after those who proposed it [13].

Following the spirit of Bell, another distinguished variant, the GHZ equality was de-

veloped by the trio D. Greenberger, M. Horne, and A. Zeilinger (GHZ), who considered
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three-particle correlation experiments [14], [15]. Sadly we do not have enough space to dwell

on the intricacies of their work. We note however, the principal point of their result.

In following their analysis, it is worth noting that the GHZ equality has no statistical

character. It eradicated the elements of reality with extreme decisiveness, by simply having

a quantum mechanical answer in utter contradiction to that obtained from a hidden-variable

consideration. The GHZ equality can be shown to refute local realistic theories based on a

single outcome; it simply requires no statistical averaging as opposed to (1.18). This is a

direct consequence of the fact that no probability distribution, and therefore no statistical

measure was introduced in their derivation. Such GHZ correlations have now been verified,

and innumerable experiments have tested local realistic theories via Bell’s theorem, all of

which affirmed quantum theory [16]–[21].
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Chapter 2

Teleportation Defined

Now that the reader should have come to terms with entanglement, can we capitalize on

such characteristics of quantum mechanics ? This question lies at the heart of quantum

information science, proliferating in exploitations of quantum entanglement. In fact

quantum information theorists today have gone beyond Schrödinger’s qualitative theorem

mentioned under (1.1c), and can extract and quantify entanglement as a physical resource

using a measure called e-bits (entanglement-bits), defined as one maximally entangled state

[22], [23]. Without attempting an explanation we list some commonly discussed tasks [24]

(the nomenclature is nevertheless somewhat self-explanatory), some understood more than

others, by which robust communication may be promised via entanglement:

• Quantum cryptography

• Quantum teleportation

• Super-dense coding

• Quantum error correction

All such ideas have risen from the will to transcend classical information processing capa-

bilities. The intention here is to concentrate on one implementation — quantum telepor-

tation — first announced in 1993.

2.1 Quantum Teleportation of Discrete Variables

Conceived by C. Bennett et al., who showed that quantum correlations in a two dimensional

Hilbert space shared between a sender and receiver could be harnessed for the reconstruction

of a quantum state at remote and unknown locations from the sender [25]. This has the

advantage that the physical attributes of a quantum particle may be sent over arbitrarily

large distances; unlike classical signal propagation, teleportation does not suffer from effects

of attenuation or noise.1

It will be instructive to first review the proposal of Bennett et al. for teleporting a

qubit, since the qubit is the main resource of interest for quantum information processing

today. Furthermore, the continuous-variable teleportation protocol, although differing in

architecture as we shall find, involves the same concepts to those designed for qubits.

1This assumes the particles used in teleportation reach their destinations intact.

11
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2.1.1 The Posed Problem

Alice the sender has at hand some normalized state,

|ψ1〉 = a |α1〉 + b |β1〉 (2.1)

where the subscript 1 denotes that her state is carried by particle 1. The Greek letters

α and β can label physical properties of the particle such as a spin component, or the

polarization of a photon; we shall keep this choice open.2 Alice would like |ψ1〉 to reappear

at Bob’s location without directly sending particle 1 through a set of intervening space-time

points between her and Bob. Alice must not extract information about |ψ1〉 by a direct

measurement, for that would collapse the state into one of its eigenstates while losing all

else. Neither can Alice obtain the complete set of eigenkets for |ψ1〉 by reproducing another

(or several) particle(s) with the same state |ψ1〉 for her to measure; such acts are forbidden

as a consequence of quantum mechanics known as the No-Cloning Theorem [26].3

2.1.2 Principles of Teleportation

The delivery of |ψ1〉 to Bob can be accomplished if Alice and Bob share an entangled pair

of particles, call them particle 2 and 3, where particle 2 is distributed to Alice and particle

3 to Bob. We shall use a pair in the form of an EPR singlet state (1.2),

|ψ23−〉 =
1√
2

(

|α2, β3〉 − |β2, α3〉
)

. (2.2)

By a “joint measurement”, Alice can couple |ψ1〉 to her share of the entangled state, i.e.

particle 1 to particle 2. Alice’s joint measurement is such that the result of her measurement

is one of four possible maximally entangled states,

|ψ12±〉 =
1√
2

(

|α1, β2〉 ± |β1, α2〉
)

, (2.3a)

|φ12±〉 =
1√
2

(

|α1, α2〉 ± |β1, β2〉
)

. (2.3b)

Equations (2.3) are a complete orthonormal basis for the two-particle system. They are

often referred to as the Bell operator basis, since they were shown to maximally violate Bell’s

inequality [27]. For this reason a measurement which projects an arbitrary two-particle state

onto one of (2.3) is commonly said to be a Bell-State-Measurement (BSM). Thus, the

total three-particle state before Alice’s BSM is given by

|ψ123〉 = |ψ1〉 ⊗ |ψ23−〉

=
a√
2

(

|α1, α2〉 ⊗ |β3〉 − |α1, β2〉 ⊗ |α3〉
)

+
b√
2

(

|β1, α2〉 ⊗ |β3〉 − |β1, β2〉 ⊗ |α3〉
)

. (2.4)

2The symbols α and β label the same physical property and {|α1〉 , |β1〉} is a complete orthonormal set
of basis states.

3It should be noted that the No-Cloning theorem does not say that no machine may be built to duplicate
multiple copies of any state. By restricting the cloning device (or process) to be representable by a unitary

operator, the theorem states that only orthogonal states may be reproduced while retaining the original

copy. It thus prevents the more beneficial case of cloning an arbitrary state.
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In order to bring out the essence of Alice’s BSM, one should write (2.4) in terms of the

Bell operator basis for which the complete three-particle state becomes

|ψ123〉 =
1

2

[

|ψ12+〉 ⊗
(

− a |α3〉 + b |β3〉
)

+ |ψ12−〉 ⊗
(

− a |α3〉 − b |β3〉
)

+ |φ12+〉 ⊗
(

a |β3〉 − b |α3〉
)

+ |φ12−〉 ⊗
(

a |β3〉 + b |α3〉
)]

. (2.5)

Quite visibly, Alice’s measurement will project Bob’s share of the EPR state into one of four

possible superpositions shown in (2.5). Each possible state for particle 3 is related to |ψ1〉
by a unitary transformation. With a probability of 1/4, Bob will be required to apply one

of four unitary transformations represented by Ûj (j = 1, 2, 3, or 4) depending on the result

of the BSM:

(1) Alice measures |ψ12−〉. Since the state of particle 3 is only different to that of particle 1

by an overall phase factor that is void of any physical significance, Bob need not

perform any alterations. The unitary operator is then the identity Î , understood here

to be represented by the 2 × 2 identity matrix,

Û1 = Î . (2.6a)

(2) Alice measures |ψ12+〉. Bob is required to reverse the relative phase occurring in

particle 3. This is accomplished by the phase change operator,

Û2 = eiπ |α3〉 〈α3| + |β3〉 〈β3| . (2.6b)

(3) Alice measures |φ12−〉. Bob must perform a state exchange which is effected by,

Û3 = |α3〉 〈β3| + |β3〉 〈α3| . (2.6c)

(4) Alice measures |φ12+〉. Both a phase change and a state exchange are required. Thus

one may compose (2.6b) and (2.6c) to obtain

Û4 = Û3 Û2 = eiπ |β3〉 〈α3| + |α3〉 〈β3| . (2.6d)

One may also consider performing a state exchange first followed by a phase change

since the two operators anti-commute, differing only by an overall phase.

[

Û3Û2, Û2Û3

]

+
= 0 . (2.6e)

It is easily checked that Û †
j Ûj = ÛjÛ

†
j = Î for all j. Equations (2.6) completes the telepor-

tation protocol.

2.1.3 Discrete Variables Critiqued

Two remarks affirm this protocol not repugnant to any accepted laws of physics. First

and foremost, the protocol respects the No-Cloning theorem. Alice’s BSM entails particle 1

losing its quantum state. Secondly, Bob must acknowledge Alice’s BSM result which requires
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at least two bits of classical information.4 This information is able to be stored, copied, or

transmitted by conventional means. That is, Alice may inform Bob about her BSM via a

telephone call. This obviously invalidates any attempts to use this protocol as a means of

faster-than-light communication.

Limitations

Two inefficacies set a perimeter for qubit teleportation:

(1) The first is fundamental. Only when one uses a maximally entangled state will par-

ticle 3 be related to particle 1 via four unitary transformations. This can be seen by

using equations (1.1) instead of (2.2) with the appropriate change of subscripts and

by setting c(1) = c(2) = 1/
√

2 to arrive at a similar result to (2.5). Any state which is

less entangled will reduce the fidelity of teleportation or the range of states that can

be teleported. It is clear then, that any such quantum information processing scheme

employing EPR correlations shall suffer from this deficiency.

(2) The second applies to schemes using a total of three particles. It is the experimen-

tal inability to project the input onto all four Bell-states given by (2.3).5 The first

teleportation experiment used the polarizations of a photon to encode the qubit, and

was only capable of identifying the singlet state |ψ12−〉 [34]. This was achieved by su-

perimposing the incident photon (particle 1) with particle 2 on a 50/50 beam-splitter.

We note below how the identification of |ψ12−〉 was possible:

It begins by realizing that of the four polarization states in (2.3), |ψ12−〉 is the only

antisymmetric one under exchange of particles. If one recalls that the tensor product

between the spatial and the polarization states must be overall symmetric for bosons,

then the two-particle spatial state for |ψ12−〉 had to be antisymmetric. This is the

situation where one photon is at each output port of a beam-splitter. Similarly we

may infer the three remaining two-particle spatial states corresponding to |φ12±〉, and

|ψ12+〉 to be symmetric. This is the case whereby two photons emerge from the same

output port. Thus |ψ12−〉 could be discriminated experimentally from coincidence

counting (simultaneous detections) at the beam-splitter outputs.

A successful Bell-state analyser for teleporting qubits using three particles, where the

state to be teleported is carried by a particle external to the teleportation scheme has

yet to be devised.

2.2 Teleportation of Continuous Quantum Variables

We now turn to the more general case of teleporting observables with a continuous eigen-

value spectrum such as the position and momentum of a massive particle. The theoretical

4Bennett et al. have shown by a “four-way coding scheme” [28] that successful (perfect) teleportation

using a classical channel capacity of any lesser than two bits would permit Bob to use the teleported particle
to send superluminal messages.

5A two-particle scheme proposed by S. Popescu managed to avoid this difficulty [29], [30]. In this scheme
however, one of the EPR particles also served to carry the input state. Consequently, only pure states can

be teleported; restricting one from considering for example, the (more interesting) case when the input is a

member of an entangled pair (one way of realizing “entanglement swapping” [31]–[33]).
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possibility was proposed almost a year after Bennett’s discrete-variable version by L. Vaid-

man [35]. Vaidman’s vision was then elaborated on by S. Braunstein and H. Kimble first

for a single-mode light field [36], and later for a broadband field [37]. It is the latter work of

Braunstein and Kimble’s that we shall come to appreciate later. For now it will suffice to

outline Vaidman’s idea.

2.2.1 The Protocol

Instead of the polarization, the motion of a subatomic body will be transferred to another

at a distant location.6 In parallel manner to teleportation of qubits, one is led to consider

position and momentum entanglement between particles 2 and 3. One possibility is

x2 + x3 = 0 , p2 − p3 = 0 , (2.7)

where xj and pj (j = 1, 2, 3) are eigenvalues for the position and momentum of particle j.

Note that like (2.2), (2.7) is a maximally entangle state, since one may infer with certainty

(x3, p3) given precise knowledge of (x2, p2), or vice versa.7 Like (2.2), (2.7) does not define

the motional state of any individual particle, but rather the joint property of two, which

now lies in an infinite-dimensional Hilbert space.

A third party, Victor the verifier, is hired to prepare particle 1, i.e. he is the sender

and receiver. Victor is posed with the same predicament as Alice with discrete variables. It

is impossible to measure particle 1 directly since its motional state is specified by two real

numbers corresponding to non-commuting operators, thus providing insufficient information

for its reconstitution at Bob’s end.8 However he may evade Heisenberg by considering

operators in the form of (2.7), because

[x̂i + x̂j , p̂i − p̂j ] = 0 ∀ i, j (2.8)

which renders (xi + xj) and (pi − pj) as properties simultaneously measurable with infinite

precision. The analogous BSM for position and momentum are then

x1 + x2 = x̄ , p1 − p2 = p̄. (2.9)

Alice’s measurement results are now given by a continuous range of values (x̄, p̄). The

moment Alice projects particles 1 and 2 onto the joint state of (2.9), particle 3 abruptly

jumps to the phase-space coordinate

x3 = x1 − x̄ , p3 = p1 − p̄ . (2.10)

Hence the EPR particle owned by Bob is now related to particle 1 via an infinite number

of possibilities instead of only four. The unitary transformation is now a function of the

continuous variables x̄ and p̄,

|xt, pt〉 = Û(x̄, p̄) |x3, p3〉 . (2.11)

The remaining task is trivial; Alice must transmit her measured results x̄ and p̄ to Bob, who

now displaces his particle in position and momentum by exactly this amount to reproduce

the motion of particle 1. This protocol is summarized in Fig. 2.1.

6The word “polarization” is used here in the usual relativistic quantum field sense, meaning either the
orientation of the electric field vector for a photon or the intrinsic angular momentum of some particle.

7The word “state” is used loosely here to refer to the variables (xj , pj).
8The analogous situation in discrete variables is defined by all cyclic permutations of [ŝjx, ŝjy] = ih̄ŝjz
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Fig. 2.1: Continuous-variable teleportation scheme. Victor does both the sending and receiving of the

quantum state.

2.2.2 Continuous Variables: A Problem or Resolution?

We now recognize that Vaidman’s idea runs parallel to that for discrete variables. Quite

clearly, teleportation of continuous quantum variables necessitates the transition from two

four-state operations (Alice’s BSM and Bob’s unitary transformation) to two expanded

over an infinite number of basis states. One is then naturally led to question whether

considering physical attributes lying in an infinite-dimensional Hilbert space resolves the

problems threatening the discrete-variable implementation. If we are already unable to

identify four states, how do we manage an infinite number of them !? Let us first note what

is asked of by (2.3). One must have a device which is capable of not only identifying that one

(not which) particle is in one polarization state while the other is in either the orthogonal

or the same state, but also providing knowledge of which relative sign in (2.3) was actually

detected. No such contrivance exists, and the initial teleportation experiment resorted to

examining implications of (2.3) as discussed already.

On a different front, there already exists technology capable of measuring directly, not

for massive particles but for photons, the continuous quantities x1 + x2 and p1 − p2 with

one-to-one correspondence. That is, without resorting to any subsidiary conditions, the re-

sults of measuring x̄ and p̄ are not degenerate. This is the technique of homodyne detection.

The existing capability in performing a BSM sets continuous-variable apart from discrete-

variable teleportation.

It is clear that in both discrete- and continuous-variable protocols, two conduits can

be identified to assist the conveyance of an arbitrary input state to Victor. One classical,

given by Alice’s communication to Bob, and one quantum, given by the sending of one EPR

particle to Bob. Finally, by the same token as the discrete-variable protocol, continuous-

variable teleportation eludes all possible contraventions of physical laws.



Chapter 3

Teleportation within Classical

Phase-Space

In this chapter we make a transition from introductory principles to the more rigorous expo-

sitions of Chap. 4–6 by adopting an explicit model of the teleporter in Sect. 3.1, later followed

by a time-domain discussion. The main focus of this report is enunciated in Sect. 3.2 where

we relate the teleportation protocol discussed thus far to the theory of Stochastic Elec-

trodynamics. It is also at this stage that we convolve the philosophical concepts addressed

in Chap. 1 to the implications of stochastic electrodynamics as applied to teleportation.

3.1 Teleportation with Quantum Optics

It is well-known that a mode of the electromagnetic field is formally equivalent to a harmonic

oscillator whose frequency of oscillation is equal to the frequency of the field mode. This

after all is not so surprising since the classical theory of radiation begins with the dipole

oscillator model. A noticeable feature in this connection is the formal equivalence of the

position and momentum for a mechanical system to the quadrature phase amplitudes of the

optical field. The understanding of photonic states at the quantum optical level allows us to

access the principles of teleportation in an experimental setting. Our theory is thus based

on a quantum optical implementation of Vaidman’s idea originally conceived by Kimble

and Braunstein [36]. This scheme teleports the quadrature phase amplitudes of the optical

field and is shown in Fig. 3.1. It has now become the “standard” scheme for implementing

continuous-variable teleportation, by which a number of experiments have been performed

[38]–[40].

A Quantum Optics Toolbox

We outline what quantum optics has to offer at each stage of the protocol, compartmentalized

into three main elements:

(1) EPR correlations:

The continuous-variable entanglement is embodied in a two-mode squeezed state,

generated by superimposing squeezed beams of light prepared by a degenerate para-

17
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Fig. 3.1: The standard protocol for a continuous-variable teleporter. The squeezing cavities are labelled

by SA and SB , while squeezing by the input cavity SI is by choice. Bob must displace his share of the
EPR correlation, EB′ , based on the set of numbers (IF

1 ,IF
2 ) from Alice to produce ES3. Victor may observe

either the squeezing spectrum (via balanced homodyne detection), or intensity correlation function (by a

photon counting experiment) of ES3.

metric oscillator (abbreviated DPO, whose terminology we shall come to understand

in Chap. 4) via a 50/50 beam-splitter. There is no need to be punctilious here with

these DPOs, an understanding of squeezed fluctuations in time will serve amply in ob-

serving teleportation. However, a frequency decomposition of its output field in terms

of the input will require aid from the more sophisticated Input-Output Theory.

(2) Joint measurement by Alice:

This is accomplished by employing balanced homodyne detection. In this scheme

an incoming state with annihilation operator ÊS is mixed through a lossless 50/50

beam-splitter with a strong monochromatic local oscillator of coherent amplitude El =

|El| eiφl , set precisely to the frequency of ÊS . On taking the expectation value with

respect to a coherent state, the condition for a strong local oscillator is

|El|2 � |ES |2 , (3.1)

where on the left-hand-side one usually treats the local oscillator classically. Photo-

detection then takes place at each beam-splitter output after which one photo-current

is subtracted from the other. This has the advantage over ordinary homodyne detection
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with its lower noise level on the final output photo-current for the same local oscillator

power and beam-splitter transmissivity. This can be seen from calculating the variance

of the final photo-currents in both cases [41], [42]. We further include two filters

each with a Lorentzian frequency response as a means of modelling Alice’s detection

bandwidths. These filters produce the currents IF
1 and IF

2 .

(3) Field displacement:

Bob’s displacement of EB′(t) will be straightforward, this involves adding another field

of coherent amplitude indicated by Alice’s measurement results onto EB′(t).

3.2 Teleportation within Stochastic Electrodynamics

3.2.1 Introduction to Stochastic Electrodynamics

We intend to treat the standard protocol of Fig. 3.1 not within the formalisms of quantum

optics but with Stochastic Electrodynamics (SED). It may be incisively said to be a

hybrid theory of Maxwellian electrodynamics and that of stochastic processes. Stochastic

electrodynamics was given birth to renounce Quantum Electrodynamics (QED); thus,

it had to be a theory capable of coping with the phenomenon of vacuum fluctuations given

by the non-zero variance of the quantized electric field Ê in the vacuum state,

〈0| Ê2 |0〉 − 〈0| Ê |0〉2 6= 0 , (3.2)

where |n〉 ≡ |n1, n2, . . . nk〉 is the multimode Fock state with ni being the number of photons

with frequency ωi. These ideas were decent attempts to resurrect the wave nature of light by

adding a stochastic component to the classical electric field, after which only its statistical

moments are deterministic [43], [44]. SED has had its successes, the most renowned and

well documented being its explanation to the Casimir effect [45]–[47]. There is no need to

expatiate about the background and application of SED, but the following principal elements

of the theory should be noted:

(1) By representing the fields as complex random variables satisfying a set of prescribed

statistics, the zero-point field is viewed as a tangible physical entity. It is this tailor-

made vacuum fluctuation that distinguishes SED from other classical theories and is

the sense in which SED is semi-classical.

(2) Statistical moments in SED are equivalent to quantum operator averages calculated

in the Wigner representation, i.e. averages in symmetric ordering [48], [49]. Ordering

of course plays no part in SED calculations.

These points will be made clearer in Chap. 5 when we consider squeezing as a classical

phenomenon [50].

Research Purpose

Besides pedagogical reasons, our aim is to reproduce the broadband results predicted from

Quantum Trajectory Theory, reported in Ref. [51] and [52]. In applying SED to describe

the standard protocol, there are a number of interesting points ought to be made regarding

the classicality of teleportation. These are noted in the following sections.
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3.2.2 A Local Hidden-Variable Theory

Phase-space distributions play a large part in quantum optics. Particularly appealing is the

interpretation of the phase-space distribution as a probability density in the classical sense

when it is positive-definite, in much the same way Schrödinger’s wave-function ψ(x, t) is

used to interpret |ψ(x, t)|2 as the probability density for a particle to be found at position

x at time t. The first person to associate quantum non-locality with the failure of positivity

for the Wigner function was Bell [53]. Bell noted that the positive Wigner function provided

one with an immediate hidden-variable model for the state. It was later demonstrated by

Banaszek and Wódkiewicz that the Wigner distribution of an EPR state produced from

non-degenerate parametric amplification, despite being positive everywhere, provided direct

evidence of quantum non-locality [54]. Although one can not weld the positivity of the

Wigner function for a two-mode squeezed state to its locality, it is possible to remove that

non-local character by providing a local realistic theory when the phase-space distribution

becomes positive-definite. SED is precisely a local hidden-variable description where one

may now consider a rendition of (1.5) in the form,

F (φ1;φ2) =

+∞∫

−∞

+∞∫

−∞

µ1(φ1, α1)µ2(φ2, α2)W (α1, α2) d
2α1 d

2α2 , (3.3)

where αk = xk + iyk (k = 1, 2) are the squeezed coherent amplitudes emerging from the

beam-splitter reaching homodyne detector k with local oscillator phase φk. The measure-

ment results are given by µk and W (α1, α2) is the Wigner distribution for the hidden vari-

ables (xk,yk), in equation (1) of Ref. [36]. The Wigner distribution must satisfy

+∞∫

−∞

+∞∫

−∞

W (α1, α2) d
2α1 d

2α2 = 1 , (3.4)

and is shown to be of the form

W (α1, α2) ∝ δ(x1 + x2) δ(y1 − y2) (3.5)

in the limit of infinite squeezing power, producing an ideal EPR state.

Since the Wigner function calculates operator averages in symmetrized order, a descrip-

tion of balanced homodyne detection falls within the capabilities of SED [50].1 Thus, if one

restricts to sending only Gaussian states (states having Gaussian Wigner distributions in the

phase-space variables) as we shall do, SED provides a local realistic theory of teleportation

using the standard protocol.

3.3 Fluctuations in the Classical Phase-Space

In the context of SED, the effect of optical devices on the light as it propagates through the

teleporter is to add statistical uncertainty, i.e. noise, to the optical field. These erratic fluc-

tuations of the field are modelled as stochastic processes for which its random evolution may

be generated by an appropriate stochastic differential equation [55]. Time-domain simula-

tions of this sort have been carried out by H. Carmichael and H. Nha [56]. A linear mapping

1This can be seen by representing the local oscillator as an operator in (3.12).
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in the time domain between the teleporter output and input pellucidly demonstrates tele-

portation. We derive this mapping within SED in a frame rotating at the central frequency

ωc of the input and EPR-correlated fields. This is then the solution to the stochastic differ-

ential equation for the teleporter. Since we are working exclusively in the time domain, no

explicit time dependence will be shown.

Beam-Splitter Transformations

Provided with the squeezed outputs EA and EB , we now consider the effects of the beam-

splitters and carry our field up to Alice for balanced homodyne detection. Consider the

situation of Fig. 3.2 where E1 and E2 are incident on a beam-splitter with reflection and

transmission coefficients r1, t1 and r2, t2 respectively. There exist variations to which E3 and
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Fig. 3.2: The beam-splitter transformation

E4 may be expressed in terms of E1 and E2 depending on the particular phase transformation

on crossing the beam-splitter. However the phase is chosen, conservation of energy bounds

the possible alternatives; it demands for a lossless beam-splitter,

|E1|2 + |E2|2 = |E3|2 + |E4|2

=
(
|r1|2 + |t1|2

)
|E1|2 +

(
|r2|2 + |t2|2

)
|E2|2

+
(
r∗1t2 + t∗1r2

)
E∗
1E2 +

(
r1t

∗
2 + t1r

∗
2

)
E1E∗

2 . (3.6)

This imposes conditions for transmission and reflection:

|r1|2 + |t1|2 = |r2|2 + |t2|2 = 1 , (3.7a)

r∗1t2 + t∗1r2 = r1t
∗
2 + t1r

∗
2 = 0 . (3.7b)

By limiting ourselves to 50/50 beam-splitters, and choosing the transmission coefficients to

be equal and real, we have

t1 = t2 =
1√
2
, |r1| = |r2| =

1√
2
. (3.8)

Writing r1 = eiθ1/
√

2 and r2 = eiθ2/
√

2, let us choose θ1 = 0; then (3.7b) implies we must

choose θ2 = π. Hence the output fields are given by

E3 =
1√
2

(E1 + E2) , E4 =
1√
2

(E1 − E2) . (3.9a)
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Excursion 3.1 The transition to quantum mechanics can be made in two ways: Either by

transforming the field states incident on the beam-splitter2, or by treating (3.9) as operator

equations that preserve the commutation relations
[

Ê1, Ê†
1

]

=
[

Ê2, Ê†
2

]

= 1 ,
[

Ê3, Ê†
3

]

=
[

Ê4, Ê†
4

]

= 1 , (3.10a)

and
[

Ê1, Ê2

]

=
[

Ê1, Ê†
2

]

= 0 ,
[

Ê3, Ê4

]

=
[

Ê3, Ê†
4

]

= 0 . (3.10b)

Equation (3.10a) assumes ideal monochromatic fields and (3.10b) expresses the independence

of fields at the beam-splitter input and output ports.

Repetitive use of equations (3.9) at BS1 and BS2 would give us the fields entering the

homodyne detectors at the location of Alice,

ES1 =
1√
2
EI +

1

2
(EA + EB) , (3.11a)

ES2 =
1√
2
EI −

1

2
(EA + EB) . (3.11b)

Balanced Homodyne Detection Without Filtering

From the currents Iaj ≡ |Eaj |2 and Ibj ≡ |Ebj |2 with j = 1, 2, we form the homodyned

outputs (Fig. 3.1)

I1 ≡ Ib1 − Ia1 =
∣
∣Ēl1

∣
∣
(
ES1 e

−iφl1 + E∗
S1 e

iφl1
)
, (3.12a)

I2 ≡ Ia2 − Ib2 =
∣
∣Ēl2

∣
∣
(
ES2 e

−iφl2 + E∗
S2 e

iφl2
)

(3.12b)

where in the rotating frame, the local oscillator is written as Elj =
∣
∣Ēlj

∣
∣ eiφlj .

For now we leave the spectral content of Ij unaltered by setting filters 1 and 2 to have

infinite bandwidths. The information sent to Bob is thus given by

IF
1 = G1

∣
∣Ēl1

∣
∣

[
2√
2
E(φl1)

I + E(φl1)
A + E(φl1)

B

]

, (3.13)

IF
2 = G2

∣
∣Ēl2

∣
∣

[
2√
2
E(φl2)

I − E(φl2)
A − E(φl2)

B

]

(3.14)

where we have introduced the definition of the quadrature amplitudes

E(θ) ≡ 1

2

(
Ee−iθ + E∗eiθ

)
, (3.15)

and a constant filter gain Gj .

It shall now be convenient to write the real and imaginary parts of the fields in terms of

their quadrature amplitudes. The real and imaginary parts of some field E = EX + iEY can

readily shown to be

EX = E(θ) cos θ − E(θ+π/2) sin θ , (3.16a)

EY = E(θ) sin θ + E(θ+π/2) cos θ , (3.16b)
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Fig. 3.3: Fluctuations as jittery motion accumulated over time in phase-space. A coherent state must

stay within the Heisenberg uncertainty bound. (a) A vacuum coherent state at the output of cavity SA.

(b) Moderately squeezed output fields of SA and SB . (c) As squeezing increases indefinitely, the squeezed
quadratures exhibit no jittery motion along that direction in phase-space. The random variable must then

have its realization along a perpendicular quadrature.

where E(θ) is the component of E at an angle θ in the anticlockwise direction to the real

axis. Hence

E = EX + iEY =
[

E(θ) + iE(θ+π/2)
]

eiθ . (3.17)

Letting SA and SB produce squeezing in the φs and φs + π/2 quadratures respectively

(Fig. 3.3), Bob should consider the following displacement

ES3 = EB′ +
1√
2

(
IF

1 + iIF
2

)
eiφs

=
1√
2

[

E(φs)
A − E(φs)

B

]

eiφs +G1

∣
∣Ēl1

∣
∣

{

E(φl1)
I +

1√
2

[

E(φl1)
A + E(φl1)

B

]}

eiφs

+ i
[

E(φs+π/2)
A − E(φs+π/2)

B

]

eiφs + iG2

∣
∣Ēl2

∣
∣

{

E(φl2)
I − 1√

2

[

E(φl2)
A + E(φl2)

B

]}

eiφs .

(3.18)

2Coherent states in fact transform to coherent states after traversing the beam-splitter [57]
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It is now that we can come to appreciate homodyning as a phase-sensitive measurement by

which Alice would ideally set the local oscillator to have phases φl1 = φs and φl2 = φs +π/2.

She would also like to be able to produce the gains G1 =
∣
∣Ēl1

∣
∣
−1

and G2 =
∣
∣Ēl2

∣
∣
−1

, since

under these conditions (3.18) simplifies to

ES3 =
2√
2

[

E(φs)
A − iE(φs+π/2)

B

]

eiφs +
[

E(φs)
I + iE(φs+π/2)

I

]

eiφs . (3.19)

Writing the output fields of SA and SB in the form of a time average plus fluctuations,

E(φs)
A =

〈
E(φs)

A

〉
+ ∆E(φs)

A , E(φs+π/2)
B =

〈
E(φs+π/2)

B

〉
+ ∆E(φs+π/2)

B (3.20)

evidently shows one should consider squeezed vacuum states, for which

〈
E(φs)

A

〉
=
〈
E(φs+π/2)

B

〉
= 0 . (3.21)

In the limit of perfectly correlated EPR fields,

∆E(φs)
A −→ 0 , ∆E(φs+π/2)

B −→ 0 (3.22)

completely eliminating the first square-bracket term in (3.19), giving the final output to be

passed to Victor as

ES3 =
[

E(φs)
I + iE(φs+π/2)

I

]

eiφs . (3.23)

By using a homodyne detector Victor should discover that teleportation is impeccable where

the phase-space trail set by the input is flawlessly adhered to by the output. Equation (3.19)

is said to be derived under conditions of unit-gain and no filtering.

EPR Correlations with Classical Fields

From the beam-splitter transformations of (3.9), it can now be seen that (2.7) is realized as

[

E(φs)
A′ + E(φs)

B′

]

=
√

2 ∆E(φs)
A ,

[

E(φs+π/2)
A′ − E(φs+π/2)

B′

]

=
√

2 ∆E(φs+π/2)
B (3.24)

taken the limit of (3.22). The fluctuations given by ∆E (π/2)
B for example, may be generated

from the Stratonovich stochastic differential equations

dEB =
√

2κ αB + dEinB , (3.25a)

dαB = −κ (αB − λα∗
B) dt−

√
2κ dEinB (3.25b)

where αB and EinB are the intra-cavity and input fields of SB . The output and intra-cavity

fields have complex increments dEB and dαB over a time step of dt. The input has complex

Wiener increment dEinB which satisfies

〈
dEinB dEinB

〉
=
〈
dE∗

inB dE∗
inB

〉
= 0 , (3.26a)

〈
dE∗

inB dEinB

〉
=

1

2
dt . (3.26b)

We shall be content with the form (3.25) for the moment, they are discussed in Chap. 5.1;

what should be noted is the finite zero-point energy given by the right-hand-side of (3.26b).
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Fig. 3.4: Squeezing of the imaginary part generated from (3.25). The arrow indicates the direction of time

flow.

Equations (3.25) and (3.26) model squeezing as erratic fluctuations in phase-space, as shown

by Fig. 3.4.

Quantum mechanics differs to a classical formulation in that the identification of a “state”

diverges into two classes of mathematical artefacts, namely operators and kets. Classical

mechanics makes no such distinction; the dynamical variable itself is the “state”. The

rudimentary analysis leading up to (3.23) may then be thought of as classical, or in the

Heisenberg picture of quantum mechanics, where operators evolve.
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Chapter 4

The Linear Mapping in Fourier

Space

Chapters 4 and 5 will examine teleportation in frequency space. We wish to describe the

broadband nature of the teleportation protocol. Our first task is to derive a linear mapping

in which we seek to relate each frequency component of the teleported field to that of the

DPO inputs. The mapping follows by exactly the same approach as that in Sect. 3.3 except

all fields are now frequency decomposed. We begin with the construction of the DPO output

field and its specifications. This will pave a convenient route towards future calculations.

Sect. 4.2 will account for Alice’s joint measurement with finite detection bandwidths, after

which we arrive at Bob’s location. The last section then deals with the final procedure of

field displacement and Victor’s receipt of the teleported field.

4.1 The Degenerate Parametric Oscillator

4.1.1 The Model

We first discuss the basic working model of a cavity generating squeezed states and the

approximations involved in the mathematical description that follow. The system is depicted

in Fig. 4.1. Except for the output coupling mirror, which is slightly transmitting, all other

mirrors are approximated to have unit reflectivity. The fraction of intensity that leaks out

per second is proportional to κ. For teleportation we will work with squeezed vacuum,

thus the responsible physical process is degenerate parametric down conversion driven by

a monochromatic pump Ep(t) of frequency 2ωc, with ωc on the order of optical frequencies

(ωc ∼ 1014). The signal field Es(t) has zero mean, containing only the indestructible vacuum

energy. The intra-cavity field labelled as ϕ(t), thus carries a pump mode at 2ωc, and the

down-converted quasi-mode (sometimes referred to as the subharmonic) at ωc, which is the

mode of interest.

Excursion 4.1 Parametric down-conversion differs from the more general case of squeez-

ing an intense coherent state, in which case a signal photon stimulates a two-photon emission,

with one photon (normally called the idler) having its frequency given by the difference be-

tween that of the pump and the signal. In our application the down-converted light is weaker

27
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as it results from spontaneous two-photon emission.

It shall be assumed that the bandwidth of the particular cavity quasi-mode centred on ωc

is sufficiently narrow: Let ∆ be in general the spectral separation between a cavity mode

frequency of interest and those of the adjacent quasi-modes. Taking the full width at half

maximum (FWHM) to be a measure of its bandwidth BW , it is then favourable to have,

BW

∆
� 1 . (4.1)

For our particular setting shown in Fig. 4.2 (b) ∆ ∼ 1014 Hz and typical values for the

FWHM are on the order of MHz. The relatively minuscule bandwidth of the down-converted

light is made possible by experimental techniques of phase-matching such that the majority

of photons produced from the non-linear interaction have frequency ωc. When (4.1) is valid,

we speak of the subharmonic as the cavity mode for the spectral region of interest (ω ≈ ωc),

and the cavity is said to be single mode. From now on, it should be remembered that it is ωc

and its immediate vicinity that we will be working in; thus we label the subharmonic/cavity

mode distinctively as α(t). This is the first of two principal approximations involved in

the following treatment. The other issue one could be wary of is the spectral response of
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Fig. 4.1: A sample squeezing cavity showing the boundary condition imposed on the fields. The spatial

dependence of all fields has been omitted for clarity. This construction and other possible variations based
on similar non-linear optical mechanisms is referred to as an Optical Parametric Oscillator. When the

non-linear interaction described by χ(2) produces two photons of the same frequency, the cavity is called a
Degenerate Parametric Oscillator.

the output coupling mirror. Letting the cavity round trip length be Lc, and the non-linear

crystal have refractive index nχ(ω) and length l in the direction of propagation of ϕ(t), the

cavity round trip time is

tc = time spent in vacuum + time spent in traversing the crystal

=
Lc − l

c
+
nχl

c

=
Lc + l [nχ − 1]

c
. (4.2)

We define the rate at which energy leaks out of the cavity to be

T (ω)

tc
=

c T (ω)

Lc + l [nχ(ω) − 1]
, (4.3)
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Fig. 4.2: (a) Arbitrary mode structure. The FWHM should be sufficiently smaller than ∆ so a profile of

interest (e.g. the quasi-mode with resonance frequency ωc in our case) does not overlap with adjacent ones.
(b) Situation for the DPO. The validity of (4.1) hinges on the size of ∆ ∼ ωc and the spread in frequencies

of the down-converted light. The pump laser is to a good approximation single mode.

where T (ω) is the output mirror transmissivity. The spectrum of α(t) will be approximated

as delta function with respect to T (ω). Put more quantitatively, the quasi-mode nature of

the subharmonic is such that
∣
∣
∣
∣
∣

dT

dω

∣
∣
∣
∣
∣
�
∣
∣
∣
∣
∣

d |A|2
dω

∣
∣
∣
∣
∣

∀ ω : ωc −
BW

2
< ω < ωc +

BW

2
(4.4)

where A(ω) is the mode amplitude of α(t).1 Equation (4.4) says that over the range of fre-

quencies for which A(ω) varies; T (ω) is a slowly varying function. Let Ω denote the interval

of frequencies for which the mirror transmission would vary significantly, then |A(ω)|2 must

satisfy

BW

Ω
� 1 , (4.5)

in which case, we may to an extremely good approximation take

T (ω) ≈ T (ωc) ≡ T , (4.6)

and define, with the factor of two being a matter of preference, the cavity damping rate to

be

2κ ≡ T

tc
. (4.7)

Excursion 4.2 In the foregoing discussion it was implicitly assumed that the intensity

spectrum for α(t) is symmetric, which is itself an approximation. Once again, this is contin-

gent upon the spectral behaviour of some other variable associated with the power spectral

density. To identify this contingency variable we return now to the fundamental physical

process by which squeezing is obtained — parametric down conversion. Generally it is not

1Note that (4.4) assumes the discrete modes of α(t) are adequately dense so that the its derivative exists.

In other words, (4.4) is in the continuous limit.
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always the case that a pump photon will trade us two photons each precisely of frequency

ωc. From conservation of energy, for every subharmonic photon at ωc + dω; there must be a

photon simultaneously produced at ωc−dω. This would give us a photon number spectrum,

which we denote by n̄(ω), that is symmetric about ωc. To translate n̄(ω) into an intensity

spectrum we simply need to multiply n̄(ω) by the energy per photon E(ω) = h̄ω, which is a

monotonically increasing function of ω. This immediately suggests that a spectrum in terms

of energy for the cavity mode has to be asymmetric. The situation is that of Fig. 4.3. The

����
����

�
�

�

Fig. 4.3: In general terms, the monotonically increasing photon energy would give rise to an asymmetric
intensity distribution in frequency.

precise question may now be addressed. It is whether or not over the bandwidth of n̄(ω),

one can set the energy per photon to be a constant. Since E(ω) is a linear function, we can

phrase the question more definitively to ask if,

∣
∣
∣
∣
E

(

ωc −
BW

2

)

−E

(

ωc +
BW

2

)∣
∣
∣
∣
/ h̄ωc � 1 . (4.8)

Today’s experiments can in fact produce photon number bandwidths consistent with (4.8)

to give unerringly symmetric power spectral densities.

One may have noticed by now the recurring argument of the subharmonic field to be single

mode in the few respects discussed above. Such a single-mode approximation is made

commonly in quantum optics. For example, the quantum treatment of decomposing an

external laser field into its so called source- and free-fields makes an approximation exactly

the same as (4.6) in order to deal with an integral over source-field frequencies [58].

4.1.2 Field Specification

Returning now to the output field sought for, the model of Fig. 4.1 also assumes an un-

depleted pump and a lossless non-linear medium. Reminding ourselves that it is in the

proximity of ωc that we are working, the vacuum fluctuation is assumed to be white. It is

also assumed to be ergodic.

Periodic boundary conditions are imposed on the input and output fields over a length

of L (i.e., E(z = −L/2, t) = E(z = L/2, t) where E stands for Ein or Eout). The full real,

input stochastic field has the mode expansion

E(F )
in (z, t) =

√
c

L

+∞∑

n=−∞

f(ωn) e−iωn(t−z/c) , (4.9)
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where n is the set of all integers with the special case n = c for the resonance frequency.

The mode labelled by n = 0 is dc (ω0 = 0). It is conventional to split the full field as,

E(F )
in (z, t) = Ein(z, t) + E∗

in(z, t) , (4.10a)

Ein(z, t) ≡
√
c

L

+∞∑

n=0

f(ωn) e−iωn(t−z/c) , (4.10b)

E∗
in(z, t) ≡

√
c

L

+∞∑

n=1

f(−ωn) eiωn(t−z/c) . (4.10c)

Ein(z, t) and [Ein(z, t)]∗ are referred to as the positive and negative frequency parts and

f(−ωn) = f∗(ωn). The mode amplitudes are discrete Gaussian complex random variables

of zero mean, and covariances given by

〈f(ωn)〉 = 0 , (4.11a)

〈f(ωn)f(ωm)〉 = 〈f∗(ωn)f∗(ωm)〉 = 0 , (4.11b)

〈f∗(ωn)f(ωm)〉 =
1

2
δnm . (4.11c)

Recall that ergodicity means the left hand sides of (4.11) may be thought of either as the

time average of a single realization of f(ωn) or as an ensemble average over all possible paths.

It is these input statistics, in particular (4.11c), which defines the input as vacuum. Note

how the factor of
√

c/L is reminiscent of the quantization volume which normally appears

in the field operator of a second quantized theory. In our one-dimensional model, L will be

referred to as the quantization length and c/L scales the field intensity to photon flux units.

Taking the coupling mirror to have negligible transmission for Ein(z, t), and using (4.6), the

positive frequency part of the cavity output may be constructed as

Eout(z, t) = eiφrEin(z, t) +
√

2κeiφTα(z, t) (4.12)

where eiφr and eiφt are phase changes from mirror reflection and transmission coefficients

and α(z, t) belongs to α(F )(z, t), decomposed in a similar fashion to (4.10):

α(F )(z, t) = α(z, t) + α∗(z, t) , (4.13a)

α(z, t) =

+∞∑

n=0

A(ωn) e−iωn(t−z/c) , (4.13b)

α∗(z, t) =
+∞∑

n=1

A(−ωn) eiωn(t−z/c) . (4.13c)

For calculative convenience, we define

Eout(z, t) ≡ e−iφtEout(z, t) (4.14a)

and

Λ(ωn) ≡ ei(φr−φt)

√
c

L
f(ωn) +

√
2κA(ωn) , (4.14b)
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so the output may be written with ease as:

E(F )
out (z, t) = Eout(z, t) + E∗

out(z, t) , (4.15a)

Eout(z, t) =
+∞∑

n=0

Λ(ωn) e−iωn(t−z/c) , (4.15b)

E∗
out(z, t) =

+∞∑

n=1

Λ(−ωn) eiωn(t−z/c) . (4.15c)

From (3.7), it can now be seen that φr − φt = ±π/2.

It is preferable to work in the continuous limit by inserting the density of modes g(ω) such

that g(ω)dω is the number of modes lying between frequency ω to ω + dω. By considering

a quantization length of L, it can be shown that for travelling wave modes,

g(ω) =
1

∆ω
=

L

2πc
, (4.16)

where ∆ω ≡ ωn+1 − ωn and ωn = 2nπc/L . This is of course the well established result

for the free spectral range of a Fabry-Perot interferometer, except L here only serves to be

a theoretical construct. The full real fields given by (4.10) and (4.15) are then cast into

integrals,

E(F )
in (t) =

√
c

L

+∞∫

−∞

g(ω)f(ω) e−iωt dω , (4.17a)

E(F )
out (t) =

+∞∫

−∞

g(ω)Λ(ω) e−iωt dω . (4.17b)

To help make the linear mapping transparent, the fields will now be displaced to be centred

on the origin (ω = 0) and we evaluate all fields at z = 0.2 Dropping the spatial dependence,

(4.15) become

E(F )
out (t) = Eout(t) + E∗

out(t) , (4.18a)

Eout(t) =
L

2πc

+∞∫

−ωc

Λ(ωc + ω) e−i(ωc+ω)t dω , (4.18b)

E∗
out(t) =

L

2πc

ωc∫

−∞

Λ∗(ωc − ω) ei(ωc−ω)t dω . (4.18c)

Since ωc is incommensurably larger than the bandwidth, we may extend the integrals in

(4.18b) and (4.18c) to −∞ and +∞ respectively. This would then allow us to define the

2Note that the spectrum corresponding to the negative frequency part, |Λ(−ω)|2 is centred on −ωc while

that of the positive part is at ωc, in which case Eout(t) and [Eout(t)]
∗ must be transformed independently.

This centring of the spectra will also make the mechanics of input-output theory in Chap. 5 clear.
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Fourier transform of Eout(t).
3

Λ(ωc + ω) ≡ F
{

Eout(t)
}

=
c

L

+∞∫

−∞

Eout(t) e
i(ωc+ω)tdt . (4.19)

To facilitate future calculations and for ease of reference, we introduce an extra index ξ such

that

ξ ∈ {I, A,B} , (4.20)

to distinguish the fields entering and leaving cavities SI , SA, and SB of Fig. 3.1.4 The linear

mapping is most suitably derived in a frame rotating at frequency ωc by defining the positive

frequency output field of cavity Sξ as

Ẽξ(t) ≡ Eξ(t) e
iωct ≡ L

2πc

+∞∫

−∞

Λ̃ξ(ω) e−iωt dω (4.21)

where all modes now carry the index ξ with a similar definition as (4.14b),

Λ̃ξ(ω) ≡
√
c

L
f̃ξ(ω) +

√
2κξ Ãξ(ω) , f̃ξ(ω) ≡ if̄ξ(ω) . (4.22)

The modes f̄(ω) and Ã(ω) satisfy the following Fourier transform pairs. The positive fre-

quency part of the cavity mode is given by

Ãξ(ω) ≡ Aξ(ωc + ω)

≡ F
{

α̃ξ(t)
}

=
c

L

+∞∫

−∞

α̃ξ(t) e
iωt dt , (4.23a)

α̃ξ(t) ≡ F−1
{

Ãξ(ω)
}

=
L

2πc

+∞∫

−∞

Ãξ(ω) e−iωt dω , (4.23b)

and the vacuum input,

f̄ξ(ω) ≡ fξ(ωc + ω)

≡ F
{

Ẽinξ(t)
}

=

√
c

L

+∞∫

−∞

Ẽinξ(t) e
iωt dt , (4.24a)

Ẽinξ(t) ≡ F−1
{

f̄ξ(ω)
}

=
1

2π

√

L

c

+∞∫

−∞

f̄ξ(ω) e−iωt dω . (4.24b)

From now on all field amplitudes with a tilde will be in the rotating frame. To complete the

specification, we present the DPO input statistics given by (4.11) in the continuous limit.

3We require ωc to be sufficiently large so that boundary terms are vanishingly small, permitting the
relation (1/2π)

∫+∞

−ωc
exp[iω(t − t′)]dω ≈ δ(t − t′). This is necessary for the Fourier transform pair to be

defined.
4This convention will be beneficial when we come to calculate the squeezing spectra in Chap. 5.
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Field Statistics in the Continuum

One must be more attentive in translating the input statistics given by (4.11) correctly into

the continuum. Simply regarding ω as a continuous variable and converting the Kronecker

delta of (4.11c) into a Dirac delta function will not do. To make the translation clear, let us

restore the mean photon number per mode n̄(ω) for the moment. Taking (4.10) as it stands

but treating ω as a continuous variable by inserting g(ω) and letting δnm −→ δ(ω − ω′) in

(4.11) gives

〈

E∗
in(t)Ein(t)

〉

=
c

L

+∞∫

−∞

[

n̄(ω) +
1

2

]

g2(ω) dω . (4.25)

What we would like in the integrand is n̄(ω) g(ω) so that

n̄(ω) g(ω) dω =

(
number of photons

per mode

)(
number of modes in the frequency

interval ω to ω + dω

)

=

(
number of photons with frequency

lying in the interval ω to ω + dω

)

, (4.26)

which would allow us to interpret 〈E∗
in(t)Ein(t)〉 as the average number of photons in Ein(t)

crossing a length of L per second. The extra factor of g(ω) makes this impossible. This is due

to incorrect scaling of the amplitudes. The relationship between modes and frequency is not

one-to-one, in fact we know that g(ω) is the number of modes with the same frequency ω. In

other words, g(ω) is a degeneracy factor, as it is sometimes called in statistical mechanics.

The discrete sum adds all the amplitudes mode by mode whereas the integral does the

same by first grouping the modes with the same frequency. The total number of modes

accounted for must of course be conserved in both cases. Having said this, if 〈f ∗(ωn)f(ωm)〉
in (4.11) is to go inside a double sum, then it should have units corresponding to the square

of amplitude per mode, which it does. If on the other hand, we wish to account for all the

mode amplitudes by counting frequencies, then we must account for the total amplitude

corresponding to a particular frequency, that is g(ω)f(ω). The same is true for the photon

number per mode on the right hand side of (4.11c). Hence the translation from a sum to an

integral should be complemented by,

〈

g(ω)f̄ξ(ω)
〉

= 0 , (4.27a)
〈

g(ω)f̄ξ(ω) g(ω′)f̄ξ′(ω′)
〉

= 0 , (4.27b)
〈

g(ω)
[
f̄ξ(ω)

]∗
g(ω′)

[
f̄ξ′(ω′)

]∗
〉

= 0 , (4.27c)

〈

g(ω)
[
f̄ξ(ω)

]∗
g(ω′)f̄ξ′(ω′)

〉

=

[

n̄(ω) +
1

2

]

g(ω) δ(ω − ω′) δξξ′ (4.27d)

where for our purposes, n̄(ω) = 0. Formally, if one works with the mode sum in calculating

the intensity, then the integral form simply results from the definition of the limit of the
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resulting Riemann sum:

〈
[Ein(t)]∗ Ein(t)

〉
= lim

∆ω→0

∆ω

2π

+∞∑

n=−∞

[

n̄(ωn) +
1

2

]

=
c

L

+∞∫

−∞

g(ω)

[

n̄(ω) +
1

2

]

dω , (4.28)

where we have multiplied and divided by cL after taking the limit. We have persisted with

writing g(ω) for the mode density instead of explicit factors of L/2πc to emphasize the

generality of these results, in particular equations (4.27).

4.2 Balanced Homodyning with Finite Bandwidths

In the present notation (3.11a) and (3.11b) are

ẼS1 =
1√
2
ẼI +

1

2

(

ẼA + ẼB

)

, (4.29a)

ẼS2 =
1√
2
ẼI −

1

2

(

ẼA + ẼB

)

. (4.29b)

All local oscillators are approximated to be monochromatic fields tuned precisely to ωc, the

central frequency of ES1 and ES2,

Elj(t) = Ēlj e
−iωct = |Ēlj |ei(φlj−ωct) , (4.30)

where j = 1, 2 and Ēlj ≡ |Ēlj |eiφlj . In the rotating frame all local oscillators are then dc

fields. The final photocurrents from homodyning are

Ij ≡ Ẽ∗
Sj Ẽlj + ẼSj Ẽ∗

lj

= |Ēlj |
L

2πc

+∞∫

−∞

{
1√
2

(

Λ̃I(ω) e−iφlj +
[

Λ̃I(−ω)
]∗

eiφlj

)

± 1

2

(

Λ̃A(ω) e−iφlj +
[

Λ̃A(−ω)
]∗

eiφlj

)

± 1

2

(

Λ̃B(ω) e−iφlj +
[

Λ̃B(−ω)
]∗

eiφlj

)}

e−iωt dω (4.31)

where in the integrand +1/2 applies if j = 1, and −1/2 if j = 2. Filters 1 and 2 produce

currents governed by the Stratonovich stochastic differential equation

dIF
j = −njκξ

(
IF

j dt−Gj dqj
)
, (4.32)

where dIF
j is the filtered current increment and dqj is the amount of charge entering Filter

j in time step dt. The filter bandwidth is njκξ with nj being any positive real number to

specify the filter bandwidth in units of κξ. Alice can then set her detection bandwidths

to be symmetric by letting n1 = n2. We have also included a constant filter gain Gj to
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produce unit-gain teleportation. Equation (4.32) can be solved using ordinary calculus by

multiplying exp(njκξt) and integrating formally to give

IF
j (t) = Gj IF

j (0) e−njκξt +Gjnjκξ

t∫

0

e−njκξ(t−t′) Ij(t
′) dt′ . (4.33)

This simply says that the first term can be made arbitrarily small by waiting long enough.

Hence, in the long-time limit and going to the frequency domain by writing,

Ij(t) ≡
γj

2π

+∞∫

−∞

Īj(ω) e−iωt dω , Īj(ω) ≡ 1

γj

+∞∫

−∞

Ij(t) e
iωt dt (4.34)

(4.33) becomes

IF
j (t) = Gj

γj njκξ

2π

+∞∫

−∞

dωĪj(ω) e−njκξt

t∫

0

dt′e(njκξ−iω)t′

= Gj
γj

2π

+∞∫

−∞

Īj(ω)
njκξ

njκξ − iω
e−iωt dω . (4.35)

It can be seen from (4.35) and (4.33) that the stochastic differential equation (4.32) repro-

duces a familiar result of linear systems theory, i.e. (4.32) convolves the signal Ij with a

decaying exponential which in frequency space must be the product of the corresponding

Fourier transforms. Thus one could have arrived at (4.35) directly instead of the above

demonstration, which shows the compatibility of the Stratonovich stochastic differential

equation with ordinary calculus. The process of filtering is shown in Fig. 4.4. From equa-
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Fig. 4.4: Filter described by (4.32). The filtered photocurrent is ĪF (ω) = GF (ω)Ī(ω), where we take
F (ω) = nκ/(nκ − iω). The indices have been omitted.

tions (4.31) and (4.34), we can make the identifications

γj = |Ēlj |
L

c
, (4.36a)

and

Īj(ω) =
1√
2

{

Λ̃I(ω) e−iφlj +
[

Λ̃I(−ω)
]∗

eiφlj

}

± 1

2

{

Λ̃A(ω) e−iφlj +
[

Λ̃A(−ω)
]∗

eiφlj

}

±1

2

{

Λ̃B(ω) e−iφlj +
[

Λ̃B(−ω)
]∗

eiφlj

}

, (4.36b)

where (4.36b) adopts the same sign convention as (4.31).
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4.3 Field Displacement and the Teleported Modes

Bob’s act of displacing EB′ is most conveniently expressed by writing all fields in terms

of real and imaginary parts. To do so, we note from the two-photon optics considered in

Ref. [59] and [60]. The classical two-mode quadrature phase amplitude can be introduced

as

βθ(ω) ≡ 1

2

{
A(ωc + ω) e−iθ + [A(ωc − ω)]∗ eiθ

}
, (4.37)

for some complex mode amplitude A(ωc + ω) and arbitrary phase θ. Note the quadrature

amplitudes are generally complex except when on resonance (ω = ωc). Bob’s share of the

EPR field shall be written as

EB′(t) =
1√
2

[

ẼA(t) − ẼB(t)
]

=
1√
2

{
1

2

(

ẼA(t) +
[

ẼA(t)
]∗)

− 1

2

(

ẼB(t) +
[

ẼB(t)
]∗)
}

+
i√
2

{
1

2i

(

ẼA(t) −
[

ẼA(t)
]∗)

− 1

2i

(

ẼB(t) −
[

ẼB(t)
]∗)
}

. (4.38)

Let us define our preferred quadratures to be of phases zero and π/2, in which case Alice

would measure the real and imaginary part of ES1 and ES2 respectively. The quadrature

amplitudes for the vacuum field are

xξ(ω) ≡ 1

2

{

f̃ξ(ω) +
[

f̃ξ(−ω)
]∗}

, yξ(ω) ≡ 1

2i

{

f̃ξ(ω) −
[

f̃ξ(−ω)
]∗}

, (4.39a)

and similarly for the subharmonic,

Xξ(ω) ≡ 1

2

{

Ãξ(ω) +
[

Ãξ(−ω)
]∗}

, Yξ(ω) ≡ 1

2i

{

Ãξ(ω) −
[

Ãξ(−ω)
]∗}

. (4.39b)

With these definitions we find

1

2

{

Λ̃ξ(ω) +
[

Λ̃ξ(−ω)
]∗}

=

√
c

L
xξ(ω) +

√
2κξ Xξ(ω) , (4.40a)

1

2i

{

Λ̃ξ(ω) −
[

Λ̃ξ(−ω)
]∗}

=

√
c

L
yξ(ω) +

√
2κξ Yξ(ω) . (4.40b)

For our purposes, the damping of SA and SB will be kept the same, i.e. κA = κB ≡ κ, and

independent of κI . Hence (4.38) can be written as

EB′(t) = EX
B′(t) + iEY

B′(t) , (4.41a)

where EB′(t) has real and imaginary parts with a frequency decomposition in terms of

quadrature modes,

EX
B′(t) =

1√
2

+∞∫

−∞

g(ω)

{[√
c

L
xA(ω) +

√
2κ XA(ω)

]

−
[√

c

L
xB(ω) +

√
2κ XB(ω)

]}

e−iωt dω , (4.41b)
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EY
B′(t) =

1√
2

+∞∫

−∞

g(ω)

{[√
c

L
yA(ω) +

√
2κ YA(ω)

]

−
[√

c

L
yB(ω) +

√
2κ YB(ω)

]}

e−iωt dω . (4.41c)

Bob’s displacement of EB′ in phase-space is straightforwardly given by

ES3(t) = EB′(t) +
1√
2

[
IF

1 (t) + iIF
2 (t)

]
. (4.42)

It will be helpful to explicitly define the real functions EX
S3(t) and EY

S3(t) so that

ES3(t) = EX
S3(t) + iEY

S3(t) , (4.43a)

where the real and imaginary parts of ES3(t) are thus given by

EX
S3(t) = EX

B′(t) +
IF

1 (t)√
2

=
1√
2

+∞∫

−∞

g(ω)

{[√
c

L
xA(ω) +

√
2κXA(ω)

]

−
[√

c

L
xB(ω) +

√
2κ XB(ω)

]

+G1|Ēl1| Ī1(ω)
n1κ

n1κ− iω

}

e−iωt dω , (4.43b)

and

EY
S3(t) = EY

B′(t) +
IF

2 (t)√
2

=
1√
2

+∞∫

−∞

g(ω)

{[√
c

L
yA(ω) +

√
2κ YA(ω)

]

−
[√

c

L
yB(ω) +

√
2κ YB(ω)

]

+G2|Ēl2| Ī2(ω)
n2κ

n2κ− iω

}

e−iωt dω . (4.43c)

Equation (4.36b) becomes, for j = 1, φl1 = 0,

Ī1(ω) =
2√
2

[√
c

L
xI (ω) +

√
2κI XI(ω)

]

+

[√
c

L
xA(ω) +

√
2κ XA(ω)

]

+

[√
c

L
xB(ω) +

√
2κ XB(ω)

]

, (4.44a)

and for j = 2, φl2 = π/2,

Ī2(ω) =
2√
2

[√
c

L
yI(ω) +

√
2κI YI (ω)

]

−
[√

c

L
yA(ω) +

√
2κ YA(ω)

]

−
[√

c

L
yB(ω) +

√
2κ YB(ω)

]

. (4.44b)
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A chief routine of verification will be to observe the teleported squeezing spectra. In-

terrogating teleportation by examining the intensity correlation function will be reserved

as the topic of Chap. 6. Thus, Victor will now perform the last stage of homodyning and

filtering. This will prepare the teleported field in the form suitable for the derivation of

squeezing spectra in the next chapter. Victor’s procedure will be accounted for by extend-

ing the value of j to 3, with the same definitions of current and local oscillator. The final

filtered current IF
3 (t) corresponding to φl3 = 0, along with it’s Fourier component will be

denoted respectively as

IXF
3 (t) = 2G3|Ēl3|

[
EX

S3(t) ? e
−n3κt

]
=
G3γ3

2π

+∞∫

−∞

ĪX
3 (ω)

n3κ

n3κ− iω
e−iωt dω , (4.45a)

ĪX
3 (ω) =

[√
c

L
xA(ω) +

√
2κ XA(ω)

]

−
[√

c

L
xB(ω) +

√
2κ XB(ω)

]

+G1|Ēl1| Ī1(ω)
n1κ

n1κ− iω
, (4.45b)

where f(t) ? g(t) denotes the convolution of f(t) and g(t). Similarly for the case of φl3 = 0:

IYF
3 (t) = 2G3|Ēl3|

[
EY

S3(t) ? e
−n3κt

]
=
G3γ3

2π

+∞∫

−∞

ĪY
3 (ω)

n3κ

n3κ− iω
e−iωt dω , (4.46a)

ĪY
3 (ω) =

[√
c

L
yA(ω) +

√
2κ YA(ω)

]

−
[√

c

L
yB(ω) +

√
2κ YB(ω)

]

+G2|Ēl2| Ī2(ω)
n2κ

n2κ− iω
, (4.46b)

where γ3 is given by

γ3 =
2L|Ēl3|
c
√

2
. (4.47)

Let us say a few words about the linear mapping presented by equations (4.45) and (4.46).

First, the departure from unit-gain teleportation is expressed by the deviation of the product

Gj |Ēlj | from unity and how accurately the phase space displacement given by (4.42) can be

generated. Secondly, although EX
S3(t) and EY

S3(t) are interpreted as classical stochastic fields,

they do not contravene the Heisenberg’s uncertainty principle. The product of the quadra-

ture variances in Heisenberg’s uncertainty relation is duplicated as a direct consequence of

the extra 1/2 appearing in (4.27). This is most conspicuous in the case of vacuum fields

where ∆EX
S3 ∆EY

S3 is expected to vanish within the realm of pure classical notions because

zero-point fluctuations should not appear. Stochastic electrodynamics regards EX
S3 and EY

S3

as coexisting complementary hidden variables for which the commutator

[

ÊX
S3, ÊY

S3

]

=
i

2
(4.48)

is absent. More will be said about SED and its relation to quantum mechanical operators

in Sect. 5.4.

Being the prevailing concept of classical theories, SED permits simultaneous knowledge

of both quadratures. However, on accepting (or with hindsight) that quantum mechanics
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is complete in describing the real factual situation, the application of (4.45) and (4.46) is

then bounded by the above commutator of (4.48). That is, Victor may inquire about any

two quadratures simultaneously by the use of a beam-splitter, for which he will retrieve the

coordinates of a coherent state, squeezed or not, with fluctuations predicted by Heisenberg’s

uncertainty principle.

It should also be stressed that the homodyne current records are classical information,

represented by a series of real numbers in time. Finally, the linear mapping has been

derived in the rotating frame, which in the quantum formulation is equivalent to working in

the interaction picture. We will have more to say on this subject in Chap. 5.



Chapter 5

Quadrature Teleportation

We saw in Chap. 3, as a precursor to teleportation of stochastic fields where we visualized

field fluctuations over time. If the phase-space trajectory of the teleported field can be made

to exactly overlap that of the input, perfect teleportation is claimed. This was easy to un-

derstand because one only deals with the total field — the integral over all frequencies. The

Fourier space description provides an alternative explanation to these time domain func-

tions by requiring each mode between the teleporter input and output to be identical. The

linear mapping of Chap. 4 now provides an analytical expression for the observable squeez-

ing spectra of the teleported quadratures. With these formulas at hand, the significance of

multimode squeezing and filtering bandwidths become transparent. We devote Sect. 5.2 to

deriving these relations and Sect. 5.3 will explore these issues with the aid of some plots for

the analytical expressions.

The linear mapping of Chap. 4 began with the fields entering the squeezers and involves

tracking these fields through the various stages of the teleportation protocol, expressing the

output modes in terms of input ones at each stage. The most difficult of these input-output

relations lie in the DPOs; for which we are yet to relate the emitted modes to those entering

it. To begin, it would be instructive to sketch out the internal workings of these squeezing

cavities as provided by stochastic electrodynamics.

5.1 Input-Output Theory within Stochastic Electrody-

namics

Due mainly to Collett and Gardiner, we now have at our disposal what is formally known as

Input-Output Theory [61], [62]. In their original formulation, the authors were primarily

interested in the squeezed output of a DPO. By relating the intra-cavity dynamics to the

input field, they were able to derive the emanated squeezing spectra. Collett and Gardiner

derived their results treating the optical field to be comprised of photons; we on the other

hand, will derive the corresponding quantities in the view that our field is composed of

classical waves. Although we do not follow a quantum field treatment the hindsight granted

to us by the quantum mechanical model is invaluable and we will, when opportunities arise,

note the quantum-classical correspondences. The terminology “input-output theory” does

imply a sense of generality for the formalism, and indeed one need not be restricted to a

cavity-based system. A theoretical treatment of such “input-output” type was done for

41
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an electronic circuit connected to a lossy transmission line prior to the work of Collett

and Gardiner [63]. The utility of input-output theory is demonstrated for various optical

instruments in Ref. [64] for instance. Nevertheless, the designation of such techniques as

input-output theory is now exclusive to quantum optics.

5.1.1 Classical Langevin Equations

The rigorous formalities of input-output theory would stretch the thesis beyond its intended

scope. We will begin with an assertion of the classical Langevin equations for the cavity

mode and be meticulous about its form and origin. The reader who is interested in its formal

abstraction and mathematical rigour should consult the second of the two-paper series on

the subject [62]. Recapitulating our model of a DPO discussed in Sect. 4.1, the correct

equations of motion for the negative and positive frequency parts (one being the complex

conjugate of the other) read,

dα∗
ξ

dt
= iωc α

∗
ξ − κξ α

∗
ξ ± κξλξ αξ e

i2ωct + i
√

2κξ E∗
inξ , (5.1a)

dαξ

dt
= −iωc αξ

︸ ︷︷ ︸

free evolution

− κξ αξ
︸ ︷︷ ︸

damping

± κξλξ α
∗
ξ e

−i2ωct

︸ ︷︷ ︸

non-linear interaction

− i
√

2κξ Einξ
︸ ︷︷ ︸

source term

. (5.1b)

The first term in (5.1b) represents the free evolution of the field; i.e., the amplitude

simply varies on its own at a frequency of ωc. Classically, this is precisely the sinusoidal

wave motion. The non-unit reflectivity of the output mirror provides a means of decay for the

intra-cavity field. Thus the second term is straightforwardly −κξαξ where its magnitude

tells us the amplitude is damped at half the rate of the intensity. This can be seen by

multiplying (5.1a) by αξ and (5.1b) by α∗
ξ :

d |αξ|2
dt

= αξ

dα∗
ξ

dt
+
dαξ

dt
α∗

ξ

= −2κξ |αξ|2 ± 2κξλξ |αξ |2 cos [2 (ωct+ φα)] + i
√

2κξ

[
E∗

inξ αξ − Einξ α
∗
ξ

]
. (5.2)

where we have written αξ = |αξ | eiφα . Thus we see that in the absence of the non-linear

interaction and the driving field, a cavity initially filled with energy |αξ |2(0) has an intensity

loss rate given by

|αξ |2(t) = |αξ |2(0) e−2κξt . (5.3)

Appearing in the non-linear interaction is λξ , a real, positive, and dimensionless quantity.

It is proportional to the magnitude of the pump |Ep|, the cavity finesses of the pump and

subharmonic, and the non-linear susceptibility χ(2). It may be thought of as an effective

pump strength and shall be referred to as the pump parameter. The sign of the non-linear

interaction will be clear when we come to calculate the squeezing spectra. For the moment,

we shall say that it is to be taken as plus or minus corresponding to squeezing in the Y- or

X-quadrature respectively.

It is the long time limit of (5.1) that will be of interest, and upon solving these equations

in the steady-state one is led to discover various solutions given different values of the pump

parameter. The values of λξ correspond to whether the round-trip parametric gain κξλξtc,

is greater or less than the round-trip loss κξtc, respectively referred to as above or below
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threshold. We will operate the DPO in the regime below threshold; i.e. λξ < 1. This

prevents the DPO from self-sustained oscillation.

Setting λξ = 1 in (5.2) we see that the intra-cavity intensity varies with a sinusoidal com-

ponent, in which case the sum of the first two terms will generally be negative. Two extremes

are given by those times for which cos [2(ωct+ φα)] = 1, when the overall contribution from

the first two terms exactly vanishes or doubles.

For 0 < λξ < 1, the resulting effect of the non-unit reflectivity of the output mirror and

the non-linear interaction is to damp |αξ|2, which if d |αξ |2/dt is to be zero, will depend on

the driving term. In corpuscular terms, the non-linear crystal is pumped at a rate such that

the number of photons gained solely from the non-linear interaction in a time interval of tc
is less than the number of photons of the subharmonic mode seeping out of the cavity in the

same time period. The non-linear interaction term can be elucidated further with hindsight

of the quantum description for parametric down conversion. We leave this explanation to

the subsection below. Finally, the last term in (5.1) is the transmission of Einξ (which in our

case is a vacuum field) into the DPO, where the complex number i accounts for the relative

phase shift of π/2 with respect to the cavity mode. The square root over 2κξ accommodates

our choice to scale Einξ such that
〈
E∗

inξEinξ

〉
has units of photon flux.

5.1.2 Degenerate Parametric Amplification from Heisenberg’s

Equation of Motion

For simplicity, the non-linear interaction can be understood to generate squeezing by solely

considering a degenerate parametric amplifier with a classical pump. Just for this section

operators shall be written without a circumflex. From Ref. [65], [66] and [67], the amplifier

Hamiltonian may be split into a part which is independent of time, H0 and one explicitly

time-dependent1

Hs = H0 + V (t)

= h̄ωc a
†a+

ih̄

2

[

ζ
(
a†
)2
e−i2ωct − ζ∗a2ei2ωct

]

. (5.4)

Where ζ accounts for both the classical pump amplitude and the non-linear susceptibility.

We allow ζ to be complex with a magnitude different from κλ to exclude properties intrinsic

to a cavity construction. Equation (5.4) is a macroscopic model where only the bulk material

property and incoming and outgoing photons appear. Note the inclusion of the conjugate

process, second harmonic generation, to ensure Hs is Hermitian. The Heisenberg equations

of motion for the subharmonic field are,

da

dt
=

1

ih̄
[a,Hs] = −iωc a+ ζa†e−i2ωct , (5.5a)

da†

dt
=

1

ih̄

[
a†, Hs

]
= iωc a

† + ζ∗a ei2ωct (5.5b)

where (5.5a) and (5.5b) are Hermitian conjugates since Hs = H†
s . It is most convenient to

work in a rotating frame given by

ã(t) ≡ a(t) eiωct , (5.6a)

1This is mentioned for the purpose of Excursion 5.1.
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where a(t) denotes the subharmonic field in the Heisenberg picture. Equations (5.5) then

become
dã

dt
= ζã† ,

dã†

dt
= ζ∗ã . (5.6b)

To observe squeezing, we write ζ = |ζ|eiφ and note the general definition of the quadrature

phase operator defined by

βθ(t) ≡
1

2

[
ã(t)e−iθ + ã†(t)eiθ

]
. (5.7)

Equations (5.6b) are then used to obtain

dβυ(t)

dt
= |ζ|βυ(t) ,

dβυ+π/2(t)

dt
= −|ζ|βυ+π/2(t) (5.8)

with respective solutions exhibiting squeezing,

βυ(t) = βυ(0) e|ζ|t , βυ+π/2(t) = βυ+π/2(0) e−|ζ|t , (5.9)

where υ = φ/2. Equations (5.8) and (5.9) stand as operator equations stipulated by

[
βυ, βυ+π/2

]
=
i

4

(
[ã, ã†] − [ã†, ã]

)
=
i

2
(5.10)

and hence the Heisenberg uncertainty principle

∆βυ ∆βυ+π/2 ≥ 1

4
, (5.11)

where the quadrature phase fluctuations are taken with respect to an arbitrary field state

|ψ〉,

∆βυ ≡
[

〈ψ|β2
υ |ψ〉 − 〈ψ|βυ |ψ〉2

] 1
2

. (5.12)

For squeezed states, equations (5.7), (5.9) and (5.12) give

∆βυ =
e|ζ|t

2
, ∆βυ+π/2 =

e−|ζ|t

2
(5.13)

from which we obtain the familiar result ∆βυ = ∆βυ+π/2 = 1/2 in the absence of the

non-linear interaction (ζ = 0).

Excursion 5.1 To go into a rotating frame is equivalent to transforming from the Heisen-

berg to interaction picture. Via this transformation, the free Hamiltonian H0 carries full

time dependence arising from Hs — it is an operator in the Heisenberg picture, written

as H0(t).
2 The interaction picture operator is then defined in terms of operators in the

Heisenberg picture as

ai(t) ≡ e−iH0(t)t/h̄ a(t) eiH0(t)t/h̄ , (5.14a)

and evolves according to

dai(t)

dt
=

1

ih̄
[ai(t), Vh(t)] (5.14b)

2This is because [H0,Hs] 6= 0.
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where Vh(t) ≡ eiHst/h̄ V (t) e−iHst/h̄. Using the decomposition in (5.4) it can be shown that

equations (5.14) are the same as (5.6), as it must.

Equations (5.5) constitute the core for the final form of da/dt. We now turn the para-

metric amplifier into a problem of damping by confining the subharmonic field within some

physical boundary laid by mirrors, like the configuration of Fig. 4.1 for example. We can then

construct Heisenberg’s equation of motion phenomenologically by tacking on the dissipation

and driving terms:

da

dt
=

1

ih̄
[a,Hs] − κ̄a− i

√
2κ̄ Γ

= −iωc a+ κ̄λa†e−i2ωct − κ̄a− i
√

2κ̄ Γ . (5.15)

We may consider Hs to be given by (5.4) with ζ = ζ∗ = κλ, and Γ is the bath operator

coupling to a. The form of the source term assumes the same coupling strength of a to Γ

across all modes. In the rotating frame,

dã

dt
= −κ̄ã+ κ̄λã† − i

√
2κ̄ Γ̃ (5.16)

where Γ̃(t) ≡ Γ(t) eiωct. The prefactors of Γ may, as a matter of preference, be absorbed

into its definition. We see then, (5.15) and its Hermitian conjugate appear almost identical

to (5.1a) and (5.1b). The quantum treatment is vitally distinguished by (5.10) and (5.13).

Replicas of (5.9) also exist in the most primitive form of classical electromagnetism but com-

mutation relations (and therefore Heisenberg’s uncertainty relation) are by contrast absent

with βυ and βυ+π/2 being ordinary complex numbers. Stochastic electrodynamics however,

works on a higher level of sophistication by conforming to the Heisenberg uncertainty rela-

tion through its tailor-made vacuum fluctuations. Thus, because of (4.27), (5.1a) and (5.1b)

mimic Heisenberg’s equations of motion even more closely than a “pure” classical theory.

While we have provided the reader with a phenomenological model of the DPO, it should

be noted that the above procedures leading to (5.16) may be repeated within the formalisms

of classical field theory, where the terms in (5.15) may be accounted for systematically

by considering a Hamiltonian density and using Hamilton’s equation of motion. Poisson

brackets would then appear in place of commutator brackets. This would have been the

preferred route to deriving the classical Langevin equations.3

Returning to (5.1), we now relate Fourier components of the intra-cavity mode amplitude

to the amplitudes of the input modes. Cavity SA will squeeze the X-quadrature, and SB the

Y-quadrature. Going to a rotating frame, which may be effected either by setting ωc = 0 and

allowing αξ −→ α̃ξ , Einξ −→ Ẽinξ , or by multiplying both sides of (5.1) by an exponential.

Equations (4.23) and (4.24) give for the Fourier transform (5.1b) to

−(κξ − iω)Ãξ(ω) ± κξλξ

[

Ãξ(−ω)
]∗

−
√

2κξc

L
f̃ξ(ω) = 0 . (5.17a)

Taking the complex conjugate and letting ω −→ −ω (or multiply (5.1a) by c/L and integrate

against eiωt) returns

−(κξ − iω)
[

Ãξ(−ω)
]∗

± κξλξÃξ(ω) −
√

2κξc

L

[

f̃ξ(−ω)
]∗

= 0 (5.17b)

3Time constraints have prevented the author to rework the equations leading to (5.15) within the context

of a classical field theory. The reader should also be aware that Gardiner and Collett derived a more general
quantum Langevin equation involving commutators by which (5.15) is a special case of their result.
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where we take the plus sign for the second term if ξ = B, and minus for ξ = A. Ideally,

cavities SA and SB should share the same pump parameter (λA = λB) to maximize the

correlation between their outputs. The above sign convention shall be adopted throughout

future calculations. Since ẼI will be prepared independently, the modes to be teleported

will satisfy,

−(κI − iω)ÃI(ω) ± κIλI

[

ÃI(−ω)
]∗

−
√

2κIc

L
f̃I(ω) = 0 , (5.18a)

−(κI − iω)
[

ÃI(−ω)
]∗

± κIλI ÃI(ω) −
√

2κIc

L

[

f̃I(−ω)
]∗

= 0 (5.18b)

with its own pump parameter λI . Equations (5.18a) and (5.18b) constrains the direction

of squeezing in phase-space to be either along the real or imaginary axis. It will be best to

solve (5.17) and (5.18) for quadrature modes. After some algebra we arrive at

Xξ(ω) = −
√

2κξc

L

xξ(ω)

κξ(1 ∓ λξ) − iω
, Yξ(ω) = −

√

2κξc

L

yξ(ω)

κξ(1 ± λξ) − iω
. (5.19)

Equation (5.19) completes our linear mapping since we can now express the teleported

quadrature modes entirely as a function of those incident on the entanglement source and

the input cavity. We now proceed to calculate the spectra of squeezing which will be our

measure of authenticity for teleportation.

5.2 Derivation of Teleported Spectra of Squeezing

The X-quadrature squeezing spectrum at Bob’s location will be calculated first. The Y-

quadrature spectrum then follows with appropriate replacements in signs and variable la-

belling. Recalling (4.43) which gives the displaced field

ES3(t) = EX
S3(t) + iEY

S3(t) , (5.20)

let us write

EX
S3(t) =

+∞∫

−∞

g(ω) ĒX
S3(ω) e−iωt dω , (5.21a)

EY
S3(t) =

+∞∫

−∞

g(ω) ĒY
S3(ω) e−iωt dω (5.21b)

where we now define the X-quadrature amplitudes for ES3 to be (letting κA = κB ≡ κ as

before)

ĒX
S3(ω) =

1√
2

{[√
c

L
xA(ω) +

√
2κ XA(ω)

]

−
[√

c

L
xB(ω) +

√
2κ XB(ω)

]

+ Ī1(ω)
G1

∣
∣Ēl1

∣
∣n1κ

n1κ− iω

}

, (5.22a)
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and similarly for the Y-quadrature,

ĒY
S3(ω) =

1√
2

{[√
c

L
yA(ω) +

√
2κ YA(ω)

]

−
[√

c

L
yB(ω) +

√
2κ YB(ω)

]

+ Ī2(ω)
G2

∣
∣Ēl2

∣
∣n2κ

n2κ− iω

}

. (5.22b)

The currents Ī1(ω) and Ī2(ω) are given by (4.44a) and (4.44b) respectively. In the continuous

limit, the Wiener-Khinchine Theorem will be helpful in identifying the spectrum of

squeezing [68]. The auto-correlation function for the X-quadrature is 4

〈[
EX

S3(t)
]∗ EX

S3(t+ τ)
〉

=

+∞∫

−∞

+∞∫

−∞

〈

g(ω)
[
ĒX

S3(ω)
]∗
g(ω′) ĒX

S3(ω
′)
〉

e−i(ω′−ω)t e−iω′τ dω dω′ (5.23)

where
〈

g(ω)
[
ĒX

S3(ω)
]∗
g(ω′) ĒX

S3(ω
′)
〉

=
1

2

〈

g(ω)

{[√
c

L
xA(ω) +

√
2κ XA(ω)

]∗

−
[√

c

L
xB(ω) +

√
2κ XB(ω)

]∗

+
[
Ī1(ω)

]∗ G1

∣
∣Ē1

∣
∣n1κ

n1κ+ iω

}

× g(ω′)

{[√
c

L
xA(ω′) +

√
2κ XA(ω′)

]

−
[√

c

L
xB(ω′) +

√
2κ XB(ω′)

]

+
[
Ī1(ω

′)
] G1

∣
∣Ē1

∣
∣n1κ

n1κ− iω′

}〉

. (5.24)

To simplify (5.24), note that not all terms survive on expansion due to the independence of

the DPO vacuum inputs. We first compute the non-zero terms. From (4.39a) along with

the DPO input statistics given by (4.27) we find 5

〈

g(ω) [xξ(ω)]
∗
g(ω′) xξ′(ω′)

〉

=
1

4

〈

g(ω)
{[

f̃ξ(ω)
]∗

+ f̃ξ(−ω)
}

g(ω′)
{

f̃ξ′(ω′) +
[

f̃ξ′(−ω′)
]∗}〉

=
1

4
g(ω) δ(ω − ω′) δξξ′ , (5.25a)

Using (5.19), the covariances taken between quadratures external and internal to cavity Sξ

can be computed,

〈

g(ω) [xξ(ω)]
∗
g(ω′)Xξ′(ω′)

〉

= − 1

κξ(1 ∓ λξ′ ) − iω′

√

2κξc

L

1

4
g(ω) δ(ω − ω′) δξξ′ , (5.25b)

4Remembering that EX
S3(t) and EY

S3(t) are real by construction.
5Obviously (4.27) is preserved for f̃(ω) ≡ if̄(ω).
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〈

g(ω) xξ(ω) g(ω′) [Xξ′(ω′)]
∗
〉

=
〈

g(ω) [xξ(ω)]∗ g(ω′)Xξ′(ω′)
〉∗

= − 1

κξ(1 ∓ λξ′) + iω′

√

2κξc

L

1

4
g(ω) δ(ω − ω′) δξξ′ , (5.25c)

and also the portion of intra-cavity energy density contained in the X-quadrature,
〈

g(ω) [Xξ(ω)]∗ g(ω′)Xξ′(ω′)
〉

=
1

[κξ(1 ∓ λξ) + iω] [κξ(1 ∓ λξ′) − iω′]

2κξc

L

1

4
g(ω) δ(ω − ω′) δξξ′ . (5.25d)

On expanding (5.24), all terms will be of the form
〈

g(ω)

[√
c

L
xξ(ω) +

√
2κξ Xξ(ω)

]∗

g(ω′)

[√
c

L
xξ′(ω′) +

√
2κξ Xξ′(ω′)

]〉

=
c

L

〈

g(ω) [xξ(ω)]
∗
g(ω′) xξ′(ω′)

〉

+

√

2κξc

L

〈

g(ω) [xξ(ω)]
∗
g(ω′)Xξ′(ω′)

〉

+

√

2κξc

L

〈

g(ω) [Xξ(ω)]
∗
g(ω′) xξ′(ω′)

〉

+ 2κξ

〈

g(ω) [Xξ(ω)]
∗
g(ω′) xξ′(ω′)

〉

=
c

L

{

1 − 2κξ

κξ(1 ∓ λξ) − iω′
− 2κξ

κξ(1 ∓ λξ) + iω

+
(2κξ)

2

[κξ(1 ∓ λξ) + iω] [κξ(1 ∓ λξ) − iω′]

}
1

4
g(ω) δ(ω − ω′) δξξ′

=
1

4
ΩX

ξ (ω, ω′) g(ω) δ(ω − ω′) δξξ′ . (5.26a)

where we define,

ΩX
ξ (ω, ω′) ≡ c

L

{

1− 2κξ

κξ(1 ∓ λξ) − iω′
− 2κξ

κξ(1 ∓ λξ) + iω

+
(2κξ)

2

[κξ(1 ∓ λξ) + iω] [κξ(1 ∓ λξ) − iω′]

}

, (5.26b)

reminding ourselves of the sign convention mentioned in (5.17) and (5.18).

Excursion 5.2 For the purpose of obtaining (5.25), (4.27) provided a complete description

of the external vacuum field for our DPO. It should be mentioned for completeness, that

the quantum calculation must be complemented by the boson commutation relations
[

g(ω) ˆ̄fξ(ω), g(ω′) ˆ̄fξ′(ω′)
]

= 0 , (5.27a)
[

g(ω) ˆ̄f †
ξ (ω), g(ω′) ˆ̄f †

ξ′(ω)
]

= 0 , (5.27b)
[

g(ω) ˆ̄fξ(ω), g(ω′) ˆ̄f †
ξ′(ω

′)
]

= g(ω) δ(ω − ω′) δξξ′ . (5.27c)

whereby the same relation to (5.11) is expected for the cavity inputs x̂ξ(ω) = ∆x̂ξ(ω) and

ŷξ(ω) = ∆ŷξ(ω). The ensemble averages must then be realized from a density operator ρr
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for the reservoir such that
〈

g(ω) ˆ̄fξ(ω) g(ω′) ˆ̄fξ′(ω′)
〉

= tr
{

ρr g(ω) ˆ̄fξ(ω) g(ω′) ˆ̄fξ′(ω′)
}

= 0 , (5.28a)
〈

g(ω) ˆ̄f †
ξ (ω) g(ω′) ˆ̄f †

ξ′(ω
′)
〉

= tr
{

ρr g(ω) ˆ̄f †
ξ (ω) g(ω′) ˆ̄f †

ξ′(ω
′)
}

= 0 , (5.28b)
〈

g(ω) ˆ̄f †
ξ (ω) g(ω′) ˆ̄fξ′(ω′)

〉

= tr
{

ρr g(ω) ˆ̄f †
ξ (ω) g(ω′) ˆ̄fξ′(ω′)

}

= g(ω) n̄(ω) δ(ω − ω′) δξξ′ . (5.28c)

Note that it is no longer legitimate to add the extra 1/2 to the average number of photons

per mode. It is now a manifestation of the above boson commutators.

5.2.1 Classical Squeezing

A few remarks about (5.26a) and the squeezed states of light can be made. Noting the

quadrature mode amplitudes have zero mean, the X-quadrature spectra of squeezing on the

output of our DPO are furnished directly from (5.26). The two-time correlation function of

ẼX
ξ (t) is

〈[

ẼX
ξ (t)

]∗

ẼX
ξ (t+ τ)

〉

=

+∞∫

−∞

+∞∫

−∞

〈

g(ω)

[√
c

L
xξ(ω) +

√
2κξ Xξ(ω)

]∗

× g(ω′)

[√
c

L
xξ(ω

′) +
√

2κξ Xξ(ω
′)

]〉

ei(ω−ω′)t e−iω′τ dω dω′ . (5.29)

Substituting in (5.26) and integrating with respect to ω′ gives

〈[

ẼX
ξ (t)

]∗

ẼX
ξ (t+ τ)

〉

=
1

2π

+∞∫

−∞

{

1

4

[(κξ(1 ∓ λξ)]
2

+ ω2

[(κξ(1 ± λξ)]
2

+ ω2

}

e−iωτ dω , (5.30)

where we have substituted (4.16) for the density of modes. For the continuing derivation

below, it is wise to further define

Ω̄X
ξ (ω) ≡ [(κξ(1 ∓ λξ)]

2
+ ω2

[(κξ(1 ± λξ)]
2

+ ω2
=⇒ ΩX

ξ (ω, ω′)
∣
∣
ω=ω′

= Ω̄X
ξ (ω)

c

L
, (5.31)

where (5.31) is consistent with (5.26) in signs. The Wiener-Khinchine theorem for a sta-

tionary process delivers the DPO outgoing squeezing spectrum from (5.30) as

∣
∣∆EX

ξ (ω̄)
∣
∣
2

=
1

4

(1 ∓ λξ)
2 + ω̄2

(1 ± λξ)2 + ω̄2
, (5.32)

where ω̄ ≡ ω/κξ specifies the optical frequency in units of the amplitude decay rate. First

we note that each Fourier component satisfies

∣
∣∆EX

ξ (ω̄)
∣
∣
∣
∣∆EY

ξ (ω̄)
∣
∣ =

1

4
. (5.33)
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Fig. 5.1: Squeezing spectra emitted by SA. (a) The degree of squeezing increases with λA. (b) Ideally SA

and SB should be identical; i.e. they share the same pump and have identical non-linearities, etc (λA = λB)

giving rise to perfectly symmetric outputs
∣
∣∆EY

A (ω̄)
∣
∣2 =

∣
∣∆EX

B (ω̄)
∣
∣2.

The reader should remember the sign convention adopted in equations (5.17) would give us

∣
∣∆EX

A (ω)
∣
∣
2

=
1

4

[(κA(1 − λA)]2 + ω2

[(κA(1 + λA)]
2
+ ω2

,
∣
∣∆EY

A (ω)
∣
∣
2

=
1

4

[(κA(1 + λA)]2 + ω2

[(κA(1 − λA)]
2

+ ω2
(5.34a)

and

∣
∣∆EX

B (ω)
∣
∣
2

=
1

4

[(κB(1 + λB)]
2
+ ω2

[(κB(1 − λB)]
2
+ ω2

,
∣
∣∆EY

B (ω)
∣
∣
2

=
1

4

[(κB(1 − λB)]
2

+ ω2

[(κB(1 + λB)]
2

+ ω2
. (5.34b)

Letting ξ = A to be precise, Fig. 5.1 (a) and (b) plots the X- and Y-quadrature intensities

given by (5.32). The variance of the squeezed quadrature diminishes as the resonant fre-

quency (ω = 0) is approached. Taking our measure of the spread in frequency for |∆EX
A (ω)|2

to be given by the bandwidth ¯BW defined as 6

∣
∣∆EX

A ( ¯BW/2)
∣
∣
2 ≡ 1

2

[
1

4
−
∣
∣∆EX

A (0)
∣
∣
2
]

, (5.35)

squeezing is most pronounced within the bandwidth ¯BW ≈ 4κ for λA −→ 1. As illustrated

by Fig. 5.1, and Fig. 5.2 (b) where the X-quadrature intensity is plotted against λA for the

resonant mode, squeezing increases with increasing pump parameter. One observes that
∣
∣d
∣
∣∆EX

A (ω̄)
∣
∣
2
/dλA

∣
∣ is largest in the range 0 < λA < 0.4. For pump parameter values

beyond 0.4, there is less decrease in
∣
∣∆EX

A (ω̄)
∣
∣
2

per unit increase in λA. It can now be seen

that perfect squeezing is restricted to the resonant mode and rather stifled by the required

infinite variance of the other quadrature; it is only possible if one has an infinite supply

of pump photons, i.e. infinite energy. Finally, (5.19) up to (5.30) reveals that squeezing

is “wavicle”; i.e., is strikingly comprehensible in terms of the wave description. Perfect,

on resonance squeezing of the radiated field may be interpreted as a result of destructive

6Equation (5.35) is defined for ω and not ω̄.
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Fig. 5.2: (a) The optical spectrum. The total power spectral density tends to
∣
∣∆EY

A (ω̄)
∣
∣2 for large values

of the squeezing bandwidth and pump parameter. (b) The X-quadrature variance displays impeded noise

suppression (i.e. the gradient of
∣
∣∆EY

A
(ω̄)
∣
∣2 decreases) for λA > 0.4,.

interference between the input and intra-cavity modes:

1

2

{

Λ̃A(0) +
[

Λ̃A(0)
]∗}

=

√
c

L
xA(0) +

√
2κ XA(0) = 0 . (5.36)

Continuing with the derivation of the teleported squeezing spectrum for the X-quadrature

from (5.26), which now completely determines (5.24) and hence the integral given by (5.23),

the important factors in (5.24) follow straightforwardly as
〈

g(ω)

[√
c

L
xA(ω) +

√
2κ XA(ω)

]

g(ω′) Ī1(ω
′)

〉

=
1

4
ΩX

A(ω, ω′) g(ω) δ(ω − ω′) , (5.37a)

〈

g(ω)

[√
c

L
xB(ω) +

√
2κ XB(ω)

]

g(ω′) Ī1(ω
′)

〉

=
1

4
ΩX

B(ω, ω′) g(ω) δ(ω − ω′) . (5.37b)

Taking the complex conjugate and letting ω −→ ω′ we obtain,
〈

g(ω)
[
Ī1(ω)

]∗
g(ω′)

[√
c

L
xA(ω′) +

√
2κ XA(ω′)

]〉

=
1

4

[
ΩX

A(ω, ω′)
]∗
g(ω) δ(ω − ω′) , (5.37c)

〈

g(ω)
[
Ī1(ω)

]∗
g(ω′)

[√
c

L
xB(ω′) +

√
2κ XB(ω′)

]〉

=
1

4

[
ΩX

B(ω, ω′)
]∗
g(ω) δ(ω − ω′) , (5.37d)
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〈

g(ω)
[
Ī1(ω)

]∗
g(ω′) Ī1(ω

′)

〉

=
1

4

[
2ΩX

in(ω, ω′) + ΩX
A (ω, ω′) + ΩX

B (ω, ω′)
]
g(ω) δ(ω − ω′) . (5.37e)

Gathering together equations (5.37), the non-zero terms in (5.24) are

〈

g(ω)
[
ĒX

S3(ω)
]∗
g(ω′) ĒX

S3(ω
′)
〉

=
1

2

{〈

g(ω)

[√
c

L
xA(ω) +

√
2κ XA(ω)

]∗

g(ω′)

[√
c

L
xA(ω′) +

√
2κ XA(ω′)

]〉

+

〈

g(ω)

[√
c

L
xA(ω) +

√
2κ XA(ω)

]∗

g(ω′) Ī1(ω
′)

〉

G1

∣
∣Ēl1

∣
∣n1κ

n1κ− iω′

+

〈

g(ω)

[√
c

L
xB(ω) +

√
2κ XB(ω)

]∗

g(ω′)

[√
c

L
xB(ω′) +

√
2κ XB(ω′)

]〉

−
〈

g(ω)

[√
c

L
xB(ω) +

√
2κ XB(ω)

]∗

g(ω′) Ī1(ω
′)

〉

G1

∣
∣Ēl1

∣
∣n1κ

n1κ− iω′

+

〈

g(ω)
[
Ī1(ω)

]∗
g(ω′)

[√
c

L
xA(ω′) +

√
2κ XA(ω′)

]〉

G1

∣
∣Ēl1

∣
∣n1κ

n1κ+ iω

−
〈

g(ω)
[
Ī1(ω)

]∗
g(ω′)

[√
c

L
xB(ω′) +

√
2κ XB(ω′)

]〉

G1

∣
∣Ēl1

∣
∣n1κ

n1κ+ iω

+

〈

g(ω)
[
Ī1(ω)

]∗
g(ω′) Ī1(ω

′)

〉

(G1

∣
∣Ēl1

∣
∣n1κ)

2

(n1κ+ iω)(n1κ− iω′)

}

=
1

2

{

ΩX
A (ω, ω′) + ΩX

B (ω, ω′) +
G1

∣
∣Ēl1

∣
∣n1κ

n1κ− iω′

[
ΩX

A (ω, ω′) − ΩX
B (ω, ω′)

]

+
G1

∣
∣Ēl1

∣
∣n1κ

n1κ+ iω

[[
ΩX

A (ω, ω′)
]∗ −

[
ΩX

B (ω, ω′)
]∗
]

+
(G1

∣
∣Ēl1

∣
∣n1κ)

2

(n1κ+ iω)(n1κ− iω′)

[
2ΩX

I (ω, ω′) + ΩX
A (ω, ω′) + ΩX

B (ω, ω′)
]

}

g(ω) δ(ω − ω′)

4
.

(5.38)

We are almost finished, since all that is required is to substitute (5.38) into (5.23) and

integrate over either ω or ω′. This will give us Bob’s output field. To explore bandwidth

effects however, it is then necessary to account for filtering in Victor’s detection. From (4.45)

and (5.22a), the filtered current in terms of the modes at Bob’s location gives

〈[
IF

3 (t)
]∗ IF

3 (t+ τ)
〉

= 4G2
3

∣
∣Ēl3

∣
∣
2

+∞∫

−∞

+∞∫

−∞

〈

g(ω)
[
ĒX

S3(ω)
]∗
g(ω′) ĒX

S3(ω
′)
〉

× (n3κ)
2

(n3κ+ iω)(n3κ− iω′)
e−i(ω′−ω)t e−iω′τdω dω′ . (5.39)
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Substituting the density of modes, (5.38) into (5.39) and integrating with respect to ω′; we

assert Victor’s squeezing spectrum is given by

∣
∣∆EXF

S3 (ω)
∣
∣
2

=
1

2

{

[
Ω̄X

A (ω) + Ω̄X
B (ω)

]
+

2G1

∣
∣Ēl1

∣
∣ (n1κ)

2

(n1κ)2 + ω2

[
Ω̄X

A (ω) − Ω̄X
B (ω)

]

+
(G1

∣
∣Ēl1

∣
∣n1κ)

2

(n1κ)2 + ω2

[
2Ω̄X

I (ω) + Ω̄X
A (ω) + Ω̄X

B (ω)
]

}

(G3

∣
∣Ēl3

∣
∣n3κ)

2

(n3κ)2 + ω2
.

(5.40)

Equation (5.40) is our primary result describing broadband teleportation. The form of (5.40)

is sensible when we consider how the energy of the optical fields is distributed within the

teleporter (Fig. 3.1) and how the different stages of filtering are organized. The Lorentzian

appearing outside the curly braces is the intensity transfer function for Victor’s homodyne

filter. The first square bracket term is simply the intensity sent directly to Bob from the

entanglement source. The last collection of terms in (5.40) is the filtered power spectrum

of Alice’s field EX
S1(t), which of course must turn up here as Bob’s displacement of EB′(t).

Note the coefficient of Ω̄X
I (ω) is twice that for

[
Ω̄X

A (ω) + Ω̄X
B (ω)

]
, as it should due to energy

division through the beam-splitters.

The second square bracket term in (5.40) arises from the cross terms in (5.38). First,

the minus sign between Ω̄X
A(ω) and Ω̄X

B(ω) arises from the beam-splitter transformation for

amplitudes EA(t) and EB(t), and secondly; in passing from (5.39) to (5.40), the cross terms

in (5.38) add to give us a factor of two appearing in front of
[
Ω̄X

A (ω) − Ω̄X
B (ω)

]
. These two

features, along with unit-gain, provide us with an explanation of broadband teleportation.

To obtain the Y-quadrature spectrum
∣
∣∆ĒY F

S3 (ω)
∣
∣
2
, we recall that the real and imaginary

parts of EA(t) and EB(t) are squeezed symmetrically. Reducing the fluctuations of EX
A (t)

will simultaneously reduce the fluctuations of EY
B (t) by the same amount. This amounts to

the following equalities for the intensities

Ω̄X
A (ω) = Ω̄Y

B(ω) , Ω̄X
B (ω) = Ω̄Y

A(ω) . (5.41)

Since the input field EI(t) is squeezed independently of the entanglement source we make

the replacement

Ω̄X
I (ω) −→ Ω̄Y

I (ω) ≡ [(κI(1 ± λI)]
2 + ω2

[(κI(1 ∓ λI)]
2

+ ω2
. (5.42)

Lastly, noting that it is IF
2 (t) which contributes to EY

S3(t), we require another replacement

in the subscripts of (5.40), namely 1 −→ 2. With these modifications the Y-quadrature

spectrum seen by Victor is

∣
∣∆EYF

S3 (ω)
∣
∣
2

=
1

2

{

[
Ω̄Y

A(ω) + Ω̄Y
B(ω)

]
− 2G2

∣
∣Ēl2

∣
∣ (n2κ)

2

(n2κ)2 + ω2

[
Ω̄Y

A(ω) − Ω̄Y
B(ω)

]

+
(G2

∣
∣Ēl2

∣
∣n2κ)

2

(n2κ)2 + ω2

[
2Ω̄Y

I (ω) + Ω̄Y
A(ω) + Ω̄Y

B(ω)
]

}

(G3

∣
∣Ēl3

∣
∣n3κ)

2

(n3κ)2 + ω2
.

(5.43)
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Equivalent comments to those regarding (5.40) can be made about (5.43).7 Note that for

λI = 0, (5.41) reproduces the coherent state property,

∣
∣∆EXF

S3 (ω)
∣
∣
2

=
∣
∣∆EYF

S3 (ω)
∣
∣
2
. (5.44)

5.3 Verification — Broadband Teleportation

5.3.1 Quantifying Teleportation

A discussion of teleportation necessitates one to introduce a measure for the quality of tele-

portation. As mentioned in the preface, we will not use the fidelity defined by the quantum

information community [69], [70]. Broadband teleportation requires as large a range of fre-

quencies over which the teleported field is equal to the input as possible. In general this

is not sufficient to quantify the quality of teleportation since frequency components closest

to ω = 0 (remembering that ω is the deviation from the physical frequency ωc) are the

most significant. It is thus possible to consider a scenario where in a spectral range δ that

excludes ω = 0, one finds

∣
∣∆EX

S3(ω)
∣
∣
2

=
1

4
Ω̄X

I (ω) ,
∣
∣∆EY

S3(ω)
∣
∣
2

=
1

4
Ω̄Y

I (ω) ∀ ω ∈ δ , (5.45a)

but the output still bears less resemblance to the input than the situation given by

∣
∣∆EX

S3(ω)
∣
∣
2

=
1

4
Ω̄X

I (ω) ,
∣
∣∆EY

S3(ω)
∣
∣
2

=
1

4
Ω̄Y

I (ω) ∀ ω ∈ ϑ (5.45b)

where δ > ϑ and ω = 0 ∈ ϑ. A possible way of accurately accounting for the quality of

teleportation is to consider some weighted distance measure between the teleported field

and the input, with the resonant mode carrying the highest weight and weights decrease as

one moves away from the resonant mode. Our analysis will not involve ambiguous situa-

tions where such a measure is required. In any comparison we make below, the quality of

teleportation will always be judged based on the closeness of
∣
∣∆EX

S3(ω)
∣
∣
2

to Ω̄X
I (ω)/4 and

∣
∣∆EY

S3(ω)
∣
∣
2

to Ω̄Y
I (ω)/4. In the following only filtered fields are plotted, i.e. equations (5.40)

and (5.43) are compared with the input quadratures passed through a filter with the same

bandwidth specified by n3.

5.3.2 Noise Reduction

Single Mode Teleportation

Do equations (5.40) and (5.43) reproduce ideal teleportation as described in Chap. 3 ? If we

demand the conditions of unit-gain8, infinite squeezing (λA = λB −→ 1), and no filtering

whatsoever (nj −→ ∞), then the squeezing spectra given by (5.40) and (5.43) approach

those of the input for the resonant mode,

∣
∣∆EXF

S3 (0)
∣
∣
2 −→ Ω̄X

I (0) ,
∣
∣∆EY F

S3 (0)
∣
∣
2 −→ Ω̄Y

I (0) . (5.46)

7Note that should one choose to let cavity SB squeeze the X-quadrature of its vacuum input instead

of SA then we may let λB −→ −λB and define Ω̄X
B

(ω) ≡
{

[(κ(1 − λB)]2 + ω2
}

/
{

[(κ(1 + λB)]2 + ω2
}

in

(5.40) as the X-quadrature spectrum coming directly out of SB .
8Excluding Victor, this may all, or partially be left to Bob. We have divided the job into two parts

through the introduction of Gj and the 1/
√

2 in (4.42).
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Fig. 5.3: Teleported vacuum modes for different levels of EPR correlations. The red curve is the input

spectrum of squeezing and the black curve is the teleported spectrum.

Teleportation is intrinsically multimode, and perfect teleportation is an impossibility dic-

tated by the finite squeezing bandwidth ¯BW and our inability to produce unit pump pa-

rameters.

Multimode Teleportation

We consider (5.40) and (5.43) with λA = λB ≡ λ, κI = κ, and under the conditions of unit-

gain and no filtering. Fig. 5.3 displays results for teleportation of a pure coherent vacuum, for

which (5.40) and (5.43) are identical. Similarly Fig. 5.4 displays results for various vacuum

squeezed states at the input.

With no squeezing applied to the fields distributed to Alice and Bob, the shape of

|∆EXF
S3 (ω)|2 follows Ω̄X

I (ω)/4. In fact, the output noise level is three times that of the input

across all frequencies, shown by the separation between the black curve and red curve in

Fig. 5.3 and Fig. 5.4. Squeezing serves as a method of noise reduction whereby the modes

proximate to (and including) the resonant are driven closer and closer to the input as λ

approaches one.

Given the constancy in the separation between the output and input X-quadrature spec-

tra, the right column of Fig. 5.4 might suggest that teleportation becomes better when EI(t)

has a more intense Y-quadrature. By our measure for the quality of teleportation it is better

but it is not because of the teleportation protocol itself. One may think of the red line in

the right column of Fig. 5.4 as the optical spectrum of an input coherent state. Thus going

down the right column from Fig. 5.4 (a) to (c) is equivalent to teleporting a pure coherent

state (λI = 0) whose distance away from the phase-space origin, given by its average photon

number, increases while its vacuum fluctuations remain constant. Hence if we return to the

case of teleporting a squeezed state whose X- and Y-quadratures are shown by Fig. 5.4, the

resemblance of the output field to the input increases as a result of the input becoming more

and more defined, i.e. classical. In this case, one would not need to pump so strenuously to

achieve the same quality of teleportation. For our squeezed vacuum field input, that energy
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Fig. 5.4: Teleportation of squeezed vacuum for various degrees of squeezing denoted by λI . For concrete

analysis, the input is assumed to squeeze the X-quadrature. The same colour key for λ as in Fig. 5.3 applies.
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Fig. 5.5: Effects of Alice’s filter bandwidth for an unsqueezed input given two different filtering bandwidths

at Victor’s location. Alice filters symmetrically, n1 = n2. For the purpose of illustration, Victor has not set
a bandwidth as narrow as he should. The same colour code applies to both (a) and (b).

is interpreted to constitute pure statistical uncertainty instead of an increase in photons per

mode.

5.3.3 Bandwidth Effects

We discuss the role of bandwidths in teleportation.

Filtering Bandwidths

Teleportation of unsqueezed vacuum modes with applied filtering for constant squeezing

power are shown in Fig. 5.5. Noticeably different to Fig. 5.3 or 5.4 are the additional decaying

wings, approaching zero for large deviations from resonance. This is simply provided by the

asymptotic behaviour of the Lorentzian filters. The black curve in Fig. 5.5 is purely Victor’s

filtering, and thus for all non-infinite bandwidths set by Alice the output wings must lie

within the red and black ones. This is shown for two values of Victor’s filter bandwidth.

Passing from Fig. 5.5 (a) to (b) evidently retains the noise power on resonance while

lower noise levels appear for all ω̄ > 0, or ω̄ < 0 given the same degree of filtering by Alice.

Mathematically this is expected since we have centred all filtering functions on ω̄ = 0;

at which point they are unity, and beyond which point they decay quicker for narrower

bandwidths. Physically, the result of Fig. 5.5 (b) shows a closer resemblance to the input

because Victor has filtered out more noise, particularly significant are those introduced by

Bob’s displacement of EB′(t). Victor should look at modes as close to ω̄ = 0 as he can since

it is only the modes near ω̄ = 0 that benefit from the squeezing. There is no bound as to

how narrow Victor should set his bandwidth since the resource of squeezing has already been

used. However, Alice should be warned not to filter too severely which would degrade the

signal-to-noise ratio (for the general case of teleporting arbitrary coherent states) reaching

Victor by restricting squeezing to act over a lesser number of modes. In particular, Alice
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should set n1 > 4 in the limit of infinite squeezing, since the squeezing bandwidth ¯BW was

estimated to be 4κ for λ −→ 1 from (5.35).

Squeezing Bandwidth

We shall return to teleporting a squeezed vacuum state and be advised by the salient pa-

rameter (not to be confused with the density of modes)

g ≡ κI

κ
, (5.47)

of bandwidth effects of our EPR source, i.e the squeezing bandwidth of SA and SB . We

plot in Fig. 5.6, when κI = κ, ceteris paribus. Choices from κ = 10κI (Fig. 5.7) to κ =

κI/10 (Fig. 5.8) are shown below. All plots have the parameter values shown in the legend

of Fig. 5.6. It is perspicuous in both the X- and Y-quadratures that the input modes

begin to recede from the output as κ diminishes. This is expected since cavity damping

rates of SA and SB smaller than that for SI constricts the entanglement source to squeeze

over a relatively small spectral region, degrading the overlap between output and input.

Increasing κ (g < 1) then mitigates the shortage of noise reduction per mode suffered by

the teleportation protocol, allowing the blue curve to catch up to the red curve.

It is interesting to note the dip in the Y-quadrature for g = 10. Fields EA′(t) and EB′(t)

are no longer a valuable entanglement resource except for the resonant mode, which will

always experience the same strength of squeezing. The closeness seen between the output

and input for ω̄ = 0 will be preserved for any residual damping of SA and SB .
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Fig. 5.6: Effects of squeezing bandwidth at g = 1 for the parameter values shown in the legend, which are
kept constant.
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Fig. 5.7: Effects of squeezing bandwidth for g < 1.
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Fig. 5.8: Effects of squeezing bandwidth for g > 1.
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5.4 Stochastic Electrodynamics — A Symmetrically

Ordered Approach.

As promised, we now digress slightly to demonstrate that SED corresponds to operator

averages calculated in the Wigner representation, underlining its failure to account for mea-

surements characterized by a set of normally ordered field operators. Consider the optical

spectrum of a coherent state squeezed in the Y-quadrature,

〈
ˆ̃E†(t) ˆ̃E(t+ τ)

〉

=

+∞∫

−∞

+∞∫

−∞

〈

g(ω) ˆ̃Λ†(ω) g(ω′) ˆ̃Λ(ω′)
〉

eiωt e−iω′(t+τ) dω dω′ (5.48)

where ˆ̃Λ(ω) is defined by (4.22) in operator form. The annihilation and creation operators

for the intra-cavity modes may be solved in terms of the external modes from (5.17). After

some algebra they are,

ˆ̃A(ω) =

√

2κc

L

[
ˆ̃
f(ω) (κ− iω) + κλ

ˆ̃
f †(−ω)

(κλ)
2 − (κ− iω)

2

]

. (5.49)

With the constants defined by

Υa(ω) ≡
√
c

L

[

1 +
(2κ)(κ+ iω)

(κλ)2 − (κ− iω)2

]

, (5.50a)

Υb(ω) ≡
√
c

L

[
(2κ)(κλ)

(κλ)2 − (κ+ iω)2

]

, (5.50b)

and together with (5.49), the integrand of (5.48) may be written as
〈

g(ω) ˆ̃Λ†(ω) g(ω′) ˆ̃Λ(ω′)
〉

=
〈

g(ω)
[

Υ∗
a(ω)

ˆ̃
f †(ω) + Υ∗

b(ω)
ˆ̃
f(−ω)

]

g(ω′)
[

Υa(ω′)
ˆ̃
f(ω′) + Υb(ω

′)
ˆ̃
f †(−ω′)

] 〉

= Υ∗
a(ω)Υa(ω′)

〈

g(ω)
ˆ̃
f †(ω) g(ω′)

ˆ̃
f(ω′)

〉

+ Υ∗
b(ω)Υb(ω

′)
〈

g(ω′)
ˆ̃
f †(−ω′) g(ω)

ˆ̃
f(−ω)

〉

+ Υ∗
b(ω)Υb(ω

′) g(ω) δ(ω − ω′) . (5.51)

We have noted the ensemble averages in (5.28), and the commutator of (5.27c) has been

used to write the reservoir modes in normal order. For white noise, the field correlation of

(5.48) is

〈
ˆ̃E†(t) ˆ̃E(t+ τ)

〉

=

+∞∫

−∞

g(ω)

{

n̄
[

|Υa(ω)|2 + |Υb(ω)|2
]

+ |Υb(ω)|2
}

e−iωτ dω

=
1

2π

+∞∫

−∞

{

n̄+
(2n̄+ 1) [(2κ)(κλ)]

2

[(κλ)2 − (κ2 − ω2)]
2

+ (2κ)2ω2

}

e−iωτ dω . (5.52)

Some rather lengthy algebra in (5.52) has been omitted which leads to

|Υa(ω)|2 =
c

L

{

1 +
(2κ)2(κλ)2

[(κλ)2 − (κ2 − ω2)]2 + (2κ)2ω2

}

, (5.53a)
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|Υb(ω)|2 =
c

L

{

(2κ)2(κλ)2

[(κλ)2 − (κ2 − ω2)]2 + (2κ)2ω2

}

(5.53b)

with the possibility of writing

(2κ)2(κλ)2

[(κλ)2 − (κ2 − ω2)]2 + (2κ)2ω2
=

κ2λ

[κ(1 − λ)]2 + ω2
− κ2λ

[κ(1 + λ)]2 + ω2
, (5.53c)

if one prefers the resemblance to (5.31). Equation (5.52) derives the correct spectrum as

measured by a direct photon count,

Sqm(ω) = n̄+
(2n̄+ 1) [(2κ)(κλ)]

2

[(κλ)2 − (κ2 − ω2)]
2

+ (2κ)2ω2
. (5.54)

Stochastic electrodynamics looks at the free field Hamiltonian and adds the zero-point

energy per mode by hand to give us the result of (4.27d). In effect, this reproduces a

calculation done in the Wigner representation of operator moments on quantizing our field,

〈

g(ω)
[

f̃(ω)
]∗

g(ω′)f̃(ω′)
〉

=
〈

g(ω)
ˆ̃
f †(ω) g(ω′)

ˆ̃
f(ω′)

〉

W

≡ 1

2

[〈

g(ω)
ˆ̃
f †(ω) g(ω′)

ˆ̃
f(ω′)

〉

+
〈

g(ω)
ˆ̃
f(ω) g(ω′)

ˆ̃
f †(ω′)

〉]

= n̄+
1

2
. (5.55)

Either using (5.55) for field operators, or (4.27d) for complex random variables, SED predicts

the observed photon count to be

Ssed(ω) = Sqm(ω) +
1

2
, (5.56)

where the subscripts “qm” and “sed” are meant to emphasize that it is in a quantum

calculation the operator ordering is kept track of, and not simply the difference between a

normally ordered calculation to a symmetrically ordered one. One would accept (5.56) based

on a realistic interpretation of vacuum fluctuations, i.e. they do contribute to photo-electron

generation in a photo-detector.

If we return to our discussion of squeezing in Sect. 5.2.1, in particular (5.29), then it would

seem plausible that the quadratures of the DPO output can be accounted for classically if

〈

g(ω)

[√
c

L
x̂†(ω) +

√
2κ X̂†(ω)

]

g(ω′)

[√
c

L
x̂(ω′) +

√
2κ X̂(ω′)

]〉

=

〈

g(ω)

[√
c

L
x̂†(ω) +

√
2κ X̂†(ω)

]

g(ω′)

[√
c

L
x̂(ω′) +

√
2κ X̂(ω′)

]〉

W

. (5.57)

Indeed, (5.57) is true since

[

g(ω)x̂(ω), g(ω′)x̂†(ω′)
]

=
[

g(ω)X̂(ω), g(ω′)X̂†(ω′)
]

= 0 . (5.58)

Although SED manages to produce the correct squeezing spectrum, its calculation of the



5.4. SED — A SYMMETRICALLY ORDERED APPROACH 63

optical spectrum still remains erroneous,

Ssed(ω) = |∆EX(ω)|2 + |∆EY (ω)|2

=
1

2

(

n̄+
1

2

){

[κ (1 + λ)]
2
+ ω2

[κ (1 − λ)]2 + ω2
+

[κ (1 − λ)]
2

+ ω2

[κ (1 + λ)]2 + ω2

}

= Sqm(ω) +
1

2
. (5.59)

Perhaps the quickest way to see this is to consider the intensity of ˆ̃E(t) = ˆ̃EX(t) + i ˆ̃EY (t),

where ˆ̃EX(t) and ˆ̃EY (t) are Hermitian and non-commuting operators,

〈
ˆ̃E†(t) ˆ̃E(t)

〉

=
〈[

ˆ̃EX(t)
]2 〉

+
〈 [

ˆ̃EY (t)
]2 〉

+ i

[

ˆ̃EX(t), ˆ̃EY (t)

]

. (5.60)

In the next chapter we use SED to force a calculation required to be done in the normal

ordering of operators.



64 CHAPTER 5. QUADRATURE TELEPORTATION



Chapter 6

The Intensity Correlation

Function

In the map given by Fig. 3.1, Victor will now perform a direct photon count. The teleported

intensity correlation function will now be calculated. This is the second form of verification

that we consider.

6.1 The Classical Intensity Correlation Function

In the following we consider the filtered field of Bob’s displaced output. The equation of

motion for the filtered field is the classical Langevin equation in the absence of non-linearity

in the rotating frame,

dEF
S3

dt
= −(n3κ)EF

S3 − i
√

2n3κ ES3 . (6.1)

To take advantage of the linearity possessed by our teleporter, EF
S3(t) will be written as a

sum of three fields labelled as E1(t), E2(t), and E3(t), where each is directly associated to

cavities SI , SA, and SB respectively,

EF
S3(t) =

[
EX
1 (t) + iEY

1 (t)
]

︸ ︷︷ ︸

E1(t)

+
[
EX
2 (t) + iEY

2 (t)
]

︸ ︷︷ ︸

E2(t)

+
[
EX
3 (t) + iEY

3 (t)
]

︸ ︷︷ ︸

E3(t)

. (6.2)

With recourse to (4.43) and (4.44), the real and imaginary parts of each field in (6.2) are

EX
1 (t) =

+∞∫

−∞

g(ω)

[√
c

L
xI (ω) +

√
2κI XI(ω)

](
α1n1κ

n1κ− iω

)(−i
√

2n3κ

n3κ− iω

)

e−iωt dω , (6.3a)

EY
1 (t) =

+∞∫

−∞

g(ω)

[√
c

L
xI (ω) +

√
2κI XI(ω)

](
α2n2κ

n2κ− iω

)(−i
√

2n3κ

n3κ− iω

)

e−iωt dω , (6.3b)

65
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EX
2 (t) =

1√
2

+∞∫

−∞

g(ω)

[√
c

L
xA(ω) +

√
2κ XA(ω)

](

1 +
α1n1κ

n1κ− iω

)(−i
√

2n3κ

n3κ− iω

)

e−iωt dω ,

(6.3c)

EY
2 (t) =

1√
2

+∞∫

−∞

g(ω)

[√
c

L
yA(ω) +

√
2κ YA(ω)

](

1 − α2n2κ

n2κ− iω

)(−i
√

2n3κ

n3κ− iω

)

e−iωt dω ,

(6.3d)

EX
3 (t) =

−1√
2

+∞∫

−∞

g(ω)

[√
c

L
xB(ω) +

√
2κ XB(ω)

](

1 − α1n1κ

n1κ− iω

)(−i√2n3κ

n3κ− iω

)

e−iωt dω ,

(6.3e)

EY
3 (t) =

−1√
2

+∞∫

−∞

g(ω)

[√
c

L
yB(ω) +

√
2κ YB(ω)

](

1 +
α2n2κ

n2κ− iω

)(−i√2n3κ

n3κ− iω

)

e−iωt dω .

(6.3f)

where α1 ≡ G1|Ēl1| and α2 ≡ G2|Ēl2|. To make use of (6.3), the intensity correlation function

requires an orderly decomposition into apprehensible terms. Using (6.2), the expansion is

as follows,
〈 [

EF
S3(t)

]∗ EF
S3(t)

[
EF

S3(t+ τ)
]∗ EF

S3(t+ τ)
〉

=
〈

[E1(t)]
∗ [E1(t+ τ)]∗

〉〈

E2(t) E2(t+ τ)
〉

+
〈

[E2(t)]
∗ [E2(t+ τ)]∗

〉〈

E1(t) E1(t+ τ)
〉

+
〈

[E1(t)]
∗
[E1(t+ τ)]

∗
〉〈

E3(t) E3(t+ τ)
〉

+
〈

[E3(t)]
∗
[E3(t+ τ)]

∗
〉〈

E1(t) E1(t+ τ)
〉

+
〈

[E2(t)]
∗
[E2(t+ τ)]

∗
〉〈

E3(t) E3(t+ τ)
〉

+
〈

[E3(t)]
∗
[E3(t+ τ)]

∗
〉〈

E2(t) E2(t+ τ)
〉

+
〈

[E1(t)]
∗ E1(t)

〉〈

[E3(t+ τ)]∗ E3(t+ τ)
〉

+
〈

[E3(t)]
∗ E3(t)

〉〈

[E1(t+ τ)]∗ E1(t+ τ)
〉

+
〈

[E1(t)]
∗ E1(t)

〉〈

[E2(t+ τ)]
∗ E2(t+ τ)

〉

+
〈

[E2(t)]
∗ E2(t)

〉〈

[E1(t+ τ)]
∗ E1(t+ τ)

〉

+
〈

[E2(t)]
∗ E2(t)

〉〈

[E3(t+ τ)]
∗ E3(t+ τ)

〉

+
〈

[E3(t)]
∗ E3(t)

〉〈

[E2(t+ τ)]
∗ E2(t+ τ)

〉

+
〈

[E1(t)]
∗ E1(t+ τ)

〉〈

E2(t) [E2(t+ τ)]∗
〉

+
〈

[E2(t)]
∗ E2(t+ τ)

〉〈

E1(t) [E1(t+ τ)]∗
〉

+
〈

[E1(t)]
∗ E1(t+ τ)

〉〈

E3(t) [E3(t+ τ)]
∗
〉

+
〈

[E3(t)]
∗ E3(t+ τ)

〉〈

E1(t) [E1(t+ τ)]
∗
〉

+
〈

[E2(t)]
∗ E2(t+ τ)

〉〈

E3(t) [E3(t+ τ)]
∗
〉

+
〈

[E3(t)]
∗ E3(t+ τ)

〉〈

E2(t) [E2(t+ τ)]
∗
〉

+
〈

[E1(t)]
∗ E1(t) [E1(t+ τ)]∗ E1(t+ τ)

〉

+
〈

[E2(t)]
∗ E2(t) [E2(t+ τ)]∗ E2(t+ τ)

〉

+
〈

[E3(t)]
∗ E3(t) [E3(t+ τ)]

∗ E3(t+ τ)
〉

. (6.4)

In (6.4) we have noted the statistical independence of Ei(t) and Ej(t) for i, j = 1, 2, 3 and

i 6= j. Thus all fourth order terms formed by pairs of fields with i 6= j factorize immediately

to products of second order. For example,
〈

[Ei(t)]
∗ Ei(t+ τ) Ej(t) [Ej(t+ τ)]

∗
〉

=
〈

[Ei(t)]
∗ Ei(t+ τ)

〉〈

Ej(t) [Ej(t+ τ)]
∗
〉

. (6.5)
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Furthermore, the symmetry of the vacuum spectrum deduces all second order correlation

functions in (6.4) to be real. More precisely, all ensemble averages between the vacuum

quadratures
〈
g(ω) [xξ(ω)]

∗
g(ω′)yξ(ω

′)
〉

vanish if we note that

〈

g(ω)
[
f̄ξ(ω)

]∗
g(ω′)f̄ξ(ω

′)
〉

=
〈

g(ω)
[
f̄ξ(−ω)

]∗
g(ω′)f̄ξ(−ω′)

〉

=
1

2
g(ω) δ(ω − ω′) . (6.6)

Consequently the cross terms in a field correlation function such as

〈

[Ej(t)]
∗ Ej(t+ τ)

〉

=
〈

EX
j (t) EX

j (t+ τ)
〉

+
〈

EY
j (t) EY

j (t+ τ)
〉

+ i
[〈

EX
j (t) EY

j (t+ τ)
〉

−
〈

EY
j (t) EX

j (t+ τ)
〉]

(6.7)

are zero. Hence all second order terms in (6.4) are encompassed by

〈

[Ei(t)]
∗ Ei(t+ τ)

〉

=
〈

Ei(t) [Ei(t+ τ)]
∗
〉

=
〈

EX
i (t) EX

i (t+ τ)
〉

+
〈

EY
i (t) EY

i (t+ τ)
〉

, (6.8a)

〈

[Ei(t)]
∗
[Ei(t+ τ)]

∗
〉

=
〈

Ei(t) Ei(t+ τ)
〉

=
〈

EX
i (t) EX

i (t+ τ)
〉

−
〈

EY
i (t) EY

i (t+ τ)
〉

. (6.8b)

By virtue of the assumed stationarity of Ẽξ(t), (6.8) are only functions in the variable τ .

The intensities in lines four, five and six of (6.4) are then (6.8a) at τ = 0,

〈

[Ei(t)]
∗ Ei(t)

〉

=
〈

[Ei(t+ τ)]
∗ Ei(t+ τ)

〉

=
〈 [

EX
i (t)

]2
〉

+
〈 [

EY
i (t)

]2
〉

, (6.8c)

which are constants.

However, the last three terms of (6.4) simply do not submit to factorizations such as (6.5).

The Gaussian moment theorem allows us to digest these apparently intractable fourth order

terms [71].

Excursion 6.1 The Gaussian moment theorem states that for any set of Gaussian random

variables {ν1, ν2, . . . , νk} :

〈∆ν1∆ν2 · · ·∆νk〉 =
∑

All (k − 1)!!
pairings

〈∆ν1∆ν2〉 〈∆ν3∆ν4〉 · · · 〈∆νk−1∆νk〉 if k is an even number ,

〈∆ν1∆ν2 · · ·∆νk〉 = 0 if k is an odd number ,

where ∆νk ≡ νk − 〈νk〉.
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Hence we consider the case with k = 4,

〈∆ν1 ∆ν2 ∆ν3 ∆ν4〉 =
∑

All 3!!
pairings

〈∆ν1 ∆ν2〉 〈∆ν3 ∆ν4〉

= 〈∆ν1 ∆ν2〉 〈∆ν3 ∆ν4〉 + 〈∆ν1 ∆ν3〉 〈∆ν2∆ ν4〉
+ 〈∆ν1 ∆ν4〉 〈∆ν2 ∆ν3〉 .

Since all fields have zero mean, we obtain
〈

[Ei(t)]
∗ Ei(t) [Ei(t+ τ)]

∗ Ei(t+ τ)
〉

=
〈

[Ei(t)]
∗ Ei(t)

〉〈

[Ei(t+ τ)]
∗ Ei(t+ τ)

〉

+
〈

[Ei(t)]
∗
[Ei(t+ τ)]

∗
〉〈

Ei(t) Ei(t+ τ)
〉

+
〈

[Ei(t)]
∗ Ei(t+ τ)

〉〈

Ei(t) [Ei(t+ τ)]∗
〉

=
〈

[Ei(t)]
∗ Ei(t)

〉2

+
〈

Ei(t) Ei(t+ τ)
〉2

+
〈

[Ei(t)]
∗ Ei(t+ τ)

〉2

. (6.9)

By (6.9) and (6.8), the number of terms in (6.4) quickly reduces. In fact, (6.9) and (6.8)

allows us to factorize all second order terms to yield three squared sums:
〈 [

EF
S3(t)

]∗ EF
S3(t)

[
EF

S3(t+ τ)
]∗ EF

S3(t+ τ)
〉

=

{〈

[E1(t)]
∗ E1(t+ τ)

〉

+
〈

[E2(t)]
∗ E2(t+ τ)

〉

+
〈

[E3(t)]
∗ E3(t+ τ)

〉}2

+

{〈

E1(t) E1(t+ τ)
〉

+
〈

E2(t) E2(t+ τ)
〉

+
〈

E3(t) E3(t+ τ)
〉}2

+

{〈

[E1(t)]
∗ E1(t)

〉

+
〈

[E2(t)]
∗ E2(t)

〉

+
〈

[E3(t)]
∗ E3(t)

〉}2

. (6.10)

This is then more manageably expressible in terms of (6.8),
〈 [

EF
S3(t)

]∗ EF
S3(t)

[
EF

S3(t+ τ)
]∗ EF

S3(t+ τ)
〉

= 2

{[〈

EX
1 (t) EX

1 (t+ τ)
〉

+
〈

EX
2 (t) EX

2 (t+ τ)
〉

+
〈

EX
3 (t) EX

3 (t+ τ)
〉]2

+
[〈

EY
1 (t) EY

1 (t+ τ)
〉

+
〈

EY
2 (t) EY

2 (t+ τ)
〉

+
〈

EY
3 (t) EY

3 (t+ τ)
〉]2
}

+
〈 [

EX
1 (t)

]2
+
[
EX
2 (t)

]2
+
[
EX
3 (t)

]2
+
[
EY
1 (t)

]2
+
[
EY
2 (t)

]2
+
[
EY
3 (t)

]2
〉2

. (6.11)

It can already be seen that the intensity correlation function will have an offset from zero

given by the last sum of constants. Equation (6.11), along with (6.4), is general except for the

assumed beam-splitter transformations, hence the 1/
√

2 in Bob’s phase-space displacement

which in part contributes to unit-gain teleportation. It now remains to calculate (6.11) from

(6.3). From (6.3), and after some computation, all second order terms may be listed as

follows. The X-quadrature field correlations are

〈

EX
1 (t) EX

1 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄X
I (ω)

{

(α1n1κ)
2

(n1κ)2 + ω2

}{

2n3κ

(n3κ)2 + ω2

}

e−iωτ dω , (6.12a)
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〈

EX
2 (t) EX

2 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄X
A (ω)

{

[n1κ(1 + α1)]
2

+ ω2

(n1κ)2 + ω2

}{

n3κ

(n3κ)2 + ω2

}

e−iωτ dω ,

(6.12b)

〈

EX
3 (t) EX

3 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄X
B (ω)

{

[n1κ(1 − α1)]
2

+ ω2

(n1κ)2 + ω2

}{

n3κ

(n3κ)2 + ω2

}

e−iωτ dω .

(6.12c)

Similarly for the Y-quadrature, we have

〈

EY
1 (t) EY

1 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄Y
I (ω)

{

(α2n2κ)
2

(n2κ)2 + ω2

}{

2n3κ

n3κ+ ω2

}

e−iωτ dω , (6.13a)

〈

EY
2 (t) EY

2 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄Y
A(ω)

{

[n2κ(1 − α2)]
2
+ ω2

(n2κ)2 + ω2

}{

n3κ

(n3κ)2 + ω2

}

e−iωτ dω ,

(6.13b)

〈

EY
3 (t) EY

3 (t+ τ)
〉

=
1

2π

+∞∫

−∞

Ω̄Y
B(ω)

{

[n2κ(1 + α2)]
2 + ω2

(n2κ)2 + ω2

}{

n3κ

(n3κ)2 + ω2

}

e−iωτ dω .

(6.13c)

In order to avoid diversion into ungainly computation, we call upon the results of Ap-

pendix A and leave the details therein. With faith, equations (6.12) integrate to,
〈

EX
1 (t) EX

1 (t+ τ)
〉

= [α1(n1κ)]
2 (n3κ)

{

(n3κ)e
−n1κ|τ | − (n1κ)e

−n3κ|τ |

(n1κ)(n3κ) [(n3κ)2 − (n1κ)2]

+
(
γ2
−λI

− γ2
λI

)

(

e−n1κ|τ |

(n1κ)
[
γ2

λI
− (n1κ)2

]
[(n3κ)2 − (n1κ)2]

+
e−n1κ|τ |

γλI

[
(n1κ)2 − γ2

λI

] [
(n3κ)2 − γ2

λI

] +
e−n3κ|τ |

(n3κ)
[
γ2

λI
− (n3κ)2

]
[(n1κ)2 − (n3κ)2]

)}

,

(6.14a)
〈

EX
2 (t) EX

2 (t+ τ)
〉

=
(n3κ)

2

{

e−n3κ|τ |

n3κ
+
n1κ

[
(1 + α1)

2 − 1
] [

(n1κ) e
−n3κ|τ | − (n3κ) e

−n1κ|τ |
]

(n3κ) [(n1κ)2 − (n3κ)2]

+

(
γ2
−λ − γ2

λ

) (
n3κ e

−γλ|τ | − γλ e
−n3κ|τ |

)

γλ(n3κ) [(n3κ)2 − γ2
λ]

+
(
γ2
−λ − γ2

λ

)
(n1κ)

2
[

(1 + α1)
2 − 1

]
(

e−n1κ|τ |

(n1κ) [γ2
λ − (n1κ)2] [(n3κ)2 − (n1κ)2]

+
e−γλ|τ |

γλ [(n1κ)2 − γ2
λ] [(n3κ)2 − γ2

λ]
+

e−n3κ|τ |

(n3κ) [γ2
λ − (n3κ)2] [(n1κ)2 − (n3κ)2]

)}

, (6.14b)
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〈

EX
3 (t) EX

3 (t+ τ)
〉

=
(n3κ)

2

{

e−n3κ|τ |

n3κ
+
n1κ

[
(1 − α1)

2 − 1
] [

(n1κ) e
−n3κ|τ | − (n3κ) e

−n1κ|τ |
]

(n3κ) [(n1κ)2 − (n3κ)2]

+

(
γ2

λ − γ2
−λ

) (
n3κ e

−γ−λ|τ | − γ−λ e
−n3κ|τ |

)

γ−λ(n3κ)
[
(n3κ)2 − γ2

−λ

]

+
(
γ2

λ − γ2
−λ

)
(n1κ)

2
[

(1 − α1)
2 − 1

]
(

e−n1κ|τ |

(n1κ)
[
γ2
−λ − (n1κ)2

]
[(n3κ)2 − (n1κ)2]

+
e−γ−λ|τ |

γ−λ

[
(n1κ)2 − γ2

−λ

] [
(n3κ)2 − γ2

−λ

] +
e−n3κ|τ |

(n3κ)
[
γ2
−λ − (n3κ)2

]
[(n1κ)2 − (n3κ)2]

)}

.

(6.14c)

We have introduced in (6.14), for ease of writing,

γλ ≡ κ (1 + λ) , γλI
≡ κI (1 + λI ) .

Letting λ −→ −λ, λI −→ −λI , and also α1 −→ −α2, n1 −→ n2, equations (6.13) are,
〈

EY
1 (t) EY

1 (t+ τ)
〉

= [α2(n2κ)]
2
(n3κ)

{

(n3κ)e
−n2κ|τ | − (n2κ)e

−n3κ|τ |

(n2κ)(n3κ) [(n3κ)2 − (n2κ)2]

+
(
γ2

λI
− γ2

−λI

)

(

e−n2κ|τ |

(n2κ)
[
γ2
−λI

− (n2κ)2
]
[(n3κ)2 − (n2κ)2]

+
e−n2κ|τ |

γ−λI

[
(n2κ)2 − γ2

−λI

] [
(n3κ)2 − γ2

−λI

] +
e−n3κ|τ |

(n3κ)
[
γ2
−λI

− (n3κ)2
]
[(n2κ)2 − (n3κ)2]

)}

,

(6.15a)
〈

EY
2 (t) EY

2 (t+ τ)
〉

=
(n3κ)

2

{

e−n3κ|τ |

n3κ
+
n2κ

[
(1 − α2)

2 − 1
] [

(n2κ) e
−n3κ|τ | − (n3κ) e

−n2κ|τ |
]

(n3κ) [(n2κ)2 − (n3κ)2]

+

(
γ2

λ − γ2
−λ

) (
n3κ e

−γ−λ|τ | − γ−λ e
−n3κ|τ |

)

γ−λ(n3κ)
[
(n3κ)2 − γ2

−λ

]

+
(
γ2

λ − γ2
−λ

)
(n2κ)

2
[

(1 − α2)
2 − 1

]
(

e−n2κ|τ |

(n2κ)
[
γ2
−λ − (n2κ)2

]
[(n3κ)2 − (n2κ)2]

+
e−γ−λ|τ |

γ−λ

[
(n2κ)2 − γ2

−λ

] [
(n3κ)2 − γ2

−λ

] +
e−n3κ|τ |

(n3κ)
[
γ2
−λ − (n3κ)2

]
[(n2κ)2 − (n3κ)2]

)}

,

(6.15b)
〈

EY
3 (t) EY

3 (t+ τ)
〉

=
(n3κ)

2

{

e−n3κ|τ |

n3κ
+
n2κ

[
(1 + α2)

2 − 1
] [

(n2κ) e
−n3κ|τ | − (n3κ) e

−n2κ|τ |
]

(n3κ) [(n2κ)2 − (n3κ)2]
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+

(
γ2
−λ − γ2

λ

) (
n3κ e

−γλ|τ | − γλ e
−n3κ|τ |

)

γλ(n3κ) [(n3κ)2 − γ2
λ]

+
(
γ2
−λ − γ2

λ

)
(n2κ)

2
[

(1 + α2)
2 − 1

]
(

e−n2κ|τ |

(n2κ) [γ2
λ − (n2κ)2] [(n3κ)2 − (n2κ)2]

+
e−γλ|τ |

γλ [(n2κ)2 − γ2
λ] [(n3κ)2 − γ2

λ]
+

e−n3κ|τ |

(n3κ) [γ2
λ − (n3κ)2] [(n2κ)2 − (n3κ)2]

)}

. (6.15c)

The average intensities follow by simply setting τ = 0 in the above equations. Alice may

help Bob complete the unit-gain by setting α1 = α2 = 1. She may further set n1 = n2 in

which case,
〈

EX
2 (t) EX

2 (t+ τ)
〉

=
〈

EY
3 (t) EY

3 (t+ τ)
〉

, (6.16a)
〈

EY
2 (t) EY

2 (t+ τ)
〉

=
〈

EX
3 (t) EX

3 (t+ τ)
〉

. (6.16b)

If one intends to teleport a coherent vacuum state (λI = 0), then
〈

EX
1 (t) EX

1 (t+ τ)
〉

=
〈

EY
1 (t) EY

1 (t+ τ)
〉

. (6.17)

Properties (6.16) and (6.17) may of course also be read off directly from (6.14) and (6.15).

Under conditions (6.16) and (6.17) the intensity correlation function may be further simpli-

fied to,
〈 [

EF
S3(t)

]∗ EF
S3(t)

[
EF

S3(t+ τ)
]∗ EF

S3(t+ τ)
〉

= 4
[〈

EX
1 (t) EX

1 (t+ τ)
〉

+
〈

EX
2 (t) EX

2 (t+ τ)
〉

+
〈

EX
3 (t) EX

3 (t+ τ)
〉]2

+ 4
〈 [

EX
1 (t)

]2
+
[
EX
2 (t)

]2
+
[
EX
3 (t)

]2
〉2

. (6.18)

It is more preferable to consider the normalized correlation function, denoted by

g
(2)
sed(τ) ≡

〈 [
EF

S3(t)
]∗ EF

S3(t)
[
EF

S3(t+ τ)
]∗ EF

S3(t+ τ)
〉

〈 [
EF

S3(t)
]∗ EF

S3(t)
〉2

= 1 +







〈

EX
1 (t) EX

1 (t+ τ)
〉

+
〈

EX
2 (t) EX

2 (t+ τ)
〉

+
〈

EX
3 (t) EX

3 (t+ τ)
〉

〈 [
EX
1 (t)

]2
+
[
EX
2 (t)

]2
+
[
EX
3 (t)

]2
〉







2

. (6.19)

6.2 Stochastic Electrodynamics vs Quantum Trajecto-

ries

We now compare the above intensity correlations derived using stochastic electrodynamics

with those obtained from a quantum trajectory formulation [52]. A quantum calculation

necessarily requires a normally ordered treatment,

g
(2)
qt (τ) ≡

〈 [

ÊF
S3(t)

]† [

ÊF
S3(t+ τ)

]†

ÊF
S3(t+ τ) ÊF

S3(t)
〉

〈[

ÊF
S3(t)

]†

ÊF
S3(t)

〉2
(6.20)
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Fig. 6.1: Simulation results of g
(2)
qt from quantum trajectories for various values of squeezing given the filter

bandwidths specified by n1 = n2 = 10 and n3 = 0.2 [52].

to coincide with the measurement of photo-detection. The important equations describing

broadband teleportation of a coherent vacuum state when Victor performs a direct photon

count at the teleporter output are neatly summarized in Ref. [52]. We will not be bothered

with the explicit form of these equations. We are interested in the final form of g
(2)
qt (τ),

qualitatively, and quantitatively in the teleported photon numbers seen by Victor. Only the

modes closest to the resonant are considered.

In Fig. 6.1 we plot the normalized correlation function as measured by Victor against

k̄ ≡ κτ for different values of λ. The figure also displays the corresponding to the mean

photon numbers inside his filter cavity given by
〈
(ÊF

S3)
†ÊF

S3

〉
. Only the modes closest to the

resonant are considered. The analytical results of (6.19) and (6.14) are shown in Fig. 6.2.
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Fig. 6.2: Normalized intensity correlations as predicted by SED, i.e. (6.19). The same colour code to

Fig. 6.1 is kept and for clarity the λ = 0.5 curve, which lies between those for λ = 0.3 and λ = 0.7, has been
omitted.

A discrepancy is observed in the intensity correlations calculated by quantum trajectories

and SED. Clearly, SED does not predict any significant change in the intensity correlation

of the teleported field when one increases the pumping of SA and SB . The change in

g
(2)
sed(τ) is almost negligible for values of the pump parameter beyond 0.5. Had we not
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been given the quantum result of Fig. 6.1, it certainly would have been tempting to argue

that it is essentially the situation depicted by Fig. 5.2 (b), i.e. the squeezing undergoes

insignificant changes for values of the pump parameter greater than 0.5. As anticipated, the

problem arises from an incorrect account of operator ordering when the measured quantity

is normally ordered. Stochastic electrodynamics would add one half to the photon numbers

given in Fig. 6.1. A photon number calculation within SED should come out of the above

results.

To give a comprehensive discussion of the implications brought about by a quantum

field as opposed to a classical field with a real fluctuating zero-point energy on the observed

photocurrent would drag us to a theory of measurement. This is beyond the scope of the

thesis.
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Chapter 7

Conclusion

It is fitting that we begin by recapitulating the intended scope of this report: to use SED as

a means of obtaining a broadband description for teleportation of the two quadrature phase

amplitudes belonging to an optical field. In particular, teleportation of vacuum modes

have been examined where analytical expressions for the teleported squeezing spectra and

intensity correlation function were obtained for both squeezed and coherent inputs.

7.1 Broadband Teleportation

Teleportation is broadband, limited by the bandwidth of an ideal EPR source. The process

of verifying broadband teleportation was made viable by our ability to relate the Fourier

components seen by Victor to those impinging on the input cavity, and the cavities preparing

the EPR correlations. Collett’s and Gardiner’s input-output theory in the Heisenberg picture

was pivotal in facilitating our derivation of the linear mapping with random variables. The

mapping may be summarized by equations (4.45), (4.46), and (4.47), together with (5.17)

and (5.18). These equations provide a continuous-time description of the teleporter; this is to

say that all the necessary steps required to accomplish teleportation occur uninterruptedly.

One may like to think of the input field as having an interminable temporal extension, made

to entangle continuously with one of the EPR beams via a beam-splitter. In this way, our

scheme, the scheme of Fig. 3.1 in the long-time limit, has no identifiable sequence in which

a particular procedure should be activated. Every processing unit (e.g. Alice’s BSM and

filtering) of the teleporter operates concurrently with each other.

7.2 Classicality and the Wigner Distribution

The validity of a classical description by SED hinges on the positivity of the Wigner distribu-

tion and the measurement schemes intrinsic to the teleportation protocol. The general class

of Gaussian states — coherent and squeezed states — all have a positive-definite Wigner

distribution. The realistic interpretation of a non-negative Wigner distribution can only pre-

dict correctly the results of quadrature measurements and no other. We have demonstrated

this benchmark with the example of SED by showing that it is capable of describing the

entanglement resource consisting of vacuum squeezed states, and teleportation (of Gaussian

states) in its entirety only when Victor performs a quadrature measurement at the output.
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Finally, for teleportation of Gaussian states using the standard protocol considered in this

report, SED provides a local hidden-variable interpretation of teleportation.

7.3 Quadrature Teleportation Revisited

Equations (5.40) and (5.43) are our basic results describing teleportation of the X- and

Y-quadrature for a vacuum input. Teleportation with homodyning at the output may be

succinctly summarized by the parameters; g ≡ κI/κ, λ, n1 and n3. The parameters g and λ

are the features of quantum teleportation and hence the most important parameters of the

teleporter. Dismissing the classical channel capabilities, what is at stake are the properties

empowering an accurate replication of EI(t) at the teleporter output. These properties are

g and λ.

• Squeezing bandwidth

The squeezing bandwidth should be made larger than the bandwidth of the input. The

larger the better. This is summarized by Figs. 5.6, 5.7, and 5.8. This is obvious since

we have resolved the EPR correlations frequency by frequency, where the degree of

correlation is indicated by λ. Thus the input modes outside the squeezing bandwidth

have no useful partner to be entangled with.

• Pump parameter

The pump parameter indicates the amount of squeezing per unit bandwidth. The

closer λ is to one the better the teleportation. This is expected since the stronger the

squeezing in SA and SB , the stronger the entanglement between EA(t) and EB(t). This

point is demonstrated by Figs. 5.3 and 5.4. However, the observable effect of squeezing

on the similitude between output and input decreases as the cavities are pumped more

and more intensely, as shown in Fig. 5.2.

7.4 Intensity Correlation and Photon Number at the

Output

Photon counts, and therefore intensity correlation measurements at the teleporter output

can not be accounted for within SED. Commutation relations are called for to legitimately

keep track of the vacuum energy. A natural extension from here would be to subtract

the vacuum fluctuations to produce the correct teleported photon number and intensity

correlation function. We recognize this quantitatively by (5.56), and qualitatively in the

interpretation of the vacuum as a real fluctuating field causing photo-electrons to be emitted

by photo-detectors.



Appendix A

Fourier Integrals of Lorentzian

Products

The necessary integral identities for the classical intensity correlation function of Chap. 6

are derived. Note that equations (6.12) or (6.13) demand only integrals of the form

I1 ≡
+∞∫

−∞

a2 + ω2

(b2 + ω2)(c2 + ω2)(d2 + ω2)
e−iωτ dω , (A.1a)

I2 ≡
+∞∫

−∞

(a2 + ω2)(c2 + ω2)

(b2 + ω2)(d2 + ω2)(q2 + ω2)
e−iωτ dω (A.1b)

where a, b, c, d and q are all constants. Let us first work out I2. Note the integrand may be

written, either by the method of partial fractions, or by an algebraic manipulation performed

below as,

I2 =

+∞∫

−∞

(
a2 − b2 + b2 + ω2

b2 + ω2

)(
c2 − d2 + d2 + ω2

d2 + ω2

)
1

q2 + ω2
e−iωτ dω

=

+∞∫

−∞

[
1

q2 + ω2
+

a2 − b2

(b2 + ω2)(q2 + ω2)
+

c2 − d2

(d2 + ω2)(q2 + ω2)

+
(a2 − b2)(c2 − d2)

(b2 + ω2)(d2 + ω2)(q2 + ω2)

]

e−iωτ dω . (A.2)

Integrals of this form may be computed on the complex plane by defining ω (β) to be the

real (imaginary) part of

z ≡ ω + iβ = |z| (cosφ+ i sinφ) , (A.3)

with φ ≡ arg(z). One may wish to then define a function of the complex variable z,

f(z) ≡ e−izτ

(b2 + z2)(d2 + z2)(q2 + z2)
(A.4)
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and express it in terms of φ,

f(z) =
e−i|z|τ cos φe|z|τ sin φ

(z2 + b2)(z2 + d2)(z2 − q2)
. (A.5)

To be justified shortly by (A.8), we now write each piece of I2 as a contour integral where

an appropriate choice of contour must be effected depending on the parameter τ . Let us

consider
+∞∫

−∞

e−iωτ dω

(b2 + ω2)(d2 + ω2)(q2 + ω2)
= lim

|z|→∞

∮

C

f(z) dz . (A.6)

For convergence of the right hand side of (A.6), the following parameterizations for C are

hinted by (A.5):

φ ∈ [0, π] , for τ < 0 , (A.7a)

φ ∈ [0,−π] , for τ > 0 . (A.7b)

For τ < 0, C is the closed anticlockwise contour (also said to be traversed in the positive

sense) shown by the dashed semicircle in Fig. A.1 (b). Equation (A.6) can be understood

by writing the closed line integral as
∮

C

f(z) dz =

∫

C1

f(z) dz +

∫

C2

f(z) dz . (A.8)

In the limit |z| −→ ∞, Jordan’s lemma asserts the second integral over the entire arc of

C to be zero [72]. The left hand side of (A.8) then amounts to an integral over the real line

stretching from −∞ to +∞, as originally intended in (A.6). For τ > 0, C may be chosen to

be a semicircle traversed clockwise enclosing the negative pure imaginary poles in the lower

half plane. This is shown in Fig. A.1 (a).
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Fig. A.1: Contour integral for calculating I2. (a) τ > 0. (b) τ < 0.

The line integral around C is now straightwardly computable by the Residue theorem

[73]. For τ > 0, the theorem states

lim
|z|→∞

∮

C

f(z) dz = −2πi lim
|z|→∞

(

sum over enclosed residues
)

, (A.9)



79

where for some function F of a complex variable z, the residue at a pole zp is denoted by

Res(F ; zp). For a simple pole

Res(F ; zp) = lim
z→zp

(z − zp)F (z) . (A.10)

Hence (A.9) is given by,

lim
|z|→∞

∮

C

f(z) dz = ± 2πi lim
|z|→∞

[

Res(f ;−id) + Res(f ;−ib) + Res(f ;−iq)
]

= π

[
e±dτ

d(b2 − d2)(q2 − d2)
+

e±bτ

b(d2 − b2)(q2 − b2)

+
e±qτ

q(b2 − q2)(d2 − q2)

]

, (A.11)

where we take the positive or negative sign for τ > 0 or τ < 0 respectively in the exponents.

By similar means, the remaining terms in (A.2) are

+∞∫

−∞

e−iωτ dω

(b2 + ω2)(q2 + ω2)
=

π
(
q e±bτ − b e±qτ

)

bq(q2 − b2)
, (A.12)

+∞∫

−∞

e−iωτ

q2 + ω2
dω =

πe±qτ

q
. (A.13)

Combining (A.11), (A.12), and (A.13) we can write I2 for all τ as,

+∞∫

−∞

(a2 + ω2)(c2 + ω2)

(b2 + ω2)(d2 + ω2)(q2 + ω2)
e−iωτ dω

= π

{

e−q|τ |

q
+

(
a2 − b2

) (
q e−b|τ | − b e−q|τ |

)

bq(q2 − b2)
+

(
c2 − d2

) (
d e−q|τ | − q e−d|τ |

)

qd(d2 − q2)

+
(
a2 − b2

) (
c2 − d2

)
[

e−d|τ |

d(b2 − d2)(q2 − d2)
+

e−b|τ |

b(d2 − b2)(q2 − b2)

+
e−q|τ |

q(b2 − q2)(d2 − q2)

]}

. (A.14)

Let us quote I1 and leave the details as an exercise for the reader,

+∞∫

−∞

a2 + ω2

(b2 + ω2)(c2 + ω2)(d2 + ω2)
e−iωτ dω

= π

{(
d e−c|τ | − c e−d|τ |

)

cd(d2 − c2)
+ (a2 − b2)

[
e−c|τ |

c(b2 − c2)(d2 − c2)

+
e−b|τ |

b(c2 − b2)(d2 − b2)
+

e−d|τ |

d(b2 − d2)(c2 − d2)

]}

. (A.15)
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