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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Untersuchung eines �cascaded cavi-
ty QED� Systems, welches aus zwei über eine Glasfaser verbundenen, mikrotoro-
idalen Resonatoren besteht. In diesen breiten sich zwei entgegengesetzt laufende
�whispering-gallery� Moden aus, über deren evaneszente Feld jeweils ein einzelnes
Atom an die Resonatoren gekoppelt ist.

Im ersten Teil der Arbeit wird die spontane Emission des Systems für den Fall
eines anfänglich angeregten Atoms untersucht. Für das �bad-cavity� Regime ist es
möglich, die Resonatormoden adiabatisch zu beseitigen und dadurch analytische Aus-
drücke für die Emissionsspektren herzuleiten. Diese Ergebnisse werden mit numeri-
schen Resultaten, die aus dem vollständigen Modell gewonnen werden, verglichen.
Dabei wird, so lange man sich im �bad-cavity� Regime be�ndet, in welchem die Nä-
herungen, die bei der Herleitung der analytischen Ergebnisse gemacht werden, ihre
Gültigkeit besitzen, eine gute Übereinstimmung der analytischen und numerischen
Ergebnisse gefunden. Des Weiteren wird für das �bad-cavity� Regime die Masterglei-
chung, in welcher die Resonatormoden adiabatisch beseitigt sind, hergeleitet. Diese
zeigt eine neuartige Struktur und kann die zuvor berechneten Emissionsspektren
qualitativ erklären. Schlieÿlich werden für das �strong-coupling� Regime numerische
Berechnungen durchgeführt, welche ein �vacuum Rabi splitting� des Emissionsspek-
trums zeigen.

Im zweiten Teil wird das Verhalten des mit einer externen, kohärenten Lichtquel-
le (Laser) getriebenen Systems untersucht. Analytische Berechnungen werden für
den Fall, dass keine Atome an die Mikroresonatoren gekoppelt sind, durchgeführt.
Dabei zeigt sich, dass bei geeigneter Wahl der Parameter ein dem elektromagnetisch-
induzierter-Transparenz-E�ekt ähnliches Verhalten im Spektrum des Ausgangs-
Photonen�usses auftreten kann. Des Weiteren wird das vollständige Modell nume-
risch, sowohl für das �bad-cavity� als auch für das �strong-coupling� Regime, unter-
sucht. Durch Lösen der Mastergleichung im stationären Zustand wird der Photonen-
�uss berechnet. Ähnlich zum System der spontanen Emission tritt für das �strong-
coupling� Regime ein �vacuum Rabi splitting� im Spektrum des Photon�usses auf.
Auÿerdem zeigt sich, dass im �bad-cavity� Regime die Linienbreite des Absorptions-
bzw. Transmissionsspektrums für den Vorwärts- bzw. Rückwärts�uss analog zum
Spektrum des spontanen Emissionssystems skaliert. Zusätzlich wird eine Methode
entwickelt, durch die das gekoppelte Mikroresonatorsystem mittels der Eigenschaften
eines Einzelresonatorsystems anhand von Re�ektions- und Transmissionskoe�zient
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beschrieben wird. Die Übereinstimmung dieser Methode mit numerischen Resultaten
des vollständigen Systems wird für den Fall eines nicht zu stark treibenden Feldes,
d.h. solange die Kopplung der Mikroresonatoren linear ist, gezeigt.

vi



Abstract

In this thesis we study a cascaded cavity QED system consisting of two microtoroidal
resonators which are connected via an optical �bre. The toroids act as cavities with
two counter-propagating whispering-gallery modes and a single atom is coupled to
each of the toroids by the evanescent �eld of these cavity modes.

In the �rst part, we study the spontaneous emission of the system when one atom
is initially excited. In the bad-cavity regime we are able to adiabatically eliminate the
cavity modes and can derive analytical expressions for the emission spectra. These
analytical results are compared to the emission spectra obtained from a numerical
treatment of the full model. We �nd good agreement between the analytical and
numerical results as long as we stay within the bad-cavity regime, for which the
approximations made in the analytical investigation are valid. In addition, the master
equation with the cavity modes adiabatically eliminated is derived. It shows a very
novel behaviour and can qualitatively explain the emission spectra in the bad-cavity
limit. For the strong-coupling regime a numerical investigation is carried out which
shows a vacuum Rabi splitting of the emission spectra.

In the second part, we study the behaviour of the system when it is driven
by an external, coherent light source. Analytical calculations are carried out for
the case that no atoms are coupled to the toroids. For an appropriate choice of
parameters the output �ux can exhibit an electromagnetically-induced-transparency-
like e�ect. In addition, we numerically investigate the �full� model for the strong-
coupling and the bad-cavity regime. The output �uxes are computed by solving
the master equation for the system in steady state in the weak excitation regime.
Similar to the spontaneous emission, the photon �ux shows a vacuum Rabi splitting
for the strong-coupling regime. In the bad-cavity limit, we �nd that the linewidth
of the absorption (transmission) spectrum of the forward (backward) �ux scales
analogously to the spectrum of the spontaneous emission system. Furthermore, a
method to describe the cascaded system in terms of the properties of the single-
toroid system, by means of re�ection and transmission coe�cients, is given. Its
agreement with the numerical results for su�ciently weak driving �elds (when the
coupling of the toroids is essentially linear) is shown.
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Chapter 1

Introduction

In 1901 Planck was able to solve the ultraviolet catastrophe problem by proposing
that black-body radiation is emitted in discrete energy packets called quanta. Four
years later, in 1905, Einstein explained the photoelectric e�ect by associating the
formerly purely mathematical construct of an energy quantum with a real physical
light particle, which was given the name �photon� years later, in 1926, by Lewis.
This was the genesis of quantization. In 1913 Bohr applied the ideas of quantization
to the atom and came up with the picture of an atom as a planetary-like system,
where the electron is orbiting around the nucleus. On these grounds Heisenberg,
Schrödinger and Dirac developed a rigorous mathematical treatment of what is now
called quantum mechanics during the 1920s. The quantization of the radiation �eld,
which combined the wave and particle-like aspects of light, was done by Dirac in 1927
and by Fermi in 1932. The development of quantum mechanics led to remarkable
applications, such as lasers (1960), which had a big impact, not only on our society,
but also on experiments in quantum optics.

Quantum optics is of special interest mainly for two reasons. First, it o�ers a
way to prove the �rst principles of the fundamental theory of quantum mechanics,
where we have come to create the conditions of the textbook examples in real experi-
ments. A special domain of quantum optics is cavity QED. QED stands for quantum
electrodynamics, which describes the interaction of some material (atoms) with the
quantized electromagnetic �eld (photons), and is one of the most accurate physical
theories constructed so far. Hence, cavity QED describes the interaction of atoms
with light in a cavity, where cavity refers to an optical or microwave resonator. It was
realized by Purcell, in 1946, that the emission spectrum of an atom can be altered
when it is placed in a resonant cavity [Pur46]. For a weak atom-cavity coupling,
e.g., where a photon emitted from the atom is lost out of the cavity before it can
be reabsorbed by the atom, which is therefore an irreversible process, the sponta-
neous emission of light by the atom can either be inhibited or enhanced. This is
referred to as the Purcell e�ect. The case of a strong atom-cavity coupling, where
the photon is reabsorbed faster than it is lost out of the cavity, was �rst analysed
by Jaynes and Cummings in 1963 [JC63] and the so-called vacuum Rabi splitting (a
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1. Introduction

splitting of the emission spectrum of the atom) was predicted. Not until 1992 was
the technology advanced enough to observe the vacuum Rabi splitting for a single
atom experimentally [TRK92].

The study of quantum optics is also appealing due to its implications for quantum
information processing with atoms and photons [Mon02] and the pursuit of building
a quantum computer. In 1982 Feynman proposed a computer running according to
the laws of quantum physics rather than the laws of classical physics [Fey82]. Three
years later, in 1985, Deutsch [Deu85] outlined the basic principles of such a quantum
computer, which could, in principle, solve problems that are not e�ciently solvable
with a classical computer. A quantum computer consists of quantum nodes, where
quantum states can be stored and locally manipulated; these states correspond to
qubits, the quantum analogue of classical bits. These nodes are connected by quantum
channels to distribute the information throughout the network. In order to do so, a
reversible state transfer method is required. Cavity QED o�ers a promising approach,
in which a quantum state can be mapped between light and matter in a reversible
way. A �rst scheme for �Quantum State Transfer and Entanglement Distribution
among Distant Nodes in a Quantum Network� was proposed by J. I. Cirac et al. in
1997 [CZKM97]. Ten years later, a reversible state transfer between light and an
atom in a cavity � �the �rst veri�cation of the fundamental primitive upon which
the protocol� by J. I. Cirac et al. is based � was realized experimentally by A. D.
Boozer et al. [BBM+07].

A promising device for a future quantum network is an optical microtoroid which
provides for a strong interaction between a single atom and a single photon. This
was experimentally shown in 2006 by Takao Aoki et al. [ADW+06a]. Hence, the
microtoroid has the potential to be used as a quantum node, where quantum states
can be stored and locally manipulated. A system of two coupled toroidal microcav-
ities is the �rst step towards a more complex network and, in order to be able to
understand these more complex networks, the coupled two toroid system has to be
understood �rst. This thesis characterizes a system of two microtoroids coupled by a
�bre. Knowledge of the behaviour of such systems may one day lead to applications
in the �eld of quantum computing, or in related �elds.

1.1 Outline

The thesis is divided into two sections. In Chapters 2-4 the background theory is
presented. It is then applied in Chapters 5 and 6 to investigate cascaded quantum
optical systems. No knowledge of quantum optics is assumed, but the reader is
expected to be familiar with the concepts of quantum mechanics on an advanced
level.

In Chapter 2, the basic concepts of quantum optics are introduced. The elec-
tromagnetic �eld is quantized and its interaction with an atom is discussed. The
Jaynes-Cummings model, the fundamental model for the interaction of an atom
with a cavity �eld, is introduced and some extensions to this model are made.
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1.1 Outline

In Chapter 3, the theory of open quantum systems is presented. In particular, the
master equation for treating dissipative systems and the quantum regression formula
are derived.

Chapter 4 deals with more advanced topics in cavity QED. The input-output
theory, which relates the input �eld to the output �eld of a cavity, is presented and
cascaded systems, e.g, two coupled cavity QED systems, are discussed.

In Chapter 5, the spontaneous emission spectrum of a speci�c cascaded system
consisting of two coupled microtoroids, with an atom coupled to each and one atom
initially excited, is studied. The focus of the investigation lies on the so-called �bad-
cavity� regime, where an analytical and numerical treatment is carried out. The
system is also investigated numerically for the so-called �strong-coupling� regime.

In Chapter 6, the cascaded system studied in the previous chapter is extended
by adding an external light source to drive the atoms. The system is investigated
analytically for the case that no atoms are coupled to the toroids, where the output
photon �ux is computed. For the full model (consisting of two coupled microtoroids
with a single atom coupled to each toroid), the output photon �ux is studied numer-
ically for the strong-coupling and the bad-cavity regime. Furthermore, an analytical
treatment in terms of re�ection and transmission coe�cients is given.

Finally, Chapter 7 gives a summary of the results and discusses potential topics
for future research.
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Chapter 2

Atom-Photon Interaction

In this chapter we aim to derive some of the basic concepts of quantum optics which
we can build on in later chapters. For many problems in quantum optics it is neces-
sary to describe the light as a quantized �eld. This quantization of the electromag-
netic �eld is done in the �rst section.

The following sections deal with a two-level atom and its interaction with a
quantized �eld. In particular, the Jaynes-Cummings model, the fundamental model
for the interaction of an atom with a cavity �eld, will be introduced and some
extensions to this model will be made to describe more complex systems.

This review is by no means complete. A more comprehensive introduction to the
basic concepts of quantum optics can be found in [Fox06] and, on a more advanced
level, in [SZ97].

2.1 Quantization of the electromagnetic �eld

The free electric and magnetic �eld is obtained by solving Maxwell's equations in
empty space, i.e., no sources of radiation and no charges are present. Free space
is modelled as a cubic cavity of length L → ∞, which imposes periodic boundary
conditions, so that only certain electromagnetic waves with discrete wave vectors,
of form ~k = 2π

L (mx,my,mz), where (mx,my,mz) is a set of integers, can exist.
Expanding the classical electric and magnetic �elds in terms of travelling waves
yields1

~E(~r, t) =
∑
~k

2∑
λ=1

~E~k,λe
i(~k·~r−ωkt) + c.c. , (2.1)

~B(~r, t) =
∑
~k

2∑
λ=1

~B~k,λe
i(~k·~r−ωkt) + c.c. , (2.2)

1A more detailed derivation and further discussions can be found in many textbooks on electro-
dynamics, for example in [Jac07].

5



2. Atom-Photon Interaction

with

~E~k,λ = iωkê~k,λA~k,λ , (2.3)

~B~k,λ = i(~k × ê~k,λ)A~k,λ , (2.4)

where ωk is the frequency of the plane wave, A~k,λ is an amplitude,2 ê~k,λ is a unit
polarization vector (taken to be real for linearly polarized light) and the summation
over λ accounts for the two perpendicular directions of linear polarization.

The energy of the �eld is given by

HF =
1
2

∫
V
d3r

(
ε0 ~E(~r, t) · ~E(~r, t) +

1
µ0

~B(~r, t) · ~B(~r, t)
)
, (2.5)

where ε0 is the permittivity and µ0 the permeability of free space.
We separate the mode amplitudes into real and imaginary parts by de�ning

A~k,λ :=
1√

4ε0V

(
q~k,λ +

i

ωk
p~k,λ

)
, (2.6)

where q~k,λ and p~k,λ comprise a pair of real variables and V = L3 is the volume of
the cubic cell that models free space.

Using equations (2.5), (2.1), (2.2) and (2.6), plus the orthogonality of di�erent
modes, we �nd for the energy

HF =
∑
~k

2∑
λ=1

1
2

(
p2
~k,λ

+ ω2
kq

2
~k,λ

)
. (2.7)

This Hamiltonian corresponds to the Hamiltonian of an in�nite set of harmonic
oscillators with generalized coordinates q~k,λ and canonical momenta p~k,λ within La-
grangian/Hamiltonian mechanics. Each mode of the �eld is therefore formally equiv-
alent to a mechanical harmonic oscillator.

The quantization is accomplished by using the correspondence principle and re-
placing the conjugate variables p~k,λ and q~k,λ by operators p̂~k,λ and q̂~k,λ which obey
the fundamental commutation relations[

q̂~k,λ, p̂~k′,λ′
]

= i~δ~k~k′δλλ′ , (2.8)[
q̂~k,λ, q̂~k′,λ′

]
=
[
p̂~k,λ, p̂~k′,λ′

]
= 0 . (2.9)

Usually a canonical transformation to the annihilation and creation operators is
made, by introducing

a~k,λ =
1√

2~ωk

(
ωkq̂~k,λ + ip̂~k,λ

)
, (2.10)

a†~k,λ
=

1√
2~ωk

(
ωkq̂~k,λ − ip̂~k,λ

)
, (2.11)

2To be more precise, it is the amplitude of the vector potential.
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2.1 Quantization of the electromagnetic �eld

which obey the commutation relations[
a~k,λ, a

†
~k′,λ′

]
= δ~k~k′δλλ′ , (2.12)[

a~k,λ, a~k′,λ′
]

=
[
a†~k,λ

, a†~k′,λ′

]
= 0 . (2.13)

In terms of a~k,λ and a†~k,λ, the �eld operators can be written as

~̂E(~r, t) =
∑
~k

2∑
λ=1

~E~k,λa~k,λe
i(~k·~r−ωkt) + H.c. , (2.14)

~̂B(~r, t) =
∑
~k

2∑
λ=1

~B~k,λa~k,λe
i(~k·~r−ωkt) + H.c. , (2.15)

with

~E~k,λ = i

√
~ωk
2ε0V

ê~k,λ , (2.16)

~B~k,λ = i

√
~

2ε0V ωk
(~k × ê~k,λ) , (2.17)

and the Hamiltonian of the quantized radiation �eld becomes

HF =
∑
~k

2∑
λ=1

~ωk
(
a†~k,λ

a~k,λ +
1
2

)
. (2.18)

Note that in the Heisenberg picture the time evolution for the annihilation oper-
ator is given by

d

dt
a~k,λ =

i

~

[
H, a~k,λ

]
= −iωka~k,λ , (2.19)

with the solution

a~k,λ(t) = a~k,λ(0)e−iωkt . (2.20)

Similarly, we �nd for the time evolution of the creation operator

a†~k,λ
(t) = a†~k,λ

(0)eiωkt . (2.21)

Note that the above expansion give the �eld operators in the Heisenberg picture,
equations (2.14) and (2.15), where the a~k,λ correspond to what is called a~k,λ(0) in
equation (2.20).
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2. Atom-Photon Interaction

2.2 The two-level atom

In quantum optics the atom is often assumed to be a two-energy-level system with
Eg the energy of the lower state, called the ground state, and Ee the energy of the
upper state, called the excited state. The atom can be excited from the ground to
the upper state by absorbing a photon of energy

~ωA = Ee − Eg , (2.22)

where ωA is the transition frequency; from here it can relax back to the ground state
by emitting a photon of the same energy.

The Hamiltonian of the two-level atom can be written in the basis of the energy
eigenstates, as

HA = Eg|g〉〈g|+ Ee|e〉〈e| , (2.23)

where |g〉 denotes the ground state and |e〉 the excited state of the atom. The �rst
term in the Hamiltonian can be removed by setting the zero of energy to be the
energy of the ground state. Introducing the atomic lowering and raising operators

σ− := |g〉〈e| and σ+ := |e〉〈g| , (2.24)

the Hamiltonian of the two-level atom becomes

HA = ~ωAσ
+σ− . (2.25)

Note that in the Heisenberg picture the time evolution for the atomic lowering
operator is given by

d

dt
σ− =

i

~
[
H,σ−

]
= −iωAσ

− , (2.26)

with solution

σ−(t) = σ−(0)e−iωAt . (2.27)

Similarily we �nd for the time evolution of the atomic raising operator

σ+(t) = σ+(0)eiωAt . (2.28)

The two-energy-level atom is of course an approximation. A real atom has many
di�erent energy levels with all possible transitions between them. But for a radiation
�eld which interacts with an atom near one of its transition frequencies and is far
o� resonance from all others, the two-level atom is a very good approximation, since
the probabilities for other transitions to occur are vanishingly small.
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2.3 Atom-light interaction

2.3 Atom-light interaction

When an atom is placed in an electric �eld its electrons interact with this �eld and
the electronic charge distribution of the atom is distorted. For optical frequencies,
where the wavelength of the electric �eld is much larger than the size of the atom, the
�eld is e�ectively constant across the atom. Thus, all terms higher than the lowest
can be neglected in a multipole expansion of the �eld. The remaining atom-�eld
interaction term is the electric-dipole interaction and hence this is referred to as the
dipole approximation.

The Hamiltonian for the interaction of the radiation �eld with an atom is, in the
dipole approximation, given by3

HI = − ~̂d · ~̂E , (2.29)

where ~̂E is the electric �eld operator at the position of the atom and ~̂d is the electric-
dipole moment operator of the atom, given by

~̂d = −e
∑
i

~̂ri , (2.30)

where ~̂ri is the position operator of the ith electron.
If we make the approximation of a two-level atom the dipole moment operator

can be expanded in terms of the ground and excited state of the atom,

~̂d =
∑

n,m={g,e}
~µnm|n〉〈m| , (2.31)

where we have introduced the atomic dipole matrix elements

~µnm = −e
∑
i

〈n|~̂ri|m〉 . (2.32)

Noticing that the energy eigenstates cannot have a permanent dipole moment,4 i.e.,

〈n|~̂ri|n〉 = 0 , (2.33)

the dipole operator simpli�es to

~̂d = ~µgeσ
− + ~µegσ

+ . (2.34)

The electric �eld operator is given by equation (2.14). In the Schrödinger picture
and with the dipole approximation made, it yields

~̂E =
∑
~k

(
~E~ka~k + ~E∗~ka

†
~k

)
, (2.35)

3A derivation of this Hamiltonian can be found in [Lou73, Chap. 8].
4For further information see [Sak94, p. 260].
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2. Atom-Photon Interaction

where we considered only one direction of polarization for simplicity.
With equation (2.35) for the �eld operator and equation (2.34) for the dipole

operator, the interaction term can be written as

− ~̂d · ~̂E = −
∑
~k

(
~µgeσ

− + ~µegσ
+) · (~E~ka~k + ~E∗~ka

†
~k

)
. (2.36)

In the next step we apply the rotating wave approximation. The free evolution
of the annihilation and creation operators in the Heisenberg picture is given by
equations (2.20) and (2.21), and the free evolution of the atomic operators is given
by equations (2.27) and (2.28). Combining these dependencies we �nd

σ−(t)a†~k(t) = σ−(0)a†~k(0)e−i(ωA−ωk)t , (2.37)

σ+(t)a~k(t) = σ+(0)a~k(0)ei(ωA−ωk)t , (2.38)

and

σ−(t)a~k(t) = σ−(0)a~k(0)e−i(ωA+ωk)t , (2.39)

σ+(t)a†~k(t) = σ+(0)a†~k(0)ei(ωA+ωk)t . (2.40)

We see that σ−(t)a†~k(t), which corresponds to the emission of a photon and the de-

excitation of the atom, and σ+(t)a~k(t), describing the absorption of a photon and
the excitation of the atom, vary slowly in time near resonance. On the contrary,
σ−(t)a~k(t) and σ+(t)a†~k(t) evolve at optical frequencies. On a timescale of a few
optical periods the fast varying terms tend to average to zero. Thus, they may be
neglected when evaluating the interaction Hamiltonian. This is referred to as the
rotating wave approximation.

Finally, de�ning the dipole coupling constants as

g~k := −
~µeg · ~E~k

~
and g∗~k := −

~µge · ~E∗~k
~

, (2.41)

the interaction Hamiltonian in the rotating wave approximation is

HI = ~
∑
~k

(g∗~kσ
−a†~k

+ g~kσ
+a~k) . (2.42)

2.4 Atom in a cavity � Jaynes-Cummings model

Combining the results from the previous sections we are now able to describe the
interaction of atoms with the quantized modes of a cavity. The simplest case, the
interaction of a two-level atom with a single cavity mode near resonance, is described
by the Jaynes-Cummings model.5

5The model is named after Jaynes and Cummings who were the �rst to analyse the interaction
between a resonant cavity and a molecule in their famous paper from 1963 [JC63].
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2.4 Atom in a cavity � Jaynes-Cummings model

2.4.1 The Hamiltonian

The Jaynes-Cummings Hamiltonian for the system of a two-state atom interacting
with a cavity mode is

H = HA +HC +HAC , (2.43)

where HA is the Hamiltonian for the two-level atom, given by equation (2.25), HC

the Hamiltonian for the quantized cavity �eld, given by equation (2.18), reduced to
a single mode and dropping the zero-point term as it does not contribute to the dy-
namics, and HAC is the interaction Hamiltonian in the rotating wave approximation
given by equation (2.42). Thus the Hamiltonian reads explicitly as

H = ~ωAσ
+σ− + ~ωCa

†a+ ~(g∗a†σ− + gσ+a) , (2.44)

where ωA is the atomic transition frequency, ωC the frequency of the cavity mode
and g the dipole coupling constant.

2.4.2 Dressed states

For simplicity in the following considerations, we assume the atom to be on exact
resonance with the cavity mode, i.e., ωA = ωC =: ω. The system ground state is
denoted by |g, 0〉 and has the energy E = 0.

Let us start by considering the �bare� states of the uncoupled system, i.e., the
coupling constant g in the Hamiltonian (2.44) is zero. In this case the (eigen-)states
|g, n〉 and |e, n− 1〉 (with n > 0, where n is the number of photons in the cavity
mode) are degenerate and their energy is En = n~ω.

Taking the atom-cavity coupling into account lifts the degeneracy and we �nd

H|g, n〉 = n~ω|g, n〉+ ~g
√
n|e, n− 1〉 , (2.45)

H|e, n− 1〉 = n~ω|e, n− 1〉+ ~g∗
√
n|g, n〉 , (2.46)

for n > 0. The interaction term couples the two states |g, n〉 and |e, n− 1〉 for each
value of n, but does not couple any other states. Therefore we can consider each
subspace Hn = {|g, n〉, |e, n− 1〉} independently and write the total Hamiltonian as
(see [MSI07, Chap. 14])

H =
∑
n

Hn , (2.47)

where Hn acts only in Hn and can be written as

Hn =

(
n~ω ~g

√
n

~g∗
√
n n~ω

)
. (2.48)

Diagonalizing this Hamiltonian, we �nd the two eigenvalues

E±n = n~ω ±
√
n~|g| , (2.49)
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Figure 2.1: The Jaynes-Cummings ladder. Shown on the left are the energies of the
uncoupled states of the atom and the cavity mode with their resonance frequencies
taken equal. Shown on the right is the ladder of dressed states of a coupled atom-
photon system.

which are the energies of the corresponding system eigenvectors,

|E+
n 〉 =

1√
2

(|g, n〉+ |e, n− 1〉) , (2.50)

|E−n 〉 =
1√
2

(|g, n〉 − |e, n− 1〉) . (2.51)

These mixed atom-photon states are the so-called dressed states. The energy eigen-
values form a �ladder� of doublets, referred to as the Jaynes-Cummings ladder. This
is illustrated in Figure 2.1.

Note that there is a splitting for even the �rst rung of the ladder, called the
vacuum Rabi splitting, whose magnitude is determined by the coupling strength:

Evacuum Rabi splitting = 2~g . (2.52)

2.5 Extensions to the Jaynes-Cummings model

The simple Jaynes-Cummings model can be extended in order to describe more
sophisticated systems.

2.5.1 Microresonators � two-mode cavity

The simplest cavity QED system comprises a high-�nesse optical Fabry-Perot cavity
with an atom placed inside it. This is by no means the only cavity system possible.
Many other (microfabricated) systems have been developed, especially because of
the need for ultra high Q factors and scalability to large number of devices.6 The Q

6For a review on optical microcavities see [Vah03].
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Figure 2.2: Rendering of an ultra-high Q microtoroid resonator. Picture taken
from [Vah03].

factor of a cavity is a measure of its quality and is determined by the total energy
stored in the cavity divided by the energy lost per cycle, or in other words, the
Q factor is proportional to the con�nement time in units of the optical period.
Examples for ultra-highQ-factor small-mode-volume cavities are spherical or toroidal
microresonators. These fused silicia microtoroids are fabricated on silicon wafers
by standard lithographic techniques and can be accessed (i.e. light is coupled to
and from the toroid) by �bre optic tapers. An example can be seen in Figure 2.2.
Light in the microtorid executes orbits near the surface of the toroid, undergoing
continuous internal re�ections. There are two possible directions of propagation
which account for the existence of two counter-propagating so-called whispering-

gallery modes (WGMs).7 These WGMs have very low loss rates and are strongly
con�ned within the toroid, which leads to very large single-photon electric �elds �
described by the strong-coupling cavity QED regime. An atom which is brought
close to the toroid can interact with it through the evanescent �eld of the WGMs.
The strength of the atom-cavity coupling can be controlled by adjusting the distance
between the toroid and the atom. In the same way, the coupling of the toroid to and
from the �bre can be controlled.

Other very interesting types of cavity QED systems are found in solid state
physics. Semiconductor quantum dots or quantum wells in micropillar, microdisk or
photonic crystal cavities exhibit similar properties to their atom-microtoroid coun-
terparts. A quantum dot is a semiconductor �island� (e.g., InAs) whose bond electron
and hole pairs (so-called excitons) are con�ned in all three spatial dimensions. (In
a quantum well the excitons are con�ned in one dimension.) As a result, quantum
dots have a discrete energy spectrum rather than a continuous one and essentially
behave like atoms.8 The micropillar, microdisk and photonic crystal act as cavities.
For example, a photonic crystal has a periodic variation in its refraction index on
a length scale comparable to the wavelength of interest. In analogy to electrons in

7The WGMs are named after their acoustic equivalent.
8For an introduction to quantum dots see [Ree93].
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2. Atom-Photon Interaction

an atomic crystal, there are so-called photonic bandgaps where no photon mode can
exist. The prohibition of wave propagation in the forbidden gaps can be used to
create a highly re�ective mirror. A cavity is then formed by omitting one or two pe-
riods of the variation in the refractive index [Yab87]. When a quantum dot is placed
within one of these cavities, a solid state optical cavity QED system is formed. The
advantage of the quantum dot cavity QED system is that the quantum dot is �rmly
�xed to the cavity and therefore the experiments can be carried out on the same
object, whereas in experiments with real atoms, an atom usually passes through the
cavity, or the evanescent �eld of the resonator, and is lost after its transit.9 On the
other hand, semiconductor systems are much more complex. The parameters of the
system and how they control the system's behaviour are much better understood in
cavity QED systems using atoms.

Another system for studying the interaction of light and matter at the quantum
level is the so-called circuit QED system, in which microwave photons are coupled
to superconducting qubits, formed from Josephson junctions and superconducting
islands, which act as arti�cial atoms. These systems can have a very strong atom-
photon coupling.10

The system we will investigate in this thesis is assumed to consists of mico-
toroids where the counter-propagating WGMs can interact with one another (e.g.
by scattering at imperfections of the toroid), with the strength h, and each of the
modes is coupled to the atom with the strength g. This system can be described by
an extended Jaynes-Cummings model where we have to take the second (counter-
propagating) cavity mode, b, into account, together with its interaction with the �rst
mode, a. The extended Jaynes-Cummings Hamiltonian for a two-mode cavity with
interaction of the modes is

H = ~ωC(a†a+ b†b) + ~(ha†b+ h∗b†a)

+ ~ωAσ
+σ− + ~(g∗a†σ− + gσ+

1 a) + ~(gb†σ− + g∗σ+b) . (2.53)

2.5.2 Driven Jaynes-Cummings model

When a cavity is irradiated by an external coherent light source (e.g. a laser), the
light can couple into the cavity and, in the case of the right frequency, provide the
cavity modes with energy. If the probe frequency is near resonance with a cavity
mode and the cavity has su�ciently high �nesse this interaction is well approximated
by a linear coupling, of strength ε. The number of photons in the input mode is
usually very large so that quantum e�ects do not play a role. Hence, the input �eld
can be treated classically, i.e., the �eld operator, Ê, can be replaced by a classical
complex �eld amplitude, E0.

We assume the input light to be of the form

Ein(t) = E0e
−iωt . (2.54)

9Although, cavity QED experiments with an atom trapped inside a cavity have been conducted
[YVK99, BMB+04].

10An introduction to circuit QED can for example be found in [SG08].
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2.5 Extensions to the Jaynes-Cummings model

The Hamiltonian describing the interaction between a cavity mode, a, and the input
light can then be written as

Hdriv = ~E∗eiωpta+ ~Ee−iωpta† (2.55)

where the coupling constant, ε, a transmission coe�cient (typically a factor
√

2κ,
with κ the cavity damping rate) which accounts for the coupling into the cavity, and
a possible phase change on transmission, e−iφ, are all absorbed into the complex �eld
amplitude E .
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Chapter 3

Quantum Theory of Open Systems

After having developed the essential theoretical background to the interaction be-
tween atoms and light, with and without a cavity present, we consider the leakage of
light out of the cavity and its implications in this chapter. In the previous chapter,
the cavity system was assumed to be sealed from its environment. However, in a
real system, dissipation is always present. Also, one is usually interested in the light
emitted from the cavity rather than the intracavity light. For an accurate descrip-
tion of a cavity system we therefore have to treat it as an open quantum system, a
system which interacts with its environment and, in particular, loses photons to the
environment. In this chapter, the general master equation � the central equation for
treating open quantum systems � will be derived, and then be applied to a speci�c
example: the single atom-toroid system.

3.1 Derivation of the master equation

The system, S, that we are interested in has some leakage to, or some interaction
with, its environment, and cannot be considered as a closed system. Hence, to
describe the system accurately we have to take its environment into account as well.
The environment is typically much larger than the system and can be seen as a
reservoir, R. The combination of the system S and the reservoir R is assumed to be
a closed quantum system, S⊗R, described by the density operator χ(t).1 The total
Hamiltonian, H, of the closed system can be decomposed as follows:

H = HS +HR +HSR , (3.1)

where HS and HR are the Hamiltonians for the system and reservoir, respectively,
and HSR is the Hamiltonian, describing their interaction.

1We usually only have knowledge of the system S, and due to its dissipation even this knowledge
is limited. Therefore we cannot describe the system by a state vector, but have to use the density
operator instead.
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3. Quantum Theory of Open Systems

3.1.1 Reduced density operator

The evolution of the closed system S ⊗R is governed by the von Neumann equation

χ̇(t) = − i
~

[H,χ] , (3.2)

where H is the closed system Hamiltonian. In general this equation is very complex,
in particular, because of the complex nature of the reservoir, and cannot be solved.
Since we are only interested in the system, S, not in the reservoir, we can trace over
the reservoir states and obtain the reduced density operator

ρ = TrR [χ(t)] , (3.3)

describing the system, including the e�ects of the reservoir upon it, e.g., the damping
of the system (into the reservoir). The reduced density operator is su�cient to
calculate the averages of all operators, Ô, acting on the system subspace, HS, alone:

〈Ô〉 = TrS⊗R

[
Ôχ(t)

]
= TrS

{
ÔTrR [χ(t)]

}
= TrS

[
Ôρ(t)

]
. (3.4)

Our objective in the following is to obtain an equation of motion for ρ(t).

3.1.2 The von Neumann equation in integro-di�erential form

To separate the fast motion of the system and reservoir from the slow motion due to
their interaction, we move to an interaction picture de�ned by

χ̃(t) := e
i
~ (HS+HR)tχ(t)e−

i
~ (HS+HR)t . (3.5)

The von Neumann equation (3.2) in the interaction picture yields

˙̃χ(t) =
i

~
(HS +HR)χ̃(t)− i

~
χ̃(t)(HS +HR) + e

i
~ (HS+HR)tχ̇(t)e−

i
~ (HS+HR)t

= − i
~

[
H̃SR(t), χ̃(t)

]
, (3.6)

where H̃SR(t) is explicitly time dependent, namely

H̃SR(t) = e
i
~ (HS+HR)tHSRe

− i
~ (HS+HR)t . (3.7)

Integrating equation (3.6) formally, yields

χ̃(t) = χ̃(0)− i

~

∫ t

0
dt′
[
H̃SR(t′), χ̃(t′)

]
. (3.8)

Substituting this solution into equation (3.6) gives the integro-di�erential form of
the von Neumann equation,

˙̃χ(t) = − i
~

[
H̃SR(t), χ̃(0)

]
− 1

~2

∫ t

0
dt′
[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]
. (3.9)

We have simply recast equation (3.2) into a more convenient form, from which we
can construct an equation of motion for the reduced density operator of system S
by making appropriate approximations.
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3.1 Derivation of the master equation

3.1.3 Born approximation

Tracing over the reservoir in equation (3.9) gives the master equation for the reduced
density operator, ρ̃(t),

˙̃ρ(t) = − i
~

TrR

{[
H̃SR(t), χ̃(0)

]}
− 1

~2

∫ t

0
dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]}
.

(3.10)

In the next step, we assume that the system and the reservoir are uncorrelated at
time t = 0, so that the density operator for the composite system, χ̃(0), factorizes as

χ̃(0) = χ(0) = R0ρ(0) , (3.11)

where R0 is the initial density operator of the reservoir. We further assume that

TrR

[
H̃SR(t)R0

]
= 0 , (3.12)

which can always be arranged by including TrR

[
H̃SR(t)R0

]
in the system Hamil-

tonian.2 With these assumptions we can simplify the master equation (3.10) and
arrive at

˙̃ρ(t) = − 1
~2

∫ t

0
dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), χ̃(t′)

]]}
. (3.13)

For a weak interaction between the system and reservoir, i.e., when the system per-
turbs the reservoir only slightly, we can expand the density operator of the composite
system in terms of the interaction HSR,

χ̃(t) = R0ρ̃+O(HSR) . (3.14)

Then, to a good approximation we may neglect terms in the master equation of
higher order than second order in HSR, and the density operator, χ̃(t), e�ectively
factorizes for all times. This approximation is referred to as the Born approxima-

tion because of its similarity to an approximation encountered in scattering theory.
Thus, substituting equation (3.14) into (3.13) yields the master equation in the Born
approximation,

˙̃ρ(t) = − 1
~2

∫ t

0
dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), R0ρ̃(t′)

]]}
. (3.15)

This is still a complicated equation, which, in particular, still contains memory ef-
fects, i.e., the future evolution of ρ̃(t) depends on its past history through the in-
tegration over t′. We will simplify it further in the next section by neglecting the
memory e�ects.

2For more details see [Car99, Chap. 1 and Chap. 2].

19



3. Quantum Theory of Open Systems

3.1.4 Markov approximation

Typically, the reservoir is a very large system with many degrees of freedom which
is in thermal equilibrium. Thus, the reservoir is essentially una�ected by the system
and the perturbations induced by the system on it quickly die away. That means
that the correlation time of the reservoir is much shorter than the timescale for sig-
ni�cant changes of the system. In this case, the evolution of the system is essentially
independent of its past and we can neglect the history of the system. We impose
this approximation by replacing ρ̃(t′) in equation (3.15) with ρ̃(t). This is called the
Markov approximation. The evolution of the reduced density operator, ρ̃(t), is then
governed by the master equation in the Born-Markov approximation,

˙̃ρ(t) = − 1
~2

∫ t

0
dt′TrR

{[
H̃SR(t),

[
H̃SR(t′), R0ρ̃(t)

]]}
. (3.16)

3.1.5 Master equation in Lindblad form

We will derive the so-called Lindblad form of the master equation, which is commonly
used in quantum optics, by making the model more speci�c. Let us assume that each
system operator, si, of system S is coupled to a statistically independent reservoir
operator, ri, of reservoir R. Thus, we explicitly write the interaction Hamiltonian as

HSR = ~
∑
i

siri . (3.17)

The interaction Hamiltonian in the interaction picture is then

H̃SR = ~
∑
i

e
i
~ (HS+HR)tsirie

− i
~ (HS+HR)t

= ~
∑
i

(e
i
~HStsie

− i
~HSt)(e

i
~HRtrie

− i
~HRt)

= ~
∑
i

s̃i(t)r̃i(t) . (3.18)

Substituting this result in the master equation (3.16) yields

˙̃ρ(t) = −
∑
i,j

∫ t

0
dt′TrR

{[
s̃i(t)r̃i(t),

[
s̃j(t′)r̃j(t′), R0ρ̃(t)

]]}
. (3.19)

Evaluating the commutators and using the cyclic property of the trace � Tr(ÂB̂Ĉ) =
Tr(B̂ĈÂ) = Tr(ĈÂB̂) � gives

˙̃ρ(t) = −
∑
i,j

∫ t

0
dt′
{ (
s̃i(t)s̃j(t′)ρ̃(t)− s̃j(t′)ρ̃(t)s̃i(t)

)
TrR

[
r̃i(t)r̃j(t′)R0

]
+
(
ρ̃(t)s̃j(t′)s̃i(t)− s̃i(t)ρ̃(t)s̃j(t′)

)
TrR

[
r̃j(t′)r̃i(t)R0

] }
. (3.20)
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For notational simpli�cations later on, we formally replace several of the H̃SR terms
by their adjoints. This is possible, since the sum in equation (3.20) extends over
all possible operators and the interaction Hamiltonian is Hermitian, i.e., for each
operator in H̃SR its adjoint is present as well. Thus we can write

˙̃ρ(t) = −
∑
i,j

∫ t

0
dt′
{(

s̃†i (t)s̃j(t
′)ρ̃(t)− s̃j(t′)ρ̃(t)s̃†i (t)

)
〈r̃†i (t)r̃j(t

′)〉R

+
(
ρ̃(t)s̃†j(t

′)s̃i(t)− s̃i(t)ρ̃(t)s̃†j(t
′)
)
〈r̃†j(t

′)r̃i(t)〉R
}
, (3.21)

where we have used the relations

〈r̃†i (t)r̃j(t
′)〉R = TrR

[
r̃†i (t)r̃j(t

′)R0

]
, (3.22)

〈r̃†j(t
′)r̃i(t)〉R = TrR

[
r̃†j(t

′)r̃i(t)R0

]
, (3.23)

to replace the traces by expectation values.
In the next step we assume that the system Hamiltonian, HS, is constructed in

terms of si in such a way that these operators are transformed as follows,

s̃i(t) = e
i
~HStsie

− i
~HSt = sie

−iωit . (3.24)

Substituting this expression for s̃i into equation (3.21) and making a change of vari-
able,

τ = t− t′ , (3.25)

we �nd

˙̃ρ(t) = −
∑
i,j

∫ t

0
dτ

{(
s†isj ρ̃(t)− sj ρ̃(t)s†i

)
〈r̃†i (t)r̃j(t− τ)〉Rei(ωi−ωj)teiωjτ

+
(
ρ̃(t)s†jsi − siρ̃(t)s†j

)
〈r̃†j(t− τ)r̃i(t)〉Re−i(ωi−ωj)te−iωjτ

}
. (3.26)

For statistically independent reservoir operators the correlation functions,
〈r̃†i (t)r̃j(t− τ)〉R and 〈r̃†j(t− τ)r̃i(t)〉R, are zero unless i is equal to j, since they
factorize for i 6= j and the mean of the reservoir operators, 〈r̃i(t)〉, is assumed to
be zero. Therefore, all the cross terms in the master equation (3.26) vanish and we
obtain

˙̃ρ(t) = −
∑
i

[ (
s†isiρ̃(t)− siρ̃(t)s†i

) ∫ t

0
dτ〈r̃†i (t)r̃i(t− τ)〉Reiωiτ

+
(
ρ̃(t)s†isi − siρ̃(t)s†i

) ∫ t

0
dτ〈r̃†i (t− τ)r̃i(t)〉Re−iωiτ

]
. (3.27)
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De�ning

γi = 2 Re
{∫ t

0
dτ〈r̃†i (t)r̃i(t− τ)〉Reiωiτ

}
,

∆i = 2 Im
{∫ t

0
dτ〈r̃†i (t)r̃i(t− τ)〉Reiωiτ

}
, (3.28)

we arrive at

˙̃ρ(t) =
∑
i

{
−i∆i

2

[
s†isi, ρ̃(t)

]
+
γi
2

(
2siρ̃(t)s†i − s

†
isiρ̃(t)− ρ̃(t)s†isi

)}
. (3.29)

Transforming this equation back to the Schrödinger picture �nally yields the master
equation in Lindblad form,

ρ̇(t) = − i
~
[
H ′S, ρ(t)

]
+
∑
i

γi
2

(
2siρ(t)s†i − s

†
isiρ(t)− ρ(t)s†isi

)
, (3.30)

with the e�ective system Hamiltonian,

H ′S = HS +
∑
i

~∆i

2
s†isi . (3.31)

Note, in the derivation of this master equation, it was assumed that the system
operators, si, couple to statistically independent reservoirs, which is a reasonable
assumption in most cases in quantum optics. The �rst term on the RHS of equation
(3.30) describes the unitary evolution of the density operator, and includes an energy
shift of the system. This energy shift, by the term

∑
i

~∆i
2 s†isi, is usually small (in

regards to quantum optical systems) and is generally absorbed into the de�nition of
the system's resonance frequency (i.e., the frequency of an atom or a cavity mode).
The second term on the RHS describes the damping of the system, with damping
constant γi.

The master equation in Lindblad form is sometimes expressed in terms of jump

operators (or collapse operators), Ĉi =
√
γisi, as shown

ρ̇(t) = − i
~

[HS, ρ(t)] +
∑
i

(
Ĉiρ(t)Ĉ†i −

1
2
Ĉ†i Ĉiρ(t)− 1

2
ρ(t)Ĉ†i Ĉi

)
. (3.32)

Another widely used form of the master equation is

ρ̇(t) = − i
~

[HS, ρ(t)] + Lρ(t) , (3.33)

where L is the Liouvillian superoperator, which acts on other operators rather than
on state vectors. It is given by

L· =
∑
i

γi
2

(
2si · s†i − s

†
isi · − · s

†
isi
)
. (3.34)

Sometimes, the commutator in the master equation (3.33) is incorporated into the
de�nition of the Liouvillian, so that the master equation is written in a more succinct
form, namely,

ρ̇(t) = Lρ(t) . (3.35)
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3.2 Quantum regression formula

3.2 Quantum regression formula

Solving the master equation gives us an explicit expression for the time dependence
of the reduced density operator ρ(t). This density operator in turn allows us to
compute the time dependence of the expectation value of any operator de�ned on
the system Hilbert space, HS, by using equation (3.4). In this section we will show
how the mean of a product of two operators evaluated at di�erent times � the so-
called two-time correlation functions � of the form

〈Ô1(t)Ô2(t′)〉 , (3.36)

can be computed.

3.2.1 Formal results

In the Heisenberg picture, two-time correlation functions are straightforward to eval-
uate by

〈Ô1(t)Ô2(t′)〉 = TrS⊗R

[
χ(H)(0)Ô(H)

1 (t)Ô(H)
2 (t′)

]
, (3.37)

where the superscript (H) denotes that the operator is in the Heisenberg picture;
whereas, in the Schrödinger picture � where operators are generally time independent
� such an expression cannot be evaluated. In the following we will suppress the
superscript for the sake of a more readable text. Operators which are explicitly
time dependent, like Ô(t), are in the Heisenberg picture and operators without an
explicit time dependence, like Ô, are in the Schrödinger picture � vice versa for the
density operator χ and χ(t). In order to use the master equation in the Schrödinger
picture, derived in the previous section, we have to transform equation (3.37) into
the Schrödinger picture. This shall be done here.

We can move from the Schrödinger picture to the Heisenberg picture by a unitary
transformation of form

Ô(t) = e
i
~HtÔe−

i
~Ht , (3.38)

where H is the Hamiltonian of the system. Using this transformation and the cyclic
property of the trace, we can write equation (3.37) as

〈Ô1(t)Ô2(t′)〉 = TrS⊗R

[
e

i
~Htχ(t)Ô1e

i
~H(t′−t)Ô2e

− i
~Ht

′]
= TrS⊗R

[
Ô2e

− i
~H(t′−t)χ(t)Ô1e

i
~H(t′−t)

]
= TrS

{
Ô2TrR

[
e−

i
~H(t′−t)χ(t)Ô1e

i
~H(t′−t)

]}
, (3.39)

which is now a Schrödinger picture expression.
We de�ne

χÔ1
(τ) := e−

i
~Hτχ(t)Ô1e

i
~Hτ , with τ = t′ − t , (3.40)
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which satis�es the equation of motion

d

dτ
χÔ1

(τ) = − i
~

[
H,χÔ1

(τ)
]
. (3.41)

Furthermore, the reduced operator of χÔ1
(τ) is given by

ρÔ1
(τ) := TrR

[
χÔ1

(τ)
]
, (3.42)

which for τ = 0 is

ρÔ1
(0) = TrR

[
χÔ1

(0)
]

= TrR

[
χ(t)Ô1

]
= TrR [χ(t)] Ô1 = ρ(t)Ô1 . (3.43)

If we then assume that the density operator of the composite system factorizes, with
χ(t) = ρ(t)R0, as discussed in Section 3.1.3 (Born approximation), we �nd

χÔ1
(0) = χ(t)Ô1 = R0(ρ(t)Ô1) = R0ρÔ1

(0) . (3.44)

Equations (3.41), (3.42) and (3.44) are equivalent to the von Neumann equation for
χ(t), equation (3.2), the de�nition of the reduced density operator ρ(t) in equation
(3.3) and the Born approximation given by equation (3.14). Noting that equations
(3.41) and (3.2) share the same Hamiltonian, we can derive an equation of motion
for the operator ρÔ1

(τ) in an analogous way to the derivation of the master equation
in the previous section. This eventually yields

d

dτ
ρÔ1

(τ) = LρÔ1
(τ) , (3.45)

where the notation of equation (3.35) is used. The formal solution is

ρÔ1
(τ) = eLτ (ρÔ1

(0)) = eLτ (ρ(t)Ô1) . (3.46)

Substituting this result into equation (3.39) gives the quantum regression formula

〈Ô1(t)Ô2(t+ τ)〉 = Tr
[
Ô2e

Lτ (ρ(t)Ô1)
]
, (3.47)

where τ > 0. Following the same procedure it can be shown that

〈Ô1(t+ τ)Ô2(t)〉 = Tr
[
Ô1e

Lτ (Ô2ρ(t))
]
, (3.48)

with τ > 0.

3.2.2 Results for a complete set of operators

The rather formal expressions (3.47) and (3.48) can be reduced to a form which is
often more convenient for doing calculations.

For a complete set of system operators Âµ, µ = 1, 2, . . ., which obey the relation

TrS

[
Âµ(LÔ)

]
=
∑
λ

Mµ,λTrS

[
ÂλÔ

]
, (3.49)
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3.3 Master equation for a single-microtoroid cavity QED system

where Ô is an arbitrary operator and the Mµ,λ are constants, we �nd (for τ > 0)

d

dτ
〈Ô(t)Âµ(t+ τ)〉 =

d

dτ
TrS

[
Âµe

Lτ (ρ(t)Ô)
]

= TrS

[
Âµ
{
LeLτ (ρ(t)Ô)

}]
=
∑
λ

Mµ,λTrS

[
Âλe

Lτ (ρ(t)Ô)
]

=
∑
λ

Mµ,λ〈Ô(t)Âλ(t+ τ)〉 , (3.50)

where equation (3.47) was used. The operator Ô can be any system operator, not
necessarily one of the Âµ. In an analogous manner, we �nd

d

dτ
〈Âµ(t+ τ)Ô(t)〉 =

∑
λ

Mµ,λ〈Âλ(t+ τ)Ô(t)〉 , (3.51)

where τ > 0.
Note, from equation (3.49), it follows, in particular, that

d

dt
〈Âµ〉 = TrS

[
Âµρ̇

]
= TrS

[
Âµ(Lρ)

]
=
∑
λ

Mµ,λTrS [Aλρ] =
∑
λ

Mµ,λ〈Aλ〉 ,

(3.52)

which is conveniently used to determine the constants Mµ,λ.

3.3 Master equation for a single-microtoroid cavity QED

system

In Chapter 5 and Chapter 6 we will investigate a system consisting of microtoroidal
resonators to which atoms are coupled. These microresonators were described in
Section 2.5.1, and can be modelled by an extended Jaynes-Cummings model. In this
model, the atom-cavity system is assumed to be closed, with no leakage of light out
of the cavity taken into account. This is unrealistic; moreover, the quantity which
is usually measured is the light exiting the cavity. In this chapter, we developed the
mathematical tools to describe the damping of a system using the master equation.
We will apply this technique to derive the master equation for a single-microtoroid
system with and without an external driving source.

3.3.1 Non-driven system

In order to use equation (3.32), we require the jump operators, Ĉi, of our system,
corresponding to the di�erent loss channels. The atom-toroid system is described
by the extended Jaynes-Cummings model of Section 2.5. Within the microtoroid
are two counter-propagating WGMs, a and b, which interact with one another at

25



3. Quantum Theory of Open Systems

strength h, and are coupled to an atom, described by the atom-cavity coupling rate,
g. The atom is considered to be a two-level atom, described by the raising and
lowering operators σ± and the transition frequency ωA. The Hamiltonian for the
system is

HS = ~ωC(a†a+ b†b) + ~(ha†b+ h∗b†a)

+ ~ωAσ
+σ− + ~(g∗a†σ− + gσ+a) + ~(gb†σ− + g∗σ+b) , (3.53)

where ωC is the frequency of the two microtoroid modes.
In this system, light can be lost by essentially three methods. First, the light of

modes a and b can be lost to the �bre the toroid is coupled to, at the rate κex (see
Section 2.5.1). Second, the light of modes a and b can be lost out of the toroid and
not be coupled back into the �bre, e.g., by imperfections in the toroid. This intrinsic
loss is described by the cavity decay rate κi. Third, the atom can spontaneously
emit photons in a direction other than that of the cavity modes, a process described
by the atomic decay rate γ.3

Each of these loss channels corresponds to an independent reservoir that di�erent
system operators interact with. Hence, we �nd for the jump operators,

Ĉ(ex)
a =

√
2κexa , Ĉ

(ex)
b =

√
2κexb , (3.54)

Ĉ(i)
a =

√
2κia , Ĉ

(i)
b =

√
2κib , (3.55)

Ĉγ =
√
γσ− (3.56)

The factor of two for the cavity decay rates, κex and κi, come from the fact that they
are de�ned to correspond to the parameter γi in equation (3.30), i.e., they correspond
to half-widths not full-widths.

We de�ne the total cavity decay rate as

κ := κex + κi , (3.57)

and �nd for the master equation for a single two-mode toroid without driving

ρ̇ = − i
~

[HS, ρ] + κ(2aρa† − a†aρ− ρa†a) + κ(2bρb† − b†bρ− ρb†b)

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (3.58)

3.3.2 Driven system

Having described the microtoroidal system without driving, we consider now a co-
herent light source (laser) which drives the system. In the general case, we allow for
driving of both cavity modes, a and b, by two separate external light sources of the

3The decay rate is in reality determined by several factors, such as the atom decaying to other
levels which represents a breakdown of the two-level atom approximation we are using, and will
thus not be considered.
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3.3 Master equation for a single-microtoroid cavity QED system

same frequency ωp. As already described in Section 2.5.2, the coherent input �eld
can be treated classically and the Hamiltonian for the interaction between the cavity
modes and the classical input �eld is typically written as

Hdriv = ~
(
E∗aeiωpta+ Eae−iωpta†

)
+ ~

(
E∗b eiωptb+ Ebe−iωptb†

)
, (3.59)

where Ea and Eb are complex �eld amplitudes.
When deriving the master equation the assumption was used that reservoir modes

have a zero mean amplitude. The reservoir mode which is in a coherent state, and
drives the system, certainly has no zero mean amplitude, but since it is included in
the system Hamiltonian rather than in the reservoir, the remaining reservoir modes
have zero mean amplitude. Therefore the master equation for the driven cascaded
system can be derived in the same way as the non-driven cascaded master equation
was. The only di�erence is that the system Hamiltonian, HS, of the non-driven
system described in equation (3.53) is replaced by the system Hamiltonian for the
driven system, which reads

Hdriv
S = HS + ~

(
E∗eiωpta+ Ee−iωpta†

)
+ ~

(
E∗b eiωptb+ Ebe−iωptb†

)
. (3.60)

The master equation for the driven single-toroid system is now given by

ρ̇ = − i
~

[Hdriv
S , ρ] + κ(2aρa† − a†aρ− ρa†a) + κ(2bρb† − b†bρ− ρb†b)

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (3.61)
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Chapter 4

Advanced Topics in Cavity QED

After having developed the essential theoretical method to describe damped quantum
systems in the previous chapter, we can now turn to more advanced topics in cavity
QED. The master equation treatment describes the internal �eld of a damped cavity.
It is based on treating the external �eld which the cavity is coupled to as a heat
bath. In the �rst section of this chapter we will explicitly treat the heat bath as an
external cavity �eld, in order to obtain an expression relating the intracavity �eld
to the cavity output �eld, the �eld which is normally accessible in experiments. A
further extension of this is to allow the output �eld of the cavity to couple into
another cavity. These so-called cascaded systems are described in the second section.

4.1 Input-output theory

A general input-output theory for quantum dissipative systems was developed by
Collett and Gardiner [CG84]. A good treatment can be found in the book of Walls
and Milburn [WM94], which we will closely follow.

In the following we will, for simplicity, consider a single cavity mode coupled to
a one-dimensional external (reservoir) �eld. The extension to a two-mode cavity is
obvious and is left for the reader. The total Hamiltonian is

H = HS +HR +HSR , (4.1)

where HS is the free Hamiltonian for the intracavity �eld mode, HR is the free
Hamiltonian for the external (reservoir) �eld modes, and the interaction Hamiltonian
is written as

HSR = i~
∫ ∞
−∞

dωκ(ω)
[
a†r(ω)− r†(ω)a

]
, (4.2)

where κ(ω) is a coupling constant, and a and r(ω) are annihilation operators for
the intracavity and the external �eld, respectively, which satisfy the commutation

29



4. Advanced Topics in Cavity QED

relations [
a, a†

]
= 1 , (4.3)[

r(ω), r†(ω′)
]

= δ(ω − ω′) . (4.4)

Note that actual physical frequencies are positive, and therefore the limits of the
integral in equation (4.2) are strictly (0,∞). However, for optical systems it is usually
convenient to move to a rotating frame, a frame rotating with some characteristic
high frequency Ω of the system (e.g., the cavity resonance frequency). In this case
the integration limits become (−Ω,∞). For a large optical frequency, Ω, the lower
limit can, to a good approximation, be extended to −∞ (hence the integration limits
in equation (4.2)).

The Heisenberg equation of motion for r(ω) is

ṙ(ω) = −iωr(ω) + κ(ω)a . (4.5)

This can be formally integrated. To obtain the input �eld, we have to solve it in
terms of initial conditions at time t0 < t, and to obtain the output �eld, in terms of
the �nal conditions at time t1 > t. The formal solution for t0 < t is

r(ω) = e−iω(t−t0)r(ω, t0) + κ(ω)
∫ t

t0
dt′e−iω(t−t′)a(t′) , (4.6)

and for t < t1

r(ω) = e−iω(t−t1)r(ω, t1)− κ(ω)
∫ t1

t
dt′e−iω(t−t′)a(t′) . (4.7)

The Heisenberg equation of motion for the system operator is

ȧ(t) = − i
~

[a(t), HS]−
∫ ∞
−∞

dωκ(ω)r(ω) . (4.8)

Substituting the formal solution (4.6) for the reservoir operator, r(ω), into the equa-
tion of motion for the system operator yields

ȧ(t) = − i
~

[a(t), HS]−
∫ ∞
−∞

dωκ(ω)e−iω(t−t0)r(ω, t0)

−
∫ ∞
−∞

dωκ(ω)2
∫ t

t0
dt′e−iω(t−t′)a(t′) . (4.9)

We now assume that κ(ω) is independent of frequency over a band of frequencies
about the cavity mode frequency (which is the case in quantum optics), and thus
can set

κ(ω)2 = κ/π . (4.10)
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Then using the relation∫ ∞
−∞

dωe−iω(t−t′) = 2πδ(t− t′) , (4.11)

and de�ning the input �eld operator by

ain(t) :=
−1√
2π

∫ ∞
−∞

dωe−iω(t−t0)r(ω, t0) , (4.12)

which satis�es the commutation relation,[
ain(t), a†in(t′)

]
= δ(t− t′) , (4.13)

we can derive a quantum Langevin equation for the damped intracavity �eld operator
as

ȧ(t) = − i
~

[a(t), HS]− κa(t) +
√

2κain(t) . (4.14)

In this Langevin equation the (quantum) noise term appears explicitly as the input
�eld.

By substituting the formal solution (4.7) for the reservoir operator into equa-
tion (4.8), the time reversed Langevin equation for the intracavity �eld operator is
obtained. It reads

ȧ(t) = − i
~

[a(t), HS] + κa(t)−
√

2κaout(t) , (4.15)

where the output �eld is de�ned by

aout(t) :=
1√
2π

∫ ∞
−∞

dωe−iω(t−t1)r(ω, t1) , (4.16)

which has the opposite sign to the input �eld.
From the two Langevin equations, (4.14) and (4.15), the intracavity �eld can be

related to the external (reservoir) �elds. Equating the two expressions for ȧ(t) gives

aout(t) + ain(t) =
√

2κa(t) . (4.17)

This is a boundary condition relating each of the far-�eld amplitudes outside the
cavity to the internal cavity �eld. Note that interference terms, e.g., 〈a(t)ain(t′)〉
and 〈a†(t)ain(t′)〉, may contribute to the observed output �eld moments.

4.2 Cascaded systems

A cascaded system consists of (at least) two subsystems which are connected by a
one-way (non-Hamiltonian) coupling. In the following we will restrict ourselves to a
system consisting of two subsystems as can be seen in Figure 4.1. The �rst cavity,
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Hsource Htarget

z = 0 z = d

Figure 4.1: Schematic of a typical cascaded system. Light is coupled into the
source cavity on the left, the output of which couples into the target cavity on the
right. The output of the target system is �nally measured.

at position z = 0, is called the source, which is driven by some input, and whose
output couples to the second cavity at position z = d, called the target. This is a
unidirectional coupling between source and target, where the output of the source
is carried to the target by the reservoir. The main interest lies in the output of the
target subsystem. In the simplest case the input to the source subsystem is just the
thermal reservoir.

4.2.1 The cascaded systems master equation

Three di�erent derivations of the cascaded systems master equation have been given
[KS87, Gar93, Car93]. Here we closely follow the approach of Carmichael [Car93].

The Hamiltonian for the cascaded system can be divided up into the system
Hamiltonian, HS, the reservoir Hamiltonian, HR, and the Hamiltonian of the inter-
action between the system and the reservoir, HSR. Thus, it can be written as

H = HS +HR +HSR . (4.18)

The system Hamiltonian consists of the source and target Hamiltonian (which de-
scribe the free cavity modes and any possible interactions inside the cavities) and is
written as

HS = Hsource +Htarget . (4.19)

The interaction Hamiltonian can be split up into

HSR = Hsource
SR +Htarget

SR , (4.20)

where Hsource
SR describes the interaction of the source with the reservoir and Htarget

SR

the interaction of the target with the reservoir. The interaction Hamiltonians are
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given by

Hsource
SR = ~

√
2κ(1)

(
a1Ê†(0) + a†1Ê(0)

)
, (4.21)

Htarget
SR = ~

√
2κ(2)

(
a2Ê†(d) + a†2Ê(d)

)
, (4.22)

and the reservoir Hamiltonian is given by

HR =
∑
j

~ωjr†jrj , (4.23)

where a1 and a2 are the photon annihilation operators for the source and target
modes, respectively, Ê is the �eld operator of the reservoir, which contains the reser-
voir mode annihilation operators rj . κ(1) and κ(2) are the cavity damping rates of
the source and target, respectively.

The reservoirs that the two systems interact with can not be treated as inde-
pendent, since the output from the source is carried by the reservoir to the target.
In other words, although the source and target subsystem couple to di�erent reser-
voir �eld operators, Ê(0) and Ê(d), there is a correlation between them so that the
reservoirs are not independent. Therefore the standard method of deriving the mas-
ter equation which was used for the harmonic oscillator (see Section 3.1) cannot be
applied without some further work. However, the correlation between the reservoir
�elds at source and target enables us to relate Ê(d) to Ê(0), so that the source and
output formally couple to the reservoir at the same spatial position. This can be
done by introducing a unitary transformation U with

U(τ) = exp
[
− i

~
(Hsource +HR +Hsource

SR )τ
]
, (4.24)

where τ is the time the light needs to travel from the source to the target. This
unitary operator transforms the system in such a way that it performs a time retar-
dation to the source subsystem and its interaction with the reservoir. In particular,
it relates the reservoir �eld operator Ê(d) to Ê(0) by

Ê(d, τ) = U †(τ)Ê(d, 0)U(τ) = eiφa

[
Ê(0)− i1

2

√
2κ(1)a1

]
. (4.25)

The �eld at the target at time t = τ is the time retarded input �eld at the source
(with an additional phase factor eiφa due to re�ection at the mirror) which freely
propagates between the source and target, plus a �eld which was radiated by the
source at time t = 0.1

The Liouville equation for the density operator χ has also to be transformed by
U so that it yields

χ̇ret = − i
~

[Hret, χret] , (4.26)

1For a more detailed derivation of this relation between Ê(d, τ) and Ê(0) see [Car08, p. 489].
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with the time-retarded density operator

χret = U †(τ)χU(τ) , (4.27)

and the time-retarded Hamiltonian Hret which di�ers only in the interaction term

(Htarget
SR )ret = ~

√
2κ(2)

(
a2Ê†(d, τ) + a†2Ê(d, τ)

)
. (4.28)

Substituting (4.25) into (4.28) yields, for the time-retarded Hamiltonian,

Hret = Hsys +HR +Hret
SR , (4.29)

where the Hamiltonian Hsys describes the combined system of source and target

Hsys = Hsource +Htarget + i~
√
κ(1)κ(2)(e−iφaa2a

†
1 − e

iφaa1a
†
2) , (4.30)

and the Hamiltonian Hret
SR describes the interaction between the system and the

reservoir

Hret
SR = ~

[(√
2κ(1)a1 + e−iφa

√
2κ(2)a2

)
Ê†(0) + H.c.

]
. (4.31)

Both systems, i.e., the source described by the annihilation operator a1 and the
target described by the annihilation operator a2, are now interacting with the same
reservoir �eld Ê†(0), the reservoir �eld at the same spatial position. This coupling
between the reservoir and the atoms is a collective one with the jump operator

J =
√

2κ(1)a1 + e−iφa

√
2κ(2)a2 . (4.32)

This form of the coupling allows us to derive the master equation in the same way
we did before (see Section 3.1). For this purpose, we start with equation (4.26) and
introduce the reduced density operator

ρret(t) = trR [χret(t)] , (4.33)

where we have traced over the reservoir. From this point on the derivation is straight-
forward and we eventually obtain the master equation for the cascaded cavity system

ρ̇ret = − i
~

[Hsys, ρret] +
(
JρretJ

† − 1
2
J†Jρret −

1
2
ρretJ

†J

)
, (4.34)

where the source-retarded density operator, ρret, describes the target subsystem at
time t, and the source subsystem at time t− τ .

Note that in general the system changes very slowly compared to the fast optical
frequencies, therefore the retardation between the source and target can generally
be neglected, apart from the e�ects of the free evolution of the light between the two
cavities which takes place on a timescale of the optical period. This free evolution
introduces a phase factor of eiωτ , where ω is the frequency of the �eld. Thus, in
practice, we do not need to make a unitary transformation, but can simply replace
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4.2 Cascaded systems

the input �eld, Ê(d), in the interaction Hamiltonian of the target (equation (4.22)),
by

Ê(d) = eiωτeiφa

[
Ê(0)− i1

2

√
2κ(1)a1

]
. (4.35)

If we rede�ne φa + ωτ → φa, we formally obtain the same system Hamiltonian,
given by equation (4.30), and the same master equation as before, but without the
retardation of the source,

ρ̇ = − i
~

[Hsys, ρ] +
(
JρJ† − 1

2
J†Jρ− 1

2
ρJ†J

)
. (4.36)

The derivation of the master equation for cascaded systems introduced by Gar-
diner [Gar93] uses a di�erent approach. The full derivation is omitted here, but a
qualitative overview is outlined.2

This alternate approach starts with the quantum Langevin equations for the cav-
ity modes, a1 and a2, of the source and target system, respectively. These equations
are derived in Section 4.1. Similar to before, the time-retarded output �eld of the
source is assumed to be the input, i.e., the noise term of the target system. The equa-
tions for a1 and a2 are combined to form a quantum Langevin equation of the whole
system. This quantum Langevin equation is converted into a quantum Ito stochastic
di�erential equation from which the master equation for the density operator ρ can
be derived. The master equation yields

ρ̇ = − i
~

[HS, ρ] + κ(1)
(
2a1ρa

†
1 − a

†
1a1ρ− ρa†1a1

)
+ κ(2)

(
2a2ρa

†
2 − a

†
2a2ρ− ρa†2a2

)
− 2

√
κ(1)κ(2)

(
[a†2, a1ρ] + [ρa†1, a2]

)
, (4.37)

with HS = Hsource + Htarget. At �rst glance this master equation looks di�erent to
equation (4.36) but it can be rearranged into the same form. Note that in this form
the interaction between the two cavities is totally described in the damping term
(the last line in equation (4.37)), whereas in the previous derivation the interaction
is described by the system Hamiltonian plus, via the collective damping of the atoms,
by the collective operator J .

4.2.2 Coherently driven cascaded systems

We consider now a coherent input into the source subsystem, corresponding to the
irradiation of the source with a laser. As already described in Section 2.5.2, the
coherent input �eld can be treated classically. The Hamiltonian for the interaction
between the cavity mode a and the classical input �eld is typically written as

Hdriv = ~
(
E∗eiωpta+ Ee−iωpta†

)
, (4.38)

2For more details, consult [GZ04].
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4. Advanced Topics in Cavity QED

with frequency of the input �eld ωp and a complex �eld amplitude E . Note that in
this notation, the factor

√
2κ, which appears, for example, in equations (4.21) and

(4.22), is absorbed in the complex �eld amplitude E .
After this recapitulation of how to describe a single coherently driven cavity, we

now have to have a closer look at how a coherent input �eld drives a cascaded cavity
system. Clearly the coherent light couples into the source cavity and drives the
cavity mode a1, which can be described by equation (4.38). The �eld coupling into
the target system now consists of two parts: �rstly, the output of the source plus
the reservoir (which is described by the cascaded system formalism without driving),
and secondly the coherent input �eld E(d) which does not couple into the source
but is re�ected to the target system. Thus the target is also directly driven by the
coherent input �eld, with the addition of the phase factor eiφa with respect to the
input �eld, E(0), at the source, i.e., E(d) = eiφaE(0). This phase factor is due to the
re�ection at the mirror of the source cavity and the free evolution between source
and target.

The Hamiltonian for the driven system, Hdriv
sys , can now be written as

Hdriv
sys = Hsys + ~

(
E∗eiωpta1 + Ee−iωpta†1

)
+ ~

√
κ(2)

κ(1)

(
E∗e−iφaeiωpta2 + Eeiφae−iωpta†2

)
, (4.39)

where the factor
√

κ(2)

κ(1) accounts for the notation in which κ(1) is absorbed in the
complex �eld amplitude E , and Hsys is the Hamiltonian of the non-driven system
given by equation (4.30). The �rst driving term on the RHS of equation (4.39)
describes the driving of the source and the second the driving of the target.

For deriving the master equation of the driven cascaded system we use the same
argumentation as in Section 3.3.2, that the driving laser mode is included in the
system Hamiltonian rather than in the reservoir, and that the remaining reservoir
modes have a zero mean amplitude (as in our original derivation of the master equa-
tion). Therefore the master equation for the driven cascaded system can be derived
in the same way as the non-driven cascaded master equation, only with the system
Hamiltonian Hsys replaced by the driven system Hamiltonian Hdriv

sys . The master
equation for the driven cascaded system reads

ρ̇ = − i
~

[Hdriv
sys , ρ] +

(
JρJ† − 1

2
J†Jρ− 1

2
ρJ†J

)
, (4.40)

where J is the jump operator (4.32).

4.2.3 Cascaded systems consisting of two-mode cavities

The single two-mode cavity has already been described in Section 3.3, where we
assumed that the system consisted of two counter-propagating cavity modes and a
possible interaction between these modes. This is described by the Hamiltonian,

H = ~ω(a†a+ b†b) + ~(ha†b+ h∗b†a) , (4.41)
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4.2 Cascaded systems

where ω is the cavity frequency, a and b the counter-propagating cavity modes and
h a complex coupling constant.

Let us initially ignore the interaction between the two modes (setting h = 0).
In this case the counter-propagating modes in a single cavity are completely inde-
pendent, and the coupling of the two cavities can be separately considered for the
a modes, travelling clockwise, and for the b modes, travelling anti-clockwise. The
coupling, in the case of the a modes, has already been derived in Section 4.2.1. In the
same manner, the coupling for the b modes can be incorporated. The only di�erence
is that for the b modes the former source becomes the target and vice versa � the
modes b1 and b2 are travelling in the opposite direction. This eventually leads to the
system Hamiltonian

Hsys = H1 +H2 +H12 , (4.42)

with

H1 = ~ω1(a†1a1 + b†1b1) , (4.43)

H2 = ~ω2(a†2a2 + b†2b2) , (4.44)

H12 = i~
√
κ(1)κ(2)(e−iφaa†1a2 − eiφaa†2a1)

+ i~
√
κ(1)κ(2)(e−iφbb†2b1 − e

iφbb†1b2) , (4.45)

where H1 describes the �rst cavity, H2 the second cavity, and H12 the coupling
between the two cavities. Included is a phase factor, e−iφb , due to re�ection at the
cavity mirror and the free evolution of the light from cavity 2 to cavity 1. Comparing
H12 with the interaction term in equation (4.30), we see that there is an additional
term describing a unidirectional coupling from cavity 2 to cavity 1 due to the b
modes, which are travelling in the opposite direction to the a modes.

The master equation for the cascaded system consisting of two-mode cavities is
then

ρ̇ = −i [Hsys, ρ] + (JaρJ†a −
1
2
J†aJaρ−

1
2
ρJ†aJa)

+ (JbρJ
†
b −

1
2
J†bJbρ−

1
2
ρJ†bJb) , (4.46)

with jump operators

Ja =
√

2κ(1)a1 + e−iφa

√
2κ(2)a2 , (4.47)

Jb =
√

2κ(2)b2 + e−iφb

√
2κ(1)b1 . (4.48)

If we turn on the interaction between the two counter-propagating modes in each
cavity (i.e., h 6= 0), the coupling between the two cavities no longer consists of two
independent, unidirectional couplings for the a and b modes, respectively. Therefore,
we cannot use the unitary transformation � equation (4.24) � in deriving the master
equation. Nevertheless, as mentioned in the note below the master equation with
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retardation of the source, equation (4.34), for a slow change of the system state
(compared to the optical frequency), i.e., a small coupling h between the counter-
propagating modes, the retardation is negligible, apart from a phase factor. Therefore
we do not need to unitarily transform the system but can simply account for the
e�ects of the time delay between the two cavities by writing the input �elds for
the interaction of the cavities with the reservoir in the manner of equation (4.35).
From that point on, we can derive the master equation in the same way as before,
eventually obtaining the same master equation as equation (4.46), i.e.,

ρ̇ = −i [Hsys, ρ] + (JaρJ†a −
1
2
J†aJaρ−

1
2
ρJ†aJa)

+ (JbρJ
†
b −

1
2
J†bJbρ−

1
2
ρJ†bJb) , (4.49)

where the system Hamiltonian is

Hsys = H1 +H2 +H12 , (4.50)

with

H1 = ~ω1(a†1a1 + b†1b1) + ~(h1a
†
1b1 + h∗1b

†
1a1) , (4.51)

H2 = ~ω2(a†2a2 + b†2b2) + ~(h2a
†
2b2 + h∗2b

†
2a2) , (4.52)

H12 = i~
√
κ(1)κ(2)(e−iφaa†1a2 − eiφaa†2a1)

+ i~
√
κ(1)κ(2)(e−iφbb†2b1 − e

iφbb†1b2) . (4.53)

This form now includes the interaction between the counter-propagating cavity
modes.
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Chapter 5

Spontaneous Emission in a

Cascaded System

In the previous chapter the theory for describing cascaded systems was developed.
We can now apply this theory to investigate the spontaneous emission of a cascaded
system consisting of two toroids with a single atom coupled to each of them. We
are, in particular, interested in the emission spectrum of the system when one atom
is initially excited. The excited atom will eventually decay and light will be emitted.
This is a non-stationary process.

In the �rst section we will outline the theoretical description. In the second, we
will restrict ourself to the so-called �bad-cavity� regime where we are able to make
certain simplifying assumptions and derive analytical expressions for the emission
spectrum. These results will be compared to numerical calculations. In the third
section we will brie�y describe two special cases, namely a system where an atom
is coupled to only one of the toroids and one consisting of only one toroid and a
coupled atom. We will derive emission spectra in the bad-cavity regime for these
simpler systems and compare them to the more complex case. In the fourth section,
we will adiabatically eliminate the cavity modes in the bad-cavity limit and derive
the associated master equation and its implications. Finally, in section �ve we will
investigate the emission spectrum of our system in the so-called �strong-coupling�
regime. This regime is of particular interest for future applications in quantum
information where strong coupling between the atom and the photon is required.

5.1 The theoretical model

We want to investigate the system of two coupled microtoroids shown in Figure 5.1.
The microresonators, described in Section 2.5.1, are connected via an optical �bre.
The two counter-propagating WGMs, with annihilation operators a and b, couple to
this �bre by the rate κex. Also, light can be lost out of the toroid and not be coupled
back into the �bre, e.g., due to imperfections in the toroid. This intrinsic loss is
described by the rate κi. An atom, with spontaneous emission rate γ, is coupled
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ain bin

bout aoutκex κex
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toroid 1 toroid 2

atom atom

Figure 5.1: Schematic of a cascaded microtoroid system.

to each toroid via the evanescent �eld of the intracavity modes, with atom-cavity
coupling constant g.

5.1.1 Hamiltonian and master equation

The master equation for a cascaded two-mode cavity system was derived in Section
4.2.3. We have to incorporate the intrinsic loss channels and the atoms (which couple
to the toroids) in order to describe the system we are dealing with in this chapter.
This can be done in an analogous way to the single-toroid case of Section 3.3.1.
The atoms are considered to be two-level atoms, described by raising and lowering
operators σ± and the transition frequency ωA.

With the additional terms included, the Hamiltonian can be written in the form

H = H1 +H2 +H12 , (5.1)

where H1 describes the �rst cavity, H2 the second cavity and H12 the coupling
between the two cavities via the �bre. In their most general form these di�erent
parts read1

H1 = ωC1(a†1a1 + b†1b1) + (h1a
†
1b1 + h∗1b

†
1a1)

+ ωA1σ
+
1 σ
−
1 + (g∗1a

†
1σ
−
1 + g1σ

+
1 a1) + (g1b

†
1σ
−
1 + g∗1σ

+
1 b1) , (5.2)

H2 = ωC2(a†2a2 + b†2b2) + (h2a
†
2b2 + h∗2b

†
2a2)

+ ωA2σ
+
2 σ
−
2 + (g∗2a

†
2σ
−
2 + g2σ

+
2 a2) + (g2b

†
2σ
−
2 + g∗2σ

+
2 b2) , (5.3)

H12 = i

√
κ

(1)
ex κ

(2)
ex (e−iφaa†1a2 − eiφaa†2a1)

+ i

√
κ

(1)
ex κ

(2)
ex (e−iφbb†2b1 − e

iφbb†1b2) , (5.4)

1From here on we set ~ = 1.
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where ω1 and ω2 are the cavity mode frequencies, h1 and h2 the coupling strengths
between the two counter-propagating modes in each toroid, g1 and g2 the atom-
cavity coupling constants, and e±iφa and e±iφb phase factors taking into account the
distance the light has to travel between the two cavities.

The master equation for the system now reads,

ρ̇ = −i [H, ρ] + (JaρJ†a −
1
2
J†aJaρ−

1
2
ρJ†aJa) + (JbρJ

†
b −

1
2
J†bJbρ−

1
2
ρJ†bJb)

+ κ
(1)
i (2a1ρa

†
1 − a

†
1a1ρ− ρa†1a1) + κ

(1)
i (2b1ρb

†
1 − b

†
1b1ρ− ρb

†
1b1)

+ κ
(2)
i (2a2ρa

†
2 − a

†
2a2ρ− ρa†2a2) + κ

(2)
i (2b2ρb

†
2 − b

†
2b2ρ− ρb

†
2b2)

+
γ1

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
γ2

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 ) , (5.5)

with jump operators

Ja =
√

2κ(1)
ex a1 + e−iφa

√
2κ(2)

ex a2 , (5.6)

Jb =
√

2κ(2)
ex b2 + e−iφb

√
2κ(1)

ex b1 . (5.7)

This master equation has three di�erent loss channels: A term describing the damp-
ing of the cavity modes into the �bre (κex), an intrinsic loss channel for each cavity
mode (κi) and a damping (free space spontaneous emission) term for each of the
atoms (γ).

5.1.2 Separation of the Liouvillian

We want to calculate the emission spectrum for the initial state where only one
atom is excited with the other in the ground state. Usually the emission spectrum is
calculated by evaluating autocorrelation functions (of the form shown in equations
(5.28)-(5.31)) with a dependency on two times. In the case of only one photon
excitation, however, it is possible to factorize the two-time correlation functions and
derive a simpler expression for the emission spectrum. We will follow closely the
derivation of Carmichael [Car08, Chap. 13].

We start by separating the Liouvillian, L, of the master equation, ρ̇ = Lρ, into
two parts, one acting on the one-energy-quantum subspace and the other generating
transitions to the ground state. The master equation is then written as2

ρ̇ = (C +D)ρ , (5.8)

2There is a close connection between this derivation and Quantum Trajectory Theory. Exactly
the same separation is done in Quantum Trajectory Theory, where the superoperator C governs
the evolution of the system between the quantum jumps and the superoperator D executes the
quantum jump. In the case of single-photon excitation, the system will be in the ground state after
a quantum jump and no more evolution will take place. Unfortunately, a more detailed description
of the Quantum Trajectory Theory is beyond the scope of this text, but the interested reader is
referred to [Car08].
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with C including the terms that act within the subspace of one-energy quantum and
D the terms that generate transitions to the ground state, i.e.,

C = −i [H, ·]− 1
2
[
J†aJa, ·

]
+
− 1

2
[
J†aJa, ·

]
+

− κ(1)
i

[
a†1a1 + b†1b1, ·

]
+
− κ(2)

i

[
a†2a2 + b†2b2, ·

]
+

− γ1

2
[
σ+

1 σ
−
1 , ·
]
+
− γ2

2
[
σ+

2 σ
−
2 , ·
]
+
, (5.9)

and

D = (Ja · J†a) + (Jb · J†b ) + 2κ(1)
i (a1 · a†1) + 2κ(1)

i (b1 · b†1)

+ 2κ(2)
i (a2 · a†2) + 2κ(2)

i (b2 · b†2)
+ γ1(σ−1 · σ

+
1 ) + γ2(σ−2 · σ

+
2 ) . (5.10)

[·, ·]+ denotes the anti-commutator. The initial density operator, with only atom 1
excited, reads

ρ(0) = (|e〉〈e|)A1(|g〉〈g|)A2(|0〉〈0|)a1(|0〉〈0|)b1(|0〉〈0|)a2(|0〉〈0|)b2 . (5.11)

For times t > 0 a photon has either been emitted, with the probability Pspon, and
the system is in the ground state,

|G〉 = |g〉A1 |g〉A2 |0〉a1 |0〉b1 |0〉a2 |0〉b2 , (5.12)

or no photon has been emitted and the system is still in the one-energy-quantum
subspace described by the pure state

|ψ̄(t)〉 = α(t)|eg0000〉+ ξ(t)|ge0000〉+ β(t)|gg1000〉
+ δ(t)|gg0100〉+ γ(t)|gg0010〉+ η(t)|gg0001〉 , (5.13)

with α(t) and ξ(t) the probability amplitudes for the excitation of atoms 1 and 2,
respectively, β(t) the probability amplitude for the excitation of cavity mode a1 and
so on. Thus, the density operator decomposes into two parts for t > 0

ρ(t) = ρ0(t) + ρ1(t) , (5.14)

with

ρ0(t) = Pspon(t)|G〉〈G| , (5.15)

ρ1(t) = |ψ̄(t)〉〈ψ̄(t)| . (5.16)

This decomposition of the density operator separates the master equation into two
solvable pieces

ρ̇1(t) = Cρ1 , (5.17)

ρ̇0(t) = Dρ1 . (5.18)
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From the second equation we get a di�erential equation for the probability Pspon(t):

d

dt
Pspon(t) = 〈G|ρ̇0(t)|G〉

= 2κ(1)|β(t)|2 + 2κ(1)|δ(t)|2 + 2κ(2)|γ(t)|2 + 2κ(2)|η(t)|2

+ γ1|α(t)|2 + γ2|ξ(t)|2 , (5.19)

with κ(1) = κ
(1)
i + κ

(1)
ex and κ(2) = κ

(2)
i + κ

(2)
ex . Then since the density operator ρ1(t)

describes a pure state, the �rst equation yields a non-unitary Schrödinger equation
for the quantum state |ψ̄(t)〉,

d

dt
|ψ̄(t)〉 = −iHNH|ψ̄(t)〉 , (5.20)

where the non-Hermitian Hamiltonian, HNH, is

HNH = H − i1
2
(
J†aJa + J†bJb + 2κ(1)

i a†1a1 + 2κ(1)
i b†1b1

+ 2κ(2)
i a†2a2 + 2κ(2)

i b†2b2 + γ1σ
+
1 σ
−
1 + γ2σ

+
2 σ
−
2

)
. (5.21)

This Schrödinger equation leads to a system of coupled di�erential equations for the
probability amplitudes:

α̇ =
(
−iωA1 −

γ1

2

)
α− ig1β − ig∗1δ , (5.22)

ξ̇ =
(
−iωA2 −

γ2

2

)
ξ − ig2γ − ig∗2η , (5.23)

β̇ = −ig∗1α+
(
−iωC1 − κ(1)

)
β − ih1δ , (5.24)

δ̇ = −ig1α− ih∗1β +
(
−iωC1 − κ(1)

)
δ − 2

√
κ

(1)
ex κ

(2)
ex e

iφbη , (5.25)

γ̇ = −ig∗2ξ − 2
√
κ

(1)
ex κ

(2)
ex e

iφaβ +
(
−iωC2 − κ(2)

)
γ − ih2η , (5.26)

η̇ = −ig2ξ − ih∗2γ +
(
−iωC2 − κ(2)

)
η . (5.27)

We will see in the next section that the emission spectrum can be expressed in terms
of these probability amplitudes. Thus, we have to solve the di�erential equations
(5.22)-(5.27), from which we compute the emission spectrum.

5.1.3 The emission spectrum

The property we are interested in, in particular, is the emission spectrum. The
spontaneous emission is a non-stationary process. Its spectrum can be computed,
in general, from double integrals over two-time correlation functions. In the present
case, we can divide the emission into two parts. First, the emission of light �out
of the sides� of the cavity (following the nomenclature of a standard cavity). This
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emission consists of the spontaneous emission of the atoms to modes other than
the cavity modes (spectrum denoted by Tside,σ) � i.e., the emission of light by the
atoms into free space � and the emission of light due to scattering of the WGMs
(spectrum denoted by Tside,modes). Second, the emission from the toroids into the
�bre (spectrum denoted by Taxis), which we will call the emission �along the axis� of
the cavity.

The spectrum out of the sides of the cavity is determined by

T
(j)
side,σ(ω) =

γj
2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)〈σ+
j (t)σ−j (t′)〉 , (5.28)

T
(j)
side,modes(ω) =

κ
(j)
i

π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)
(
〈a†j(t)aj(t

′)〉+ 〈b†j(t)bj(t
′)〉
)
,

(5.29)

where the index j stands for either cavity 1 or cavity 2, and the spectrum along the
cavity axis is determined by

Taxis,aout(ω) =
1

2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)〈a†out(t)aout(t′)〉 , (5.30)

Taxis,bout(ω) =
1

2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)〈b†out(t)bout(t′)〉 , (5.31)

where the indices aout and bout denote the di�erent directions of propagation in the
�bre, due to the di�erent directions of propagation of the a and b modes in the cavity.
The normalization in these expressions has been chosen so that the probabilities of a
photon being eventually emitted out of the sides of the cavities, Pside(∞), and along
the cavity axis, Paxis(∞), sum to unity, i.e.,

Pside(∞) + Paxis(∞) = 1 , (5.32)

with the probabilities determined by

Pside =
∫ ∞
−∞

dωTside(ω) , (5.33)

Paxis =
∫ ∞
−∞

dωTaxis(ω) . (5.34)

The output operators were derived in Section 4.1 via the input-output formalism.
They read

aout(t) = −ain(t) + Ja(t) , (5.35)

bout(t) = −bin(t) + Jb(t) , (5.36)

where the inputs, ain and bin, correspond to vacuum noise.
We will now determine the autocorrelation functions, where we derive, to provide

one explicit example, an expression for the correlation function 〈σ+
1 (t)σ−1 (t′)〉 in terms
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of the probability amplitudes.3 The other correlation functions are derived in the
same way and only the results will be stated.

Using equation (3.47), from the quantum regression formula we �nd, for t′ ≥ t,

〈σ+
1 (t)σ−1 (t′)〉 = Tr

[
σ−1 e

(C+D)(t′−t)(ρ(t)σ+
1 )
]
. (5.37)

The term ρ(t)σ+
1 in the trace can be replaced by

ρ(t)σ+
1 = α∗(t)|ψ̄(t)〉〈G| , (5.38)

where we have used equations (5.13)-(5.16). The next step is to analyse how the
exponential function in the trace acts on |ψ̄(t)〉〈G|. For this purpose we examine the
e�ects of C and D, which, by using (5.9) and (5.10), yield

C
(
|ψ̄(t)〉〈G|

)
=
(
−iHNH|ψ̄(t)〉

)
〈G| , (5.39)

D
(
|ψ̄(t)〉〈G|

)
= 0 . (5.40)

Thus we �nd (with t′ ≥ t)

e(C+D)(t′−t)|ψ̄(t)〉〈G| =
(
e−iHNH(t′−t)|ψ̄(t)〉

)
〈G|

= |ψ̄(t′)〉〈G| , (5.41)

where the state |ψ̄(t′)〉 denotes the state |ψ̄(t)〉 propagated forward in time under
the Schrödinger equation (5.20). With these results we are �nally able to express
the correlation function in term of probability amplitudes

〈σ+
1 (t)σ−1 (t′)〉 = α∗(t)tr

[
|ψ̄(t′)〉〈G|

]
= α∗(t)α(t′) . (5.42)

Through this particular derivation, this result is only valid for t′ ≥ t, but with the
relation

〈σ+
1 (t)σ−1 (t′)〉 = 〈σ+

1 (t′)σ−1 (t)〉∗ , (5.43)

it also holds for t′ < t.
Substituting equation (5.43) into equation (5.28), we arrive at a simple expression

for the spontaneous emission spectrum out of the side of the cavity of atom 1, namely

T
(1)
side,σ(ω) =

γ1

2π

∣∣∣∣∫ ∞
0

dt eiωtα(t)
∣∣∣∣2 . (5.44)

3This is only possible because of the decomposition of ρ(t) shown in equation (5.14). In general
we would need to derive a set of di�erential equations for the correlation functions via the quantum
regression theorem (equations (3.50)-(3.52)) and solve this set of equations.
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5. Spontaneous Emission in a Cascaded System

The other emission spectra can be derived in an analogous way. They are, for the
emission out of the side of the cavity,

T
(2)
side,σ(ω) =

γ2

2π

∣∣∣∣∫ ∞
0

dt eiωtξ(t)
∣∣∣∣2 , (5.45)

T
(1)
side,mode(ω) =

κ
(1)
i

π

∣∣∣∣∫ ∞
0

dt eiωtβ(t)
∣∣∣∣2 +

κ
(1)
i

π

∣∣∣∣∫ ∞
0

dt eiωtδ(t)
∣∣∣∣2 , (5.46)

T
(2)
side,mode(ω) =

κ
(2)
i

π

∣∣∣∣∫ ∞
0

dt eiωtγ(t)
∣∣∣∣2 +

κ
(2)
i

π

∣∣∣∣∫ ∞
0

dt eiωtη(t)
∣∣∣∣2 , (5.47)

and for the emission along the axis of the cavity,

Taxis,aout(ω) =
κ

(1)
ex

π

∣∣∣∣∫ ∞
0

dt eiωtβ(t)
∣∣∣∣2 +

κ
(2)
ex

π

∣∣∣∣∫ ∞
0

dt eiωtγ(t)
∣∣∣∣2

+

√
κ

(1)
ex κ

(2)
ex

π
e−iφa

∫ ∞
0

dt e−iωtβ∗(t)
∫ ∞

0
dt′ eiωt

′
γ(t′)

+

√
κ

(1)
ex κ

(2)
ex

π
eiφa

∫ ∞
0

dt e−iωtγ∗(t)
∫ ∞

0
dt′ eiωt

′
β(t′) , (5.48)

Taxis,bout(ω) =
κ

(1)
ex

π

∣∣∣∣∫ ∞
0

dt eiωtδ(t)
∣∣∣∣2 +

κ
(2)
ex

π

∣∣∣∣∫ ∞
0

dt eiωtη(t)
∣∣∣∣2

+

√
κ

(1)
ex κ

(2)
ex

π
eiφb

∫ ∞
0

dt e−iωtδ∗(t)
∫ ∞

0
dt′ eiωt

′
η(t′)

+

√
κ

(1)
ex κ

(2)
ex

π
e−iφb

∫ ∞
0

dt e−iωtη∗(t)
∫ ∞

0
dt′ eiωt

′
δ(t′) . (5.49)

The special initial condition with the system in a one-energy-quantum state made
it possible to decompose the density operator into two parts consisting of pure states.
In turn, this made it possible to use a Schrödinger equation rather than a master
equation, and express the system evolution in terms of probability amplitudes for
the one-energy-quantum excitations. This eventually lead to the factorization of the
two-time correlation functions and enabled the replacement of the two-time integrals
by simpler one-time integrals over the probability amplitudes.

5.2 Bad-cavity limit � analytical & numerical investiga-

tions

We saw in the previous section that the emission spectra can be computed by integrals
over the probability amplitudes for the one-energy-quantum excitation states shown
by equations (5.44)-(5.49). Hence we have to solve the set of di�erential equations
for the probability amplitudes given by equations (5.22)-(5.27) in order to be able
to determine the emission spectra. For the general case, solving these equations

46



5.2 Bad-cavity limit � analytical & numerical investigations

analytically becomes cumbersome and no further insight is achieved. If we want
to derive manageable analytical results, certain simplifying assumptions have to be
made.

5.2.1 The bad-cavity regime

The bad-cavity regime is characterized by a very high cavity damping rate, κ, which
exceeds all other system rates, e.g., the spontaneous emission rate, γ, and the cou-
pling rate between the atom and cavity, g, i.e.

κ� γ, g . (5.50)

Due to the high cavity loss rate, the cavity modes decay on a much faster timescale
than the timescale on which the atomic state is signi�cantly changed. This enables
us to adiabatically eliminate the cavity modes.

5.2.2 Adiabatic elimination of the cavity modes

In order to eliminate the cavity modes we transform the set of di�erential equations
for the probability amplitudes, equations (5.22)-(5.27), to a frame that rotates at the
atomic frequency ωA1 . This ensures that κ is much larger than all other parameters.
Then we can set the time derivatives of the probability amplitudes for the excited
cavity modes, equations (5.24)-(5.27), to zero and solve these equations in steady
state. The solutions for the cavity �eld modes can then be used to �nally solve the
di�erential equations for the probability amplitudes for the excited atoms.

The transformation to the rotating frame is done by the following substitutions:

α′ = αeiωA1
t, β′ = βeiωA1

t, δ′ = δeiωA1
t ,

ξ′ = ξeiωA1
t, γ′ = γeiωA1

t, η′ = ηeiωA1
t . (5.51)

Hence, the system of di�erential equations in the rotating frame reads,

α̇′ = −γ1

2
α′ − ig1β

′ − ig∗1δ′ , (5.52)

ξ̇′ =
(
−i(ωA2 − ωA1)− γ2

2

)
ξ′ − ig2γ

′ − ig∗2η′ , (5.53)

β̇′ = −ig∗1α′ +
(
−i∆ω1 − κ(1)

)
β′ − ih1δ

′ , (5.54)

δ̇′ = −ig1α
′ − ih∗1β′ +

(
−i∆ω1 − κ(1)

)
δ′ − 2

√
κ

(1)
ex κ

(2)
ex e

iφbη′ , (5.55)

γ̇′ = −ig∗2ξ′ − 2
√
κ

(1)
ex κ

(2)
ex e

iφaβ′ +
(
−i∆ω2 − κ(2)

)
γ′ − ih2η

′ , (5.56)

η̇′ = −ig2ξ
′ − ih∗2γ′ +

(
−i∆ω2 − κ(2)

)
η′ , (5.57)

with ∆ω1 = ωC1 − ωA1 and ∆ω2 = ωC2 − ωA1 . We can now set the time derivative
of equations (5.54)-(5.57) to zero, on the grounds mentioned above, from which we
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5. Spontaneous Emission in a Cascaded System

obtain the following set of equations:

0 = −ig∗1α′ +
(
−i∆ω1 − κ(1)

)
β′ − ih1δ

′ , (5.58)

0 = −ig1α
′ − ih∗1β′ +

(
−i∆ω1 − κ(1)

)
δ′ − 2

√
κ

(1)
ex κ

(2)
ex e

iφbη′ , (5.59)

0 = −ig∗2ξ′ − 2
√
κ

(1)
ex κ

(2)
ex e

iφaβ′ +
(
−i∆ω2 − κ(2)

)
γ′ − ih2η

′ , (5.60)

0 = −ig2ξ
′ − ih∗2γ′ +

(
−i∆ω2 − κ(2)

)
η′ . (5.61)

These equations have to be solved with respect to α′ and ξ′.

Simplifying assumptions

The equations above are quite complicated in terms of the many di�erent indices.
Let us therefore take the two cavities to be identical so that we can simplify the
equations and obtain analytical solutions. This is a reasonable assumption, because
in experiments cavities with equal properties are commonly used. In particular we
set

ωC1 = ωC2 =: ωC , ωA1 = ωA2 =: ωA , (5.62)

κ(1) = κ(2) =: κ , with κi ≈ 0 , and hence κ ≈ κex , (5.63)

g1 = g2 =: g ∈ R . (5.64)

Furthermore, we assume that the counter-propagating modes do not interact with
each other and set the phase factors to zero (corresponding to choosing a speci�c
distance between the toroids):

h1 = h2 = 0 , φa = φb = 0 . (5.65)

With these assumptions we obtain

0 = gα′ + (∆ω − iκ)β′ , (5.66)

0 = gα′ + (∆ω − iκ) δ′ − 2iκη′ , (5.67)

0 = gξ′ − 2iκβ′ + (∆ω − iκ) γ′ , (5.68)

0 = gξ′ + (∆ω − iκ) η′ , (5.69)

with solutions

η′ = − g

∆ω − iκ
ξ′ , (5.70)

γ′ = − g

∆ω − iκ
ξ′ − 2iκg

(∆ω − iκ)2
α′ , (5.71)

δ′ = − 2iκg
(∆ω − iκ)2

ξ′ − g

∆ω − iκ
α′ , (5.72)

β′ = − g

∆ω − iκ
α′ , (5.73)
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Substituting these expressions into equations (5.52) and (5.53), the di�erential equa-
tions for the atomic probability amplitudes yield

α̇′ =

(
−γ

2
+ 2i

g2

∆ω − iκ

)
α′ − 2κg2

(∆ω − iκ)2
ξ′ , (5.74)

ξ̇′ = − 2κg2

(∆ω − iκ)2
α′ +

(
−γ

2
+ 2i

g2

∆ω − iκ

)
ξ′ . (5.75)

We assume now that only the atom in cavity 1 is initially excited, and hence have
to solve this set of di�erential equations for the initial values α(0) = 1 and ξ(0) = 0.
In the non-rotating frame, the resulting solutions for the probability amplitudes for
the atoms are

α(t) = α′(t) · e−iωAt =
1
2

(
e(λ1−iωA)t + e(λ2−iωA)t

)
, (5.76)

ξ(t) = ξ′(t) · e−iωAt =
1
2

(
e(λ1−iωA)t − e(λ2−iωA)t

)
, (5.77)

with eigenvalues

λ1 = −γ
2
− 4g2 κ∆ω2

(∆ω2 + κ2)2
+ 2ig2 ∆ω(∆ω2 − κ2)

(∆ω2 + κ2)2
, (5.78)

λ2 = −γ
2
− 4g2 κ3

(∆ω2 + κ2)2
+ 2ig2 ∆ω(∆ω2 + 3κ2)

(∆ω2 + κ2)2
. (5.79)

The probability amplitudes are exponentially decaying.

5.2.3 Analytical results

We eventually obtain for the integrals in equations (5.44) and (5.45)∫ ∞
0

dt eiωtα(t) =
1
2

(
− 1
A+ iB + i(ω − ωA)

− 1
C + iD + i(ω − ωA)

)
, (5.80)∫ ∞

0
dt eiωtξ(t) =

1
2

(
− 1
A+ iB + i(ω − ωA)

+
1

C + iD + i(ω − ωA)

)
, (5.81)

with

A = −γ
2
− 4g2κ∆ω2

(∆ω2 − κ2)2 + (2κ∆ω)2
, (5.82)

B =
2g2∆ω(∆ω2 − κ2)

(∆ω2 − κ2)2 + (2κ∆ω)2
, (5.83)

C = −γ
2
− 4g2κ3

(∆ω2 − κ2)2 + (2κ∆ω)2
, (5.84)

D =
2g2∆ω(∆ω2 − κ2) + 8g2κ2∆ω

(∆ω2 − κ2)2 + (2κ∆ω)2
. (5.85)
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With these results we are �nally able to compute the emission spectrum of the system
given by equations (5.44)-(5.49). The emission spectrum for the atoms out of the
side of the cavity, Tside,σ, follows directly from equations (5.80) and (5.81). The other
emission spectra, Tside,mode and Taxis, are combinations of these two integrals, where
we use the relations (5.70)-(5.73) to rewrite the spectra in terms of these integrals.

5.2.4 Numerical results

We will compare the analytical results which we obtained by adiabatically eliminating
the cavity modes in the bad-cavity regime with numerical results obtained from the
general model, and investigate how accurate the approximation is.

In the general model, the set of di�erential equations for the probability am-
plitudes, equations (5.52)-(5.57), is solved numerically. This is done with Matlab

where an explicit Runge-Kutta method is used to numerically integrate the set of
ordinary di�erential equations for a given initial value. We assume the atom of the
�rst cavity to be initially excited, i.e., α(0) = 1 with all other initial probability
amplitudes equal to zero. The obtained time series for the probability amplitudes
(α(tn)�η(tn)) must then be numerically integrated by way of equations (5.44)-(5.49)
to obtain the emission spectra.

The emission spectra out of the side of the cavity, Tside, and along the axis of
the cavity, Taxis, computed with adiabatic elimination and from the full model, are
shown for di�erent cavity damping rates in Figures 5.2-5.4. These spectra were
calculated for zero detuning between the toroids and atoms (∆ω = 0) and adopting
the assumptions made when adiabatically eliminating the cavity modes, i.e., identical
toroids and no direct coupling between the counter-propagating cavity modes. The
analytical results (5.80) and (5.81) reduce, for zero detuning, to∫ ∞

0
dt eiωtα(t) =

1
2

(
− 1
−γ

2 + i(ω − ωA)
− 1

−γ
2 −

4g2

κ + i(ω − ωA)

)
, (5.86)

∫ ∞
0

dt eiωtξ(t) =
1
2

(
− 1
−γ

2 + i(ω − ωA)
+

1

−γ
2 −

4g2

κ + i(ω − ωA)

)
. (5.87)

In Figure 5.2 the emission spectrum along the axis is plotted for zero atomic
damping (γ = 0). In this case there is no emission out of the side of the cavity,
since both of the potential loss channels (the atomic damping and the internal cavity
damping) are set to zero. It can be seen that for a large cavity damping rate κex, i.e.,
when we are clearly in the bad-cavity regime, the plot from the full model matches
quite well the one with adiabatic elimination, whereas for smaller cavity losses the
results of the two calculations start to deviate. With the adiabatic elimination, the
emission along the axis (Taxis,aout and Taxis,bout) is the same for both directions, but
for the full model there is more light emitted in the direction of the b modes than
of the a modes. Also, the adiabatic model can not explain the features (sharp peak
or dip respectively on top of the broad curves of Taxis) which are caused by either
spontaneous emission of the atoms (γ) (Figure 5.3) or internal cavity losses (κi)
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Figure 5.2: Emission spectra Taxis,aout and Taxis,bout as a function of frequency for
two di�erent cavity damping rates, κex = 800 (left) and κex = 300 (right). The
emission spectra are obtained from the full model (thick lines) and with adiabatic
elimination (thin lines). With adiabatic elimination, the emission spectra Taxis,aout

and Taxis,bout completely coincide. The atomic decay rate and the internal cavity
decay are set to zero (γ = 0, κi = 0) and therefore there is no emission out of the
side of the cavity (Tside = 0). The other parameters are g = 50, h = 0 and ∆ω = 0.
For the damping rate κex = 800 the emission spectra obtained from the two methods
match quite well.

(Figure 5.4). When one of these loss channels is turned on, light can be emitted out
of the side of the cavities and a sharp peak arises in the emission spectrum Tside,
whose linewidth scales with γ or κi, respectively. The features in the emission along
the axis tend to broaden the larger the damping, γ or κi, gets, i.e., the broader the
emission out of the side of the cavity gets. In the case of a �nite atomic damping rate
γ (Figure 5.3) the dip in Taxis,bout can be explained by the fact that some of the light
can now be emitted by the atom and is therefore simply missing in the spectrum
emitted along the axis. More will be said about these features in Section 5.4.4.

Note that the plots are approximately Lorentzian functions with, in the case
of Taxis, a full width at half maximum of approximately 8g

2

κ . In comparison the
linewidth in the bad-cavity regime for cavity-enhanced spontaneous emission of a
single atom in a single-mode cavity is approximately 2g

2

κ (if the atomic damping γ
is neglected).4 A deviation by a factor two can be explained by having two counter-

propagating modes in the cavity, which yield a linewidth of 4g
2

κ . The remaining factor
of two is a �rst hint for the so-called superradiance [Dic54] where the linewidth for
two atoms is, by a factor of two, larger. More will be said about this in Section 5.4.4.

5.3 Bad-cavity limit � special cases of the general system

In this section we will have a brief look at two obvious and simpler cases of our
general system of two coupled toroids with an atom coupled to each. First, one

4For more information see for example [Car08].
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Figure 5.3: Emission spectra Taxis,aout , Taxis,bout and Tside,total as a function of fre-
quency for two di�erent atomic decay rates, γ = 1 (left column) and γ = 5 (right
column), obtained from the full model and with adiabatic elimination. With adia-
batic elimination, the emission spectra Taxis,aout and Taxis,bout completely coincide.
The other parameters are κex = 500, g = 50, κi = 0, h = 0 and ∆ω = 0.
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(a) κi = 1 (b) κi = 20

Figure 5.4: Emission spectra Taxis,aout , Taxis,bout and Tside,total as a function of
frequency for two di�erent internal cavity decay rates, κi = 1 (left column) and
κi = 20 (right column), obtained from the full model and with adiabatic elimination.
With adiabatic elimination, the emission spectra Taxis,aout and Taxis,bout completely
coincide. The other parameters are κex = 500, g = 50, γ = 0, h = 0 and ∆ω = 0.
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atom can be taken away, thus we end up with two toroids with an atom coupled
to only one of them. Second, an even simpler system is one in which we have one
toroid with one atom. These systems can be described in a similar way to the more
complex one already investigated. We will only give a short overview and state the
results for the integrals that the emission spectra are calculated from in the bad-
cavity regime. Then numerical results for these systems will be compared to the
�full� system (consisting of two toroids with an atom coupled to each of them).

Hereafter, we will refer to the 2-toroids-2-atoms system as 2T2A system, to the
2-toroids-1-atom system as 2T1A system, to the 2-toroids-no-atom system as 2T0A
system and to the 1-toroid-1-atom system as 1T1A system.

5.3.1 2-toroids-1-atom system

We consider the system where an atom is coupled to toroid 1 only. This can be
described by the master equation (5.5) with the parameters g2 and γ2 set to zero.
The separation of the Liouvillian can be done in the same manner as before. The
pure state of the one energy quantum subspace is now

|ψ̄(t)〉 = α(t)|e0000〉+ β(t)|g1000〉+ δ(t)|g0100〉
+ γ(t)|g0010〉+ η(t)|g0001〉 , (5.88)

where there is no probability amplitude ξ since no atom is coupled to the second
toroid. We eventually arrive at the following set of di�erential equations for the
probability amplitudes in the rotating frame:

α̇′ = −γ1

2
α′ − ig1β

′ − ig∗1δ′ , (5.89)

β̇′ = −ig∗1α′ +
(
−i∆ω1 − κ(1)

)
β′ − ih1δ

′ , (5.90)

δ̇′ = −ig1α
′ − ih∗1β′ +

(
−i∆ω1 − κ(1)

)
δ′ − 2

√
κ

(1)
ex κ

(2)
ex e

iφbη′ , (5.91)

γ̇′ = −2
√
κ

(1)
ex κ

(2)
ex e

iφaβ′ +
(
−i∆ω2 − κ(2)

)
γ′ − ih2η

′ , (5.92)

η̇′ = −ih∗2γ′ +
(
−i∆ω2 − κ(2)

)
η′ . (5.93)

Adiabatically eliminating the cavity modes in the bad-cavity regime and assuming
the same simplifying assumptions, we �nd

β′ = δ′ = − g

∆ω − iκ
α′ , (5.94)

γ′ = − 2iκg
(∆ω − iκ)2

α′ , (5.95)

η′ = 0 . (5.96)

Thus, all emission spectra, given by equations (5.44)-(5.49), can be computed from∫ ∞
0

dt eiωtα(t) = − 1
A+ iB + i(ω − ωA)

, (5.97)
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5.3 Bad-cavity limit � special cases of the general system

with

A = −γ
2
− 2κg2

∆ω2 + κ2
, (5.98)

B =
2g2∆ω

∆ω2 + κ2
. (5.99)

5.3.2 1-toroid-1-atom system

We brie�y state the results for the single-toroid system, described by the master
equation

ρ̇ = −i [H1, ρ] + κ(1)(2a1ρa
†
1 − a

†
1a1ρ− ρa†1a1) + κ(1)(2b1ρb

†
1 − b

†
1b1ρ− ρb

†
1b1)

+
γ1

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 ) , (5.100)

with κ(1) = κ
(1)
i + κ

(1)
ex and the Hamiltonian H1 from equation (5.2). This system is

characterized in much detail for the driven case in [ADW+06a, ADW+06b, DPA+08a,
DPA+08b].

Computing the emission spectra can be done in the same way as before. This
time the pure state of the one-energy-quantum subspace is

|ψ̄(t)〉 = α(t)|e00〉+ β(t)|g10〉+ δ(t)|g01〉 , (5.101)

and we arrive at the following set of di�erential equations for the probability ampli-
tudes:

α̇′ = −γ1

2
α′ − ig1β

′ − ig∗1δ′ , (5.102)

β̇′ = −ig∗1α′ +
(
−i∆ω1 − κ(1)

)
β′ − ih1δ

′ , (5.103)

δ̇′ = −ig1α
′ − ih∗1β′ +

(
−i∆ω1 − κ(1)

)
δ′ . (5.104)

Using the same simplifying assumptions as before � except we do not have to set
the coupling between the cavity modes to zero in order to get manageable analytical
results � we adiabatically eliminate the cavity modes and obtain

β′ = δ′ = − g

∆ω − iκ+ h
α′ . (5.105)

Thus, all the emission spectra given by equations (5.44)-(5.49) can be computed from∫ ∞
0

dt eiωtα(t) = − 1
A+ iB + i(ω − ωA)

, (5.106)

with

A = −γ
2
− 2κg2

(∆ω + h)2 + κ2
, (5.107)

B =
2g2(∆ω + h)

(∆ω + h)2 + κ2
. (5.108)

55



5. Spontaneous Emission in a Cascaded System

Note that the results for the probability amplitudes and the result for the integral
(which were derived in the case of a possible coupling between the cavity modes) are
the same as equations (5.94) and (5.97) for the 2T1A system (which were derived in
the case of no coupling between the cavity modes) when the coupling is set to zero.
Hence, it can be seen from equations (5.44)-(5.49) that, in the case of h = 0, the
emission of the atom out of the side of the cavity, T (1)

side,σ, and the emission along
the axis in the direction of the b mode, Taxis,bout , are the same for the 1T1A and the
2T1A system. This does make sense, since the light emitted in the direction of the b
mode does not �see� the second cavity and is therefore not a�ected by it. The same
is valid for the light directly emitted by the atom out of the side of the cavity.

5.3.3 Comparison between the three systems

In Figure 5.5 the emission spectra for the three systems (2T2A, 2T1A and 1T1A)
are plotted. It can be seen that the emission spectra for the 2T1A and the 1T1A
system match quite well, as we would expect (at least for Taxis,bout and T

(1)
side,σ) from

the analytical results. For these two systems more light is emitted along the axis
and less light out of the side of the cavity compared to the 2T2A system. This can
be explained by the fact that in the 2T2A system, we have two atoms which can
emit light out of the side of the toroids via spontaneous emission γ, whereas in the
2T1A and the 1T1A system, it is only one atom. However, the linewidth for the
2T2A system is approximately twice as large as the linewidth of the other systems.
They are given by 8g

2

κ and 4g
2

κ , respectively. The di�erence of a factor of two is
explained by the occurrence of superradiance for the 2T2A system, where the two
atoms can directly communicate (see Section 5.4.4). The linewidth for the 2T1A
and the 1T1A system is due to cavity enhanced spontaneous emission of the atom
(where the full width at half maximum is 2g

2

κ in the simplest case [Car08]) to either
one of the cavity modes, a or b (giving the additional factor of two because of two
decay channels). In the bad-cavity regime, the 2T1A and the 1T1A system are very
similar in terms of the emission spectra. This is because in the 2T1A system the
light which is emitted into the �bre from toroid 1 can hardly couple into the second
toroid [PDAK09]. Hence, the 2T1A system is an e�ective 1T1A system in this case.

5.4 Bad-cavity limit � the adiabatic master equation

In this section another � more fundamental � way of adiabatically eliminating the
cavity modes in the bad-cavity regime will be presented. In this limit the cavity
damping rate, κ, exceeds the atomic spontaneous emission rate, γ, and the coupling
rate between the atom and cavity, g. This means that the characteristic timescale
of the cavity, i.e., the rate of decay of the cavity modes out of the cavity, is much
faster than the timescale of the atom. The aim is to separate the slower varying
behaviour from the fast decay of the cavity modes and to derive a master equation
where the cavity modes have been adiabatically eliminated, i.e., a master equation
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Figure 5.5: Emission spectra Taxis,aout (a), Taxis,bout (b) and Tside,total (c) as a
function of frequency plotted for the three di�erent systems (2T2A, 2T1A and 1T1A)
where the atom (atom 1) is initially excited. The spectra for the 2T1A and the 1T1A
system coincide. The parameters are κex = 500, g = 50, γ = 10, κi = 0, ∆ω = 0 and
h = 0.
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5. Spontaneous Emission in a Cascaded System

which is written only in terms of the atomic operators. This master equation will be
helpful in gaining more insight in the behaviour of the system.

5.4.1 Hamiltonian and master equation

This time the master equation describing our system is written in a slightly di�erent
way. We use the form (4.37) which was derived by Gardiner [GZ04]. A short sketch
of the derivation can be found at the end of Section 4.2.1. In order to be able to
carry out analytical calculations and to obtain some compact expressions we set the
coupling between the cavity modes, h, to zero. In the bad-cavity regime we can
assume κi = 0 and hence κ = κex. For simplicity we also set the phase factors, φa
and φb, to zero. The master equation then reads

ρ̇ = −i [H, ρ] + LCρ+ LAρ , (5.109)

with Hamiltonian

H = HA +HC +HAC , (5.110)

where

HA = ωA(σ+
1 σ
−
1 + σ+

2 σ
−
2 ) , (5.111)

HC = ωC(a†1a1 + b†1b1 + a†2a2 + b†2b2) , (5.112)

HAC = (g∗1a
†
1σ
−
1 + g1σ

+
1 a1) + (g1b

†
1σ
−
1 + g∗1σ

+
1 b1)

+ (g∗2a
†
2σ
−
2 + g2σ

+
2 a2) + (g2b

†
2σ
−
2 + g∗2σ

+
2 b2) . (5.113)

Liouvillians describing the damping read

LCρ = LC(a1, a2)ρ+ LC(b1, b2)ρ , (5.114)

with

LC(a1, a2)ρ = κ1(2a1ρa
†
1 − a

†
1a1ρ− ρa†1a1) + κ2(2a2ρa

†
2 − a

†
2a2ρ− ρa†2a2)

− 2
√
κ1κ2

(
[a†2, a1ρ] + [ρa†1, a2]

)
, (5.115)

LC(b1, b2)ρ = κ1(2b1ρb
†
1 − b

†
1b1ρ− ρb

†
1b1) + κ2(2b2ρb

†
2 − b

†
2b2ρ− ρb

†
2b2)

− 2
√
κ1κ2

(
[b†1, b2ρ] + [ρb†2, b1]

)
, (5.116)

and

LAρ =
γ1

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 ) +

γ2

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 ) .

(5.117)

The master equation (5.109) is the same equation as (5.5), for the parameters as-
sumed above, only with the parts of the equation arranged in a di�erent way. It will
turn out that some of the following calculations are easier when the master equation
is written in this form.
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5.4 Bad-cavity limit � the adiabatic master equation

5.4.2 Adiabatic elimination - theory

In the bad-cavity limit the cavity modes change on a much faster timescale than
any rate of change associated with the atom. The idea then is to treat the cavity
as a reservoir, because the light escapes from it quickly compared to the interaction
time with the atom. Therefore we can trace out the cavity modes to derive a master
equation for the atomic density operator ρA.

The cavity is assumed to be in steady state with the density operator factorized
in the form

ρ = ρss
C ⊗ ρA . (5.118)

We move to an interaction picture de�ned by

ρ̃ = ei(HA+HC)tρe−i(HA+HC)t . (5.119)

Tracing over the cavity modes yields the density operator in the interaction picture
for the atom,

ρ̃A = TrC{ρ̃} . (5.120)

Then following the standard derivation in the Born-Markov approximation (similar
to what was done in Section 3.1, where HA is now the system Hamiltonian and HC

the Hamiltonian for the reservoir) we arrive at

˙̃ρA = −
∫ t

0
dt′TrC{[H̃AC(t), eLC(t−t′)[H̃AC(t′), ρ̃A(t′)⊗ ρ̃C(t′)]]}+ L̃Aρ̃A ,

(5.121)

with

H̃AC(t) = ei(HA+HC)tHACe
−i(HA+HC)t (5.122)

= g∗1a
†
1σ
−
1 (t)eiωCt + g1a1σ

+
1 (t)e−iωCt

+ g1b
†
1σ
−
1 (t)eiωCt + g∗1b1σ

+
1 (t)e−iωCt

+ g∗2a
†
2σ
−
2 (t)eiωCt + g2a2σ

+
2 (t)e−iωCt

+ g2b
†
2σ
−
2 (t)eiωCt + g∗2b2σ

+
2 (t)e−iωCt , (5.123)

and the slowly varying atomic raising and lowering operators

σ±(t) = eiHAtσ±e−iHAt , (5.124)

and where L̃Aρ̃A denotes the atomic damping term in the interaction picture

L̃Aρ̃A =
γ1

2

(
2σ−1 (t)ρ̃A(t)σ+

1 (t)− σ+
1 (t)σ−1 (t)ρ̃A(t)− ρ̃A(t)σ+

1 (t)σ−1 (t)
)

+
γ2

2

(
2σ−2 (t)ρ̃A(t)σ+

2 (t)− σ+
2 (t)σ−2 (t)ρ̃A(t)− ρ̃A(t)σ+

2 (t)σ−2 (t)
)
.

(5.125)
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5. Spontaneous Emission in a Cascaded System

Substituting (5.123) into (5.121) yields

˙̃ρA = −
(
|g1|2

∫ t

0
dt′TrC

[
a1e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

1 (t)σ−1 (t′)ρ̃A(t′)− σ−1 (t′)ρ̃A(t′)σ+
1 (t)

)
+ |g1|2

∫ t

0
dt′TrC

[
a†1e
LC(t−t′)ρ̃ss

C(t′)a1

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

1 (t′)σ−1 (t)− σ−1 (t)ρ̃A(t′)σ+
1 (t′)

)
+ |g2|2

∫ t

0
dt′TrC

[
a2e
LC(t−t′)a†2ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

2 (t)σ−2 (t′)ρ̃A(t′)− σ−2 (t′)ρ̃A(t′)σ+
2 (t)

)
+ |g2|2

∫ t

0
dt′TrC

[
a†2e
LC(t−t′)ρ̃ss

C(t′)a2

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

2 (t′)σ−2 (t)− σ−2 (t)ρ̃A(t′)σ+
2 (t′)

)
+ g∗1g2

∫ t

0
dt′TrC

[
a2e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

2 (t)σ−1 (t′)ρ̃A(t′)− σ−1 (t′)ρ̃A(t′)σ+
2 (t)

)
+ g1g

∗
2

∫ t

0
dt′TrC

[
a†2e
LC(t−t′)ρ̃ss

C(t′)a1

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

1 (t′)σ−2 (t)− σ−2 (t)ρ̃A(t′)σ+
1 (t′)

)
+ . . .

+ b terms
)

+ L̃Aρ̃A . (5.126)

In total we get 4 · 8 · 8 = 254 terms representing all possible combinations of the
operators a†1σ

−
1 , a1σ

+
1 , ... in equation (5.123). These expressions can be further

analysed with the quantum regression theorem of Section 3.2. It turns out that the
terms written explicitly above (and the corresponding terms for the b modes) are the
only ones which do not vanish.

We can relate the traces to two-time correlation functions using equations

〈Ô1(t)Ô2(t+ τ)〉 = Tr
[
Ô2e

Lτ (ρ(t)Ô1)
]
, (5.127)

〈Ô1(t+ τ)Ô2(t)〉 = Tr
[
Ô1e

Lτ (Ô2ρ(t))
]
. (5.128)

Furthermore a system of di�erential equations for these second-order correlation
functions can be derived from equations (3.50)-(3.52). The initial values for solving
this system can be found by assuming the cavity is in the vacuum state; thus, the
only non-zero initial values for the steady state are

〈a1a
†
1〉ss = 〈a2a

†
2〉ss = 〈b1b†1〉ss = 〈b2b†2〉ss = 1 . (5.129)
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5.4 Bad-cavity limit � the adiabatic master equation

In the bad-cavity limit where the cavity damping is very fast this is a reasonable
assumption. After some simple but laborious calculations we �nd for the non-zero
two-time correlation functions in steady state:5

〈a1(t′)a†1(t)〉ss = TrC

[
a1e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
= e(−κ+iωA)(t−t′) , (5.130)

〈a2(t′)a†2(t)〉ss = TrC

[
a2e
LC(t−t′)a†2ρ̃

ss
C(t′)

]
= e(−κ+iωA)(t−t′) , (5.131)

〈a1(t′)a†2(t)〉ss = TrC

[
a2e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
= −2κ(t− t′)e(−κ+iωA)(t−t′) ,

(5.132)

� with 〈a1(t)a†1(t′)〉ss, 〈a2(t)a†2(t′)〉ss and 〈a2(t)a†1(t′)〉ss their complex conjugates �
and similar equations for the b modes. For simplicity we assumed the damping rates
of the two cavities to be the same, i.e., κ1 = κ2 = κ.

Applying these results, from equation (5.126), we obtain

˙̃ρA = −
(
|g1|2

∫ t

0
dt′e(−κ−i∆ω)(t−t′) ·

(
σ+

1 (t)σ−1 (t′)ρ̃A(t′)

− σ−1 (t′)ρ̃A(t′)σ+
1 (t)

)
+ |g1|2

∫ t

0
dt′e(−κ+i∆ω)(t−t′) ·

(
ρ̃A(t′)σ+

1 (t′)σ−1 (t)

− σ−1 (t)ρ̃A(t′)σ+
1 (t′)

)
+ |g2|2

∫ t

0
dt′e(−κ−i∆ω)(t−t′) ·

(
σ+

2 (t)σ−2 (t′)ρ̃A(t′)

− σ−2 (t′)ρ̃A(t′)σ+
2 (t)

)
+ |g2|2

∫ t

0
dt′e(−κ+i∆ω)(t−t′) ·

(
ρ̃A(t′)σ+

2 (t′)σ−2 (t)

− σ−2 (t)ρ̃A(t′)σ+
2 (t′)

)
− g∗1g2

∫ t

0
dt′2κ(t− t′)e(−κ−i∆ω)(t−t′) ·

(
σ+

2 (t)σ−1 (t′)ρ̃A(t′)

− σ−1 (t′)ρ̃A(t′)σ+
2 (t)

)
− g1g

∗
2

∫ t

0
dt′2κ(t− t′)e(−κ+i∆ω)(t−t′) ·

(
ρ̃A(t′)σ+

1 (t′)σ−2 (t)

− σ−2 (t)ρ̃A(t′)σ+
1 (t′)

)
+ b terms

)
+ L̃Aρ̃A . (5.133)

In the Markov approximation we assume that the future evolution of the density
operator is independent of its past and hence replace ρ̃A(t′) by ρ̃A(t). The atomic
operator σ±(t′) is slowly varying compared to the cavity damping rate, κ, so it can
be assumed constant under the integration (and be replaced by σ±(t)). For a large

5The entire calculations can be found in Appendix A.
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κ, i.e., in the limit κt >> 1, the remaining integrals can easily be evaluated as

lim
κt→∞

∫ t

0
dt′e(−κ−i∆ω)(t−t′) =

κ− i∆ω
κ2 + ∆ω2

, (5.134)

lim
κt→∞

∫ t

0
dt′e(−κ+i∆ω)(t−t′) =

κ+ i∆ω
κ2 + ∆ω2

, (5.135)

lim
κt→∞

∫ t

0
dt′2κ(t− t′)e(−κ−i∆ω)(t−t′) =

2κ
(κ+ i∆ω)2

, (5.136)

lim
κt→∞

∫ t

0
dt′2κ(t− t′)e(−κ+i∆ω)(t−t′) =

2κ
(κ− i∆ω)2

, (5.137)

(5.138)

and a compact form of the master equation is obtained.

5.4.3 The master equation

Moving back out of the interaction picture we �nally arrive at the master equation
with the cavity modes adiabatically eliminated,

ρ̇ = −i [H, ρ] +
Γ1

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
Γ2

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 )

+
Π1

2
(2σ−1 ρσ

+
2 − σ

+
2 σ
−
1 ρ− ρσ

+
2 σ
−
1 )

+
Π2

2
(2σ−2 ρσ

+
1 − σ

+
1 σ
−
2 ρ− ρσ

+
1 σ
−
2 ) , (5.139)

with

H = ωA

(
σ+

1 σ
−
1 + σ+

2 σ
−
2

)
+
(
−2

∆ω
κ2 + ∆ω2

)(
|g1|2σ+

1 σ
−
1 +|g2|2σ+

2 σ
−
2

)
+ 4

κ2∆ω
(κ2 −∆ω2)2 + 4κ2∆ω2

(
g∗1g2σ

+
2 σ
−
1 + g1g

∗
2σ

+
1 σ
−
2

)
, (5.140)

Γ1 = γ1 + 4|g1|2
κ

κ2 + ∆ω2
, (5.141)

Γ2 = γ2 + 4|g2|2
κ

κ2 + ∆ω2
, (5.142)

Π1 = −4g∗1g2
κ(κ2 −∆ω2)

(κ2 −∆ω2)2 + 4κ2∆ω2
, (5.143)

Π2 = −4g1g
∗
2

κ(κ2 −∆ω2)
(κ2 −∆ω2)2 + 4κ2∆ω2

. (5.144)

This master equation is unique in the sense that depending on the detuning it either
describes a collective atomic decay, the so-called superradiance, an individual decay
of each atom, or a combination of both. In the following two sections we explic-
itly present the master equations for these two limiting cases and investigate them
further.

62



5.4 Bad-cavity limit � the adiabatic master equation

5.4.4 Collective atomic decay

If we assume the atom-cavity coupling and the atomic damping rates of both atoms
to be equal � i.e., g1 = g2 =: g and γ1 = γ2 =: γ � we obtain Γ1 = Γ2 := Γ and
Π1 = Π2 =: Π. Thus, we can write the master equations for the two limiting cases
in a very compact form by introducing the collective atomic lowering and raising
operators

J± = σ±1 − σ
±
2 . (5.145)

In the case of zero detuning, ∆ω = 0, the Hamiltonian vanishes, apart from the
atomic energy terms. The parameter Γ becomes the negative of Π with the atomic
damping rate, γ, added. The master equation reads

ρ̇ = −i [H, ρ] +
X

2
(2J−ρJ+ − J+J−ρ− ρJ+J−)

+
γ

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
γ

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 ) , (5.146)

with

H = ωA

(
σ+

1 σ
−
1 + σ+

2 σ
−
2

)
, (5.147)

X = 4
g2

κ
. (5.148)

If the natural damping of the atoms is very small (γ ≈ 0) the atoms mainly decay
collectively, as described by the collective atomic operator J . This e�ect is called
superradiance, since the decay rate is larger than the spontaneous decay rate of
the individual atoms.6 It occurs when the atoms can directly �communicate� with
each other because they couple to the same reservoir, e.g., because they are con�ned
within a cubic wavelength or couple through a single mode � the so-called single-
mode model [BSH71]. More information on superradiance can be found, for example,
in [Leh70a, Leh70b, Aga70]. Neglecting the spontaneous emission (γ ≈ 0), the decay
rate is given by X, which corresponds to the full width at half maximum (of the
emission spectrum). This factor, together with the fact that there are two modes in

the cavity that the atom can decay to, explains the linewidth of 8g
2

κ in the bad-cavity
limit mentioned in Section 5.2.4.

Note that we can write the one excited atom state of our system as a superposition
of Bell states,

|ψ+〉 =
1√
2

(|eg〉+ |ge〉) , (5.149)

|ψ−〉 =
1√
2

(|eg〉 − |ge〉) , (5.150)

6Dicke, who was the �rst to investigate a collective spontaneous atomic decay in a gas [Dic54],
spoke of �super-radiant� states due to the �abnormally large spontaneous radiation rates�.
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5. Spontaneous Emission in a Cascaded System

where the �rst entry in the ket vector denotes atom 1 and the second entry atom 2.
Hence, the initial state with one atom excited is

|eg〉 =
1√
2

(|ψ+〉+ |ψ−〉) . (5.151)

We then �nd for the action of the collective atomic operators J±, given by equation
(5.145), on the Bell states:

J+|ψ+〉 = 0 , J−|ψ+〉 = 0 , (5.152)

J+|ψ−〉 =
2√
2
|ee〉 , J−|ψ−〉 =

2√
2
|gg〉 . (5.153)

It follows that the Bell state |ψ+〉 is a dark state, i.e., if we can neglect the spon-
taneous decay, γ, the state does not decay. Instead, the state and the associated
density operator evolves unitarily in time under the Liouville equation

ρ̇ = −i [H, ρ] . (5.154)

In this case the radiation travels back and forth between the atoms, always exciting
them and being emitted again. It is trapped between the atoms until it eventually
leaves the cavity due to the decay of the atom out the sides of the cavity, at rate γ.

Numerical results

We illustrate the behaviour described by the master equation with adiabatic elimina-
tion, discussed in the previous section, by means of numerical results obtained from
the full model by solving equations (5.22)-(5.27). These investigations will enable us
to explain the features which occurred in the numerical solutions of the full model
shown in Figures 5.3 and 5.4.

In Figure 5.6 the evolution of the probabilities α for atom 1 being in the excited
state and ξ for atom 2 being in the excited state are shown for an initial state of
atom 1 being excited (α(0) = 1 and all other initial probability amplitudes zero).
It can be seen that without any possible losses out of the side of the cavity (γ = 0,
κi = 0) the probability for atom 1 being excited rapidly decays from the initial value
of |α|2 = 1 to a constant, non-zero value of |α|2 = 0.25, whereas the probability for
atom 2 being excited increases from the initial value of |ξ|2 = 0 to |ξ|2 = 0.25. Hence,
with the probability P = 0.5 the system is trapped in a state where the photon is
transferred back and forth between the two atoms due to the dark state, and with
the probability Pground = 0.5 the system decays to the ground state due to the decay
of the state |ψ−〉. If we allow for spontaneous emission out of the side of the cavity
(γ 6= 0) the probability for either atom 1 or atom 2 being excited eventually decays
to zero on a timescale of γ−1, i.e., the dark state eventually decays via the additional
loss channel.

In Figure 5.7 the emission spectra are plotted for initial states |ψ(0)〉 = |ψ+〉 and
|ψ(0)〉 = |ψ−〉 with a possible atomic damping of γ = 5. The graphs were once again
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Figure 5.6: Evolution of the probabilities for atom 1 to be excited (α) and for
atom 2 to be excited (ξ), plotted with (γ = 1) and without (γ = 0) a possibly
spontaneous emission of the atoms. Atom 1 is initially excited, the cavity damping
rate is κex = 800 and the other parameters are g = 50, κi = 0, h = 0 and ∆ω = 0.

obtained from the full model. If the system is initially in the dark state, there is
almost no emission along the axis. Instead, almost all the radiation is emitted via
spontaneous emission of the atom out the side of the cavity. The emission probability
(obtained from equations (5.33) and (5.34)) for emission along the axis is Paxis = 0.02
and for emission out of the side of the cavity Pside = 0.98. The small emission along
the axis arises because we are not perfectly in the bad-cavity regime. The broad
linewidth in this case relates to the cavity linewidth, κ, with the sharp dip in the
middle due to the strong emission out of the side of the cavity by the atom in this
frequency range. In contrast, the linewidth of the emission out of the side of the
cavity, which relates to the atomic decay, γ, is very small. For the initial state
|ψ(0)〉 = |ψ−〉, most of the light is emitted along the axis (Paxis = 0.87) and only a
small part is emitted out of the sides of the cavity (Pside = 0.12) due to the small
atomic decay rate, γ. The linewidth of the emission spectra in this case is determined
by the decay rate 4g

2

κ from the master equation (5.146).
The same is true if light is emitted out the side of the cavity by the internal loss,

κi, instead of the atomic damping, γ. In Figure 5.8 the emission spectra are plotted
for an internal loss of κi = 20. In the case of the dark state, |ψ+〉, most of the light is
emitted out of the side of the cavity (Paxis = 0.09 and Pside = 0.91), whereas, in the
case of the state |ψ−〉 most of the light is emitted along the axis (Paxis = 0.89 and
Pside = 0.10). Note that for the dark state, the internal loss causes a very narrow
and high peak for both emissions, Taxis and Tside. For emission Taxis the high peak
occurs on top of the broad cavity linewidth. This is in contrast to the previous case
with γ 6= 0 and κi = 0 (Figure 5.7).

The combination of the graphs for the initial states |ψ+〉 and |ψ−〉 can now
qualitatively describe the features seen on the graphs for an initial state of atom 1

65



5. Spontaneous Emission in a Cascaded System

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−5

ω−ω
A

E
m

is
si

on
 T

ax
is

 

 
T

axis,a
out

T
axis,b

out

−150 −100 −50 0 50 100 150
0

1

2

3

4

5

6

7
x 10

−3

ω−ω
A

E
m

is
si

on
 T

ax
is

 

 
T

axis,a
out

T
axis,b

out

−150 −100 −50 0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ω−ω
A

E
m

is
si

on
 T

si
de

−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−3

ω−ω
A

E
m

is
si

on
 T

si
de

(a) initial state |ψ+〉 (b) initial state |ψ−〉

Figure 5.7: Emission spectra Taxis,aout , Taxis,bout (top row) and Tside,total (bottom
row) as a function of frequency, plotted for the initial state |ψ+〉 (left column) and
|ψ−〉 (right column) in the case of spontaneous emission, γ = 5. Taxis,aout and
Taxis,bout coincide. The other parameters are κex = 500, g = 50, κi = 0, h = 0 and
∆ω = 0.

being excited (Figures 5.3 and 5.4). Especially the sharp peak on top of the broad
emission for Taxis, in the case of a �nite internal loss, κi, (see Figure 5.4). This can
be explained by the high peak for Taxis when the system is initially in the dark state
(see Figure 5.8).

5.4.5 Individual atomic decay

In the individual atomic decay scenario we make the same simplifying assumptions as
in the previous section. Then, in the case that the detuning is equal to the damping
rate of the cavity, ∆ω = κ, the parameter Π vanishes and Γ reduces to the cavity-
enhanced spontaneous emission rate [Car08]. The Hamiltonian can be written in
terms of the atomic energy part (for the two atoms) plus an additional energy term
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(a) initial state |ψ+〉 (b) initial state |ψ−〉

Figure 5.8: Emission spectra Taxis,aout , Taxis,bout (top row) and Tside,total (bottom
row) as a function of frequency, plotted for the initial state |ψ+〉 (left column) and
|ψ−〉 (right column) in the case of internal cavity decay, κi = 20. Taxis,aout and
Taxis,bout coincide. The other parameters are κex = 500, g = 50, γ = 0, h = 0 and
∆ω = 0.
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for a collective atom (−g2

κ J
+J−). The master equation reads

ρ̇ = −i [H, ρ] +
Y

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
Y

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 ) , (5.155)

with

H = ωA

(
σ+

1 σ
−
1 + σ+

2 σ
−
2

)
− g2

κ
J+J− , (5.156)

Y = γ + 2
g2

κ
. (5.157)

Here, in contrast to the collective decay (5.146), the atoms decay independently, at

a rate determined mainly by g2

κ .
Note that the energy of the Bell state |ψ−〉 is shifted by

−g
2

κ
J+J−|ψ−〉 = −2

g2

κ
|ψ−〉 , (5.158)

whereas the energy of the Bell state |ψ+〉 is not shifted,

−g
2

κ
J+J−|ψ+〉 = 0 . (5.159)

Numerical results

The energy shift of the Bell state |ψ−〉 is the key to explaining the behaviour of the
emission spectra for the case of an initial state with only atom 1 excited and detuning
∆ω = κ (Figure 5.9). The emission spectra for the two Bell states are plotted in
Figure 5.10 for an atomic decay rate of γ = 5.7 The peak for the state |ψ−〉 is
indeed shifted by approximately −2g

2

κ as anticipated from the master equation with
adiabatic elimination. Also, the full widths at half maximum of the emission spectra
for |ψ+〉 and |ψ−〉 are approximately 2g

2

κ , as predicted, by this master equation. The
emission spectra for the case of atom 1 initially excited can now be qualitatively
explained as a combination of the spectra for |ψ+〉 and |ψ−〉 plus some interference
terms. We �nd that the linewidth is approximately the sum of the two linewidths of
the Bell states and that the linewidth decreases with increasing κex, since the peak
of the Bell state |ψ−〉 is less shifted. Also, the dip in the emission spectrum Taxis,bout

moves towards zero detuning with increasing κex (c.f. Figure 5.11).

7The case γ = 0, κi 6= 0 (which was plotted for the collective atomic decay) is omitted, since
the overall shape of the graphs are qualitatively similar to the case γ = 0, κi 6= 0, plotted in Figure
5.10.
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Figure 5.9: Emission spectra Taxis,aout , Taxis,bout (left) and Tside,total (right) as a
function of frequency, plotted for an initial state of atom 1 excited with detuning
∆ω = κ. The other parameters are κex = 500, g = 50, γ = 5, κi = 0 and h = 0.
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(a) initial state |ψ+〉 (b) initial state |ψ−〉

Figure 5.10: Emission spectra Taxis,aout , Taxis,bout (top row) and Tside,total (bottom
row) as a function of frequency, plotted for the initial state |ψ+〉 (left column) and
|ψ−〉 (right column) in the case of detuning ∆ω = κ. Taxis,aout and Taxis,bout coincide.
The other parameters are κex = 500, g = 50, γ = 5, κi = 0 and h = 0.
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Figure 5.11: Emission spectra Taxis,aout and Taxis,bout as a function of frequency for
the initial state of atom 1 excited. Plotted for a cavity decay rate of κex = 300 (left)
and κex = 800 (right) in the case of detuning ∆ω = κ. The other parameters are
g = 50, γ = 5, κi = 0 and h = 0.

5.5 Strong-coupling limit

In this section we will investigate the emission spectra in the strong-coupling limit.
This limit is of particular interest for future applications in quantum information
where a strong coupling between the atom and the photon is required. The strong-
coupling regime is determined by a large atom-cavity coupling, g, compared to the
damping rates of the cavity, κ, and the atom, γ,

g >> κ, γ . (5.160)

In this limit we cannot make the same simplifying assumptions we did for the bad-
cavity regime (in particular we cannot adiabatically eliminate the cavity modes).
Hence, an analytical treatment of the full system is much more complicated and we
will only consider the numerical treatment. We start with the simplest system, the
1T1A system. The insights we gain from this simple case will then be applied to the
more complex systems.

5.5.1 1-toroid-1-atom system

The emission spectrum of a two-level atom coupled to a resonant cavity mode has
been investigated theoretically, for example, in [SMNE83] and [CBR+89]. For the
strong-coupling limit the emission spectrum is found to be a doublet, split by the
vacuum Rabi splitting (here 2

√
2g). The fullwidth of each peak of the doublet is

κ + γ
2 . These results are reproduced by solving the 1T1A model from Section 5.3.2

numerically in the strong-coupling limit (see Figure 5.12). However, now we allow for
two counter-propagating WGMs that the atom can decay to and a coupling between
the modes with strength h. When the coupling is turned on, an imbalance between
the two peaks occurs and they are shifted by h. This can be explained by the di�erent
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Figure 5.12: Emission spectra Taxis,aout (left) and Tside (right) as a function of
frequency for the 1T1A system. Note that the emission spectrum Taxis,bout is the
same as Taxis,aout and is omitted. The emission spectra are plotted for h = 0 (solid
line), h = 10 (dashed line) and h = 20 (dash-dot line). The other parameters are
κex = 15, g = 70, γ = 10, κi = 0 and ∆ω = 0.

coupling of the atom to the two normal modes of the system. We can express the
system Hamiltonian and the damping terms in the master equation in terms of the
normal modes of the cavity [DPA+08b], de�ned by

A =
a+ b√

2
and B =

a− b√
2
. (5.161)

Explicitly, we have

ρ̇ = −i [H, ρ] + κ(2AρA† −A†Aρ− ρA†A) + κ(2BρB† −B†Bρ− ρB†B)

+
γ

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) , (5.162)

with

H = (ωC + h)A†A+ (ωC − h)B†B + ωAσ
+σ−

+
√

2Re{g}(A†σ− + σ+A)− i
√

2Im{g}(B†σ− − σ+B) . (5.163)

Thus, for a real valued g (as was chosen in Figure 5.12), the atom is only coupled to
the normal mode A, with the cavity frequency ωC + h, which accounts for the shift
of the peaks.

5.5.2 More complex systems

We will consider the 2T1A system and the �full� 2T2A system. The following results
were again obtained by solving equations (5.89)-(5.93) and (5.52)-(5.57), respectively,
numerically, where we assume the cavity parameters to be the same and set the phase
factors, φa and φb, to zero.
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When adding another cavity (Figure 5.13) or another cavity with an atom in the
ground state also coupled (Figure 5.14) the overall shape of the graphs still remains
the same. In particular, there is still the doublet, split by a factor of 2

√
2g and with

the same dependence on h (e.g., imbalance between the peaks and shift of the peaks
by h). But there are also obvious di�erences. The emission spectra Taxis,aout and
Taxis,bout are not the same any more since adding another cavity (in the case that
only one of the atoms is initially excited) breaks the symmetry. Also, in the case
of a coupling between the cavity modes (h 6= 0), a dispersive-like feature occurs in
between the two peaks at the position of ω − ωA = −h, which is connected to an
increased emission of the atom out of the side of the cavity at this frequency. For the
2T2A system, in the case of no coupling between the modes, the atoms emit light
very strongly at their natural frequency (sharp peak for the emission spectrum Tside

at ω = ωA) and hence a dip occurs in the emission spectrum Taxis at this frequency.
This does not occur in the 2T1A system. In the 2T2A system the peaks of the
doublet also have a more complicated shape. We cannot explain all the features
which occur here, but the dispersive-like feature is clearly connected to the value
of h and is shifted in the opposite direction to the peaks. Hence, its occurrence is
probably due to the coupling of the atom to what we called the normal mode B of
the cavity in the 1T1A system, which has frequency ω− h.8 Further investigation is
required in order to understand the origin of these features.

8To be correct, in the case of coupled cavities we need to �nd the normal modes of the total
Hamiltonian and cannot just use the �local� normal modes of the separate cavities (which would be
A and B). This involves �nding the eigenvalues of the total Hamiltonian which seems not possible
to do analytically.
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(a) h = 0 (b) h = 20

Figure 5.13: Emission spectra Taxis,aout , Taxis,bout (top row) and Tside,total (bottom
row) as a function of frequency for the 2T1A system, plotted for a coupling constant
h = 0 (left column) and h = 20 (right column). The other parameters are κex = 15,
g = 70, γ = 10, κi = 0 and ∆ω = 0.
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(a) h = 0 (b) h = 20

Figure 5.14: Emission spectra Taxis,aout , Taxis,bout (top row) and Tside,total (bottom
row) as a function of frequency for the 2T2A system, plotted for a coupling constant
h = 0 (left column) and h = 20 (right column). The other parameters are κex = 15,
g = 70, γ = 10, κi = 0 and ∆ω = 0. Atom 1 is initially excited.
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Chapter 6

Driven Cascaded System

In this chapter we will study an extension of the spontaneous emission system pre-
sented in the previous chapter. Instead of an atom being initially excited and ob-
serving the emission spectrum, we drive the cascaded system with a coherent light
source (laser) and examine the output �ux of the driven system.

The theoretical model will be presented in the �rst section. In the second section
we will present analytical results which are obtained for a simpler system, namely
the 2T0A system. The general system is too complicated to analyse analytically,
hence we will restrict ourselves to a numerical investigation. This is done in the
third section, where results for the 2T2A system will be presented for the strong-
coupling and the bad-cavity regime and will be compared to the 2T1A and the 2T0A
system. In the fourth section a method will be presented that allows us to describe
the cascaded system in terms of the single-toroid system which has already been
studied in some detail [ADW+06a, DPA+08a].

6.1 The theoretical model

The cascaded system we are interested in comprises two microtoroidal resonators
with a single atom coupled to each of the toroids. The system is driven by an
external light source which is experimentally realized with a laser. The coherent
light of the laser is sent through a �bre (connecting the two toroids) and couples into
the microcavities through the evanescent �eld. A schematic of the system is shown
in Figure 6.1. We are interested in the output photon �uxes.

The theoretical model is, in principle, very similar to the model for spontaneous
emission described in Section 5.1, but with an external, coherent driving term added
to the system Hamiltonian.

6.1.1 Hamiltonian and master equation

To describe the driven system we have to take the external driving into account.
How this is done was outlined in Section 4.2.2. If we allow for driving from both
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6. Driven Cascaded System

probe field εa probe field εb
ain bin

bout aoutκex κex
(1) (2)

b1 a1 b2 a2

h1 h2

κi
(1) κi

(2)

toroid 1 toroid 2

atom atom

Figure 6.1: Schematic of a driven cascaded microtoroid system.

directions, the system Hamiltonian reads1

H = H1 +H2 +H12 , (6.1)

with

H1 = ωC1(a†1a1 + b†1b1) + (h1a
†
1b1 + h∗1b

†
1a1) + (E∗aeiωpta1 + Eae−iωpta†1)

+
√
κ

(1)
ex /κ

(2)
ex (E∗b e−iφbeiωptb1 + Ebeiφbe−iωptb†1)

+ ωA1σ
+
1 σ
−
1 + (g∗1a

†
1σ
−
1 + g1σ

+
1 a1) + (g1b

†
1σ
−
1 + g∗1σ

+
1 b1) , (6.2)

H2 = ωC2(a†2a2 + b†2b2) + (h2a
†
2b2 + h∗2b

†
2a2) + (E∗b eiωptb2 + Ebe−iωptb†2)

+
√
κ

(2)
ex /κ

(1)
ex (E∗ae−iφaeiωpta2 + Eaeiφae−iωpta†2)

+ ωA2σ
+
2 σ
−
2 + (g∗2a

†
2σ
−
2 + g2σ

+
2 a2) + (g2b

†
2σ
−
2 + g∗2σ

+
2 b2) , (6.3)

H12 = i

√
κ

(1)
ex κ

(2)
ex (e−iφaa†1a2 − eiφaa†2a1)

+ i

√
κ

(1)
ex κ

(2)
ex (e−iφbb†2b1 − e

iφbb†1b2) , (6.4)

where ωp is the probe frequency and Ea (Eb) a complex �eld amplitude for the driving
in the direction of ain (bin). The other parameters are the same as in the modelling
of spontaneous emission presented in Section 5.1.1.

To simplify the calculations in the following sections, we move to a frame rotating
at the probe frequency ωp.2 The Hamiltonian in the rotating frame is

H ′ = H ′1 +H ′2 +H ′12 , (6.5)

1We set ~ = 1 throughout this chapter.
2For more information about transforming to a rotating frame see Appendix B.
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with

H ′1 = ∆ωC1(a†1a1 + b†1b1) + (h1a
†
1b1 + h∗1b

†
1a1) + (E∗aa1 + Eaa†1)

+
√
κ

(1)
ex /κ

(2)
ex (E∗b e−iφbb1 + Ebeiφbb†1)

+ ∆ωA1σ
+
1 σ
−
1 + (g∗1a

†
1σ
−
1 + g1σ

+
1 a1) + (g1b

†
1σ
−
1 + g∗1σ

+
1 b1) , (6.6)

H ′2 = ∆ωC2(a†2a2 + b†2b2) + (h2a
†
2b2 + h∗2b

†
2a2) + (E∗b b2 + Ebb†2)

+
√
κ

(2)
ex /κ

(1)
ex (E∗ae−iφaa2 + Eaeiφaa†2)

+ ∆ωA2σ
+
2 σ
−
2 + (g∗2a

†
2σ
−
2 + g2σ

+
2 a2) + (g2b

†
2σ
−
2 + g∗2σ

+
2 b2) , (6.7)

H ′12 = i

√
κ

(1)
ex κ

(2)
ex (e−iφaa†1a2 − eiφaa†2a1)

+ i

√
κ

(1)
ex κ

(2)
ex (e−iφbb†2b1 − e

iφbb†1b2) , (6.8)

where ∆ωC1 = ωC1 −ωp and ∆ωC2 = ωC2 −ωp are detunings between the frequency
of cavity 1 and cavity 2, respectively and the probe frequency, and ∆ωA1 = ωA1−ωp

and ∆ωA2 = ωA2 −ωp are detunings between the transition frequency of atom 1 and
atom 2, respectively and the probe frequency.

The master equation for the system (in the rotating frame) reads,

ρ̇ = −i
[
H ′, ρ

]
+ (JaρJ†a −

1
2
J†aJaρ−

1
2
ρJ†aJa) + (JbρJ

†
b −

1
2
J†bJbρ−

1
2
ρJ†bJb)

+ κ
(1)
i (2a1ρa

†
1 − a

†
1a1ρ− ρa†1a1) + κ

(1)
i (2b1ρb

†
1 − b

†
1b1ρ− ρb

†
1b1)

+ κ
(2)
i (2a2ρa

†
2 − a

†
2a2ρ− ρa†2a2) + κ

(2)
i (2b2ρb

†
2 − b

†
2b2ρ− ρb

†
2b2)

+
γ1

2
(2σ−1 ρσ

+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
γ2

2
(2σ−2 ρσ

+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 ) , (6.9)

with the jump operators

Ja =
√

2κ(1)
ex a1 + e−iφa

√
2κ(2)

ex a2 , (6.10)

Jb =
√

2κ(2)
ex b2 + e−iφb

√
2κ(1)

ex b1 . (6.11)

6.1.2 Input and output �elds

In Section 4.1, where the theory of inputs and outputs in optical cavities was pre-
sented, the output �eld operators were found to be

aout(t) = −ain(t) + Ja(t) , (6.12)

bout(t) = −bin(t) + Jb(t) . (6.13)
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6. Driven Cascaded System

The inputs to modes a and b are coherent probe �elds and can be written in terms
of the driving �elds that appear in the Hamiltonian

〈ain〉 = − iEa√
2κ(1)

ex

and 〈bin〉 = − iEb√
2κ(2)

ex

. (6.14)

In the case of su�ciently weak driving we need only consider the mean �eld. Hence
the cavity output �elds are

〈aout(t)〉 =
iEa√
2κ(1)

ex

+ 〈Ja(t)〉 , (6.15)

〈bout(t)〉 =
iEb√
2κ(1)

ex

+ 〈Jb(t)〉 . (6.16)

6.2 Analytical investigations � 2-toroids-no-atom system

For the simpler system consisting of two "plain" microtoroidal resonators, i.e. no
atoms coupled to the microtoroids, we are able to carry out an analytical investi-
gation. The 2T0A system is described by the Hamiltonian (6.5) and the master
equation (6.9) when the atomic terms (the terms including the parameters g and γ)
in these equations are set to zero.

When no atoms are coupled to the toroids, the system is entirely linear and
we need only consider the mean �eld amplitudes.3 Time derivatives of these mean
amplitudes can be calculated from the master equation using the relation 〈ȧ〉 =
Tr[aρ̇]. We �nd the following equations of motion:

〈ȧ1〉 = −(κ(1)
i + κ(1)

ex + i∆ωC1)〈a1〉 − ih1〈b1〉 − iEa , (6.17)

〈ȧ2〉 = −(κ(2)
i + κ(2)

ex + i∆ωC2)〈a2〉 − ih2〈b2〉

− 2eiφa

√
κ

(1)
ex κ

(2)
ex 〈a1〉 − i

√
κ

(2)
ex /κ

(1)
ex EaeiΦa , (6.18)

〈ḃ1〉 = −(κ(1)
i + κ(1)

ex + i∆ωC1)〈b1〉 − ih∗1〈a1〉

− 2eiφb

√
κ

(1)
ex κ

(2)
ex 〈b2〉 − i

√
κ

(1)
ex /κ

(2)
ex EbeiΦb , (6.19)

〈ḃ2〉 = −(κ(2)
i + κ(2)

ex + i∆ωC2)〈b2〉 − ih∗2〈a2〉 − iEb . (6.20)

3In the case that atoms are coupled to the toroids, the system is, in general, not linear but can
be linearised for su�ciently weak driving.
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Solving these equations in steady state yields

〈a1〉ss = − iEa
Z1
− ih1

Z1
〈b1〉ss , (6.21)

〈a2〉ss = − iEaYa
Z2

+
iEaXa

Z1Z2
+
ih1Xa

Z1Z2
〈b1〉ss −

ih2

Z2
〈b2〉ss , (6.22)

〈b1〉ss = −Eah
∗
1 + iEbYbZ1

h1h∗1 + Z2
1

− XbZ1

h1h∗1 + Z2
1

〈b2〉ss , (6.23)

〈b2〉ss = [−iEbZ1Z2(h1h
∗
1 + Z2

1 ) + Eah∗2Xa(h1h
∗
1 + Z2

1 )− Eah1h
∗
1h
∗
2Xa

− Eah∗2YaZ1(h1h
∗
1 + Z2

1 )− iEbh1h
∗
2YbZ1Xa]

· [Z2
2Z1(h1h

∗
1 + Z2

1 ) + h2h
∗
2Z1(h1h

∗
1 + Z2

1 ) + h1h
∗
2Z1XaXb]−1 , (6.24)

where the abbreviations

κ(1/2) = κ
(1/2)
i + κ(1/2)

ex , (6.25)

Z1/2 = κ(1/2) + i∆ωC1/2
, (6.26)

Xa/b = 2eiφa/b

√
κ

(1)
ex κ

(2)
ex , (6.27)

Ya =
√
κ

(2)
ex /κ

(1)
ex e

iφa , (6.28)

Yb =
√
κ

(1)
ex /κ

(2)
ex e

iφb , (6.29)

have been used.

6.2.1 Photon �uxes

Having the mean �eld amplitudes, equations (6.21)-(6.24), the jump operators, equa-
tions (6.10) and (6.11), and the expressions for the output �eld amplitudes, equations
(6.15) and (6.16), we can compute the steady state output photon �uxes, |〈aout〉ss|2
and |〈bout〉ss|2.

In the following, the output photon �uxes in the forward (aout) and backward
(bout) direction are computed as a function of the probe frequency, ωp. The system is
driven from one side only (Ea 6= 0 and Eb = 0) and the output �uxes are normalized
by the input �ux, |〈ain〉|2. For simplicity we assume the toroids to be identical, i.e.,

ωC1 = ωC1 =: ωC , h1 = h2 =: h , (6.30)

κ(1)
ex = κ(2)

ex =: κex , κ
(1)
i = κ

(2)
i =: κi . (6.31)

Figure 6.2 shows the output photon �ux with the parameters chosen to match
the over-coupled regime, i.e. the external loss rate, κex, satis�es the inequality
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Figure 6.2: Normalized forward �ux (solid line) and backward �ux (dashed line),
|〈aout〉|2/|〈ain〉|2 and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for di�erent
phase factors. The system is driven from one side, with a strength Ea = 0.2. The
other parameters are h = 10, κex = 20 and κi = 0.1.

κex >
√
κ2

i + h2.4 The output photon �ux crucially depends on the phase fac-
tors, φa and φb, which vary with the separation between the two toroids. For
the right choice of phase factors, φa = π and φb = 0, the output photon �ux
exhibits an electromagnetically-induced-transparency-like (EIT-like) e�ect (Figure
6.2(a)). Whereas when the phase factors are chosen as φa = φb = 0 this e�ect
does not occur (Figure 6.2(b)); instead the �ux shows a �normal� absorption spec-
trum. When the probe frequency is close to the cavity frequency, light can couple
into the cavity, where it is scattered to the b mode and re�ected back, as indicated by
an increase of �ux in backward direction and a reduction of �ux in forward direction.

EIT is characterized by a very narrow transparency peak in the center of a broader
transmission dip. It occurs in atomic systems due to quantum interference e�ects
between di�erent excitation pathways to the upper energy level of an atom when it
is coherently driven with an external laser [LI01]. In [MMSI04], it was theoretically
shown that two coupled WGM resonators can �mimic the narrow linewidth obtained
with EIT�, and this was later on observed experimentally [XSP+06]. Also, in a
slightly di�erent alignment of the WGM resonators, the occurrence of EIT-like e�ects
was predicted in [SCF+04] and experimentally shown in [NFSR05]. In all of these
investigated WGM-resonator systems, it was crucial for the occurrence of EIT-like
e�ects that the resonators are coupled in both directions, since the EIT-like e�ect (in
the case of coupled WGM resonators) is a purely classical optical interference e�ect.
In our case, this is satis�ed by a �nite interaction, h, of the two counter-propagating
modes. When only driven from one side (〈ain〉), a part of the light of the a mode is
scattered into the b mode which provides for light being re�ected back, and hence for

4The notation is from the single-toroid system, where for critical coupling, κex =
√
κ2

i + h2, the
output photon �ux in the forward direction is zero and all the light (which is not lost internally) is
re�ected back.
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Figure 6.3: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for h = 10 (solid line), h = 5
(dashed line) and h = 0.1 (dashed-dotted line). The system is driven from one side,
with a strength Ea = 0.2. The other parameters are κex = 20, κi = 0.1, φa = π and
φb = 0. The backward �ux for h = 0.1 is approximately zero and lies on top of the
zero axis.

a coupling of the second toroid with the �rst. In the over-coupled regime considered
here, the cavities decay primarily into the �bre (κex) and not into free space (κi).
Thus, there is a strong interference between incoming light and light which is coupled
back into the �bre. In particular, light from the b mode that propagates �backwards�
in the �bre can strongly interfere with the incoming light. In Figure 6.3 the photon
�ux is shown for di�erent interactions strengths between the modes. For a small h
almost no light is scattered into the b mode and re�ected back (in the direction of
bout), hence the coupling between the two toroids is mostly unidirectional (light from
toroid 1 is coupled into toroid 2 but not vice versa) and the EIT-like e�ect does not
occur.

The narrow transparency peak is determined by the internal loss rate, κi, where,
in particular the height of the peak decreases with increasing κi. Figure 6.4 shows
the output photon �ux for di�erent κi.

In Figure 6.5 the output photon �ux for a critical-coupled system is shown. For
critical coupling the EIT-like e�ect does not occur. This can be explained by the
fact that for the single-toroid system, the forward �ux is zero for ωp ≈ ωC, when
the system is under the condition of critical coupling [Par06]. Hence, for driving
from one side and independent cavities (linear system) the light is re�ected back
from the �rst cavity and does not couple into the second cavity. Therefore there
are no interference e�ects between light from the �rst and the second cavity and the
EIT-like feature does not occur.
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Figure 6.4: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for κi = 0.1 (solid line), κi = 1
(dashed line) and κi = 3 (dash-dotted line). The system is driven from one side,
with a strength Ea = 0.2. The other parameters are h = 10, κex = 20, φa = π and
φb = 0.
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Figure 6.5: Normalized forward �ux (solid line) and backward �ux (dashed line),
|〈aout〉|2/|〈ain〉|2 and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for a critical-
coupled system. The system is driven from one side, with a strength Ea = 0.2. The
other parameters are h = 10, κex = 14.1 and κi = 10, φa = π and φb = 0.

82



6.3 Numerical investigations

6.3 Numerical investigations

To study the behaviour of the system we have to solve the master equation (6.9).
For the general case (the 2T2A system), this is too complex to be done analytically
and the results, in any case, become too cumbersome to be of use. Hence, we solve
the master equation numerically.

6.3.1 Steady state method

We are, in particular, interested in the mean values of the photon output �elds
(|〈aout〉|2 and |〈bout〉|2) in steady state, which are calculated with the steady-state
density operator, ρss, as

〈aout〉ss = Tr [aoutρss] and 〈bout〉ss = Tr [boutρss] . (6.32)

In order to perform these calculations we must �nd the steady-state density operator,
ρss. This is done by solving the master equation

ρ̇ss = Lρss = 0 , (6.33)

with the Liouvillian L written in standard Lindblad form:

L = −i [H, ·] +
n∑
j=1

Cj · C†j −
1
2

(C†jCj ·+ · C
†
jCj) , (6.34)

where the Cj are the collapse operators due to damping. It is possible to write the
n× n density matrix as a n2 dimensional column-vector and the superoperator L as
an n2 × n2 matrix. The problem of solving the master equation in steady state is
then reduced to �nding the eigenvector belonging to the eigenvalue zero, which can
be obtained by the inverse power method.

6.3.2 Fock space truncation

The strength of the driving �eld determines the approximate number of photons in
the cavity and it is very unlikely that the photon number exceeds a maximum value
N , given a certain set of parameters. Therefore, it is a good approximation to neglect
all photon numbers larger than N . This is called the truncation of the Fock space
of the cavity mode.

In our system, the total Hilbert space consists of the subspaces for the two atoms
and the subspaces for the four cavity modes,

Htotal = Hatom1 ⊗Hatom2 ⊗Ha1 ⊗Hb1 ⊗Ha2 ⊗Hb2 . (6.35)

For a two-level atom the dimension of the total Hilbert space is dH = 4N4, where
each cavity mode has the same truncation N . The dimension of the density matrix is
the square of the dimension of the Hilbert space and the dimension of the Liouvillian
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is d4
H, which is a very large number even for small truncations. Since in our weakly

driven system the average photon number in each cavity mode was of the order 10−4,
it is su�cient to choose a truncation of N = 1. As a �rule of thumb�, the truncation
should be at least ten times larger than the average photon number.

6.3.3 Numerical results � strong-coupling limit

The numerical calculations were performed with the Quantum Optics Toolbox for
Matlab [Tan].

In the following, the numerical investigations are performed for the strong-
coupling limit (g >> κ, γ), where the atom-cavity coupling exceeds the cavity damp-
ing and the atomic decay rate. The system is only driven from one side (Ea 6= 0 and
Eb = 0) and we are interested in the output photon �uxes in the forward (aout) and
backward (bout) direction as a function of the probe frequency ωp. It is convenient
to normalize the output �uxes by the input �ux, |〈ain〉|2. For simplicity we assume
the toroids to be identical, i.e.,

ωC1 = ωC1 =: ωC , ωA1 = ωA1 =: ωA , (6.36)

κ(1)
ex = κ(2)

ex =: κex , κ
(1)
i = κ

(2)
i =: κi , (6.37)

γ1 = γ2 =: γ , g1 = g2 =: g , (6.38)

h1 = h2 =: h , (6.39)

and the atoms and cavities to be resonant with each other (ωC = ωA).

In Figure 6.6 and Figure 6.7, the output photon �uxes (in the forward and back-
ward direction) for the 2T2A, the 2T1A (where the remaining atom is coupled to
toroid 1) and the 2T0A system are shown for the critical-coupled regime as a function
of the probe detuning, ∆ωC. The atom-cavity coupling, g, is in the �rst case taken
to be real-valued (Figure 6.6) and in the other case to be imaginary (Figure 6.7),
which corresponds to di�erent positions of the atom around the toroid [ADW+06b].
The obtained output �uxes for the 2T2A and 2T1A system are similar to the output
�uxes of the driven 1T1A system, which was investigated in [ADW+06b], and can
be explained accordingly. For both systems, three dips occur in the forward �ux,
corresponding to an increased backward �ux at these frequencies. This can be un-
derstood by considering the normal modes of the single toroid.5 Similar to Section
5.5, the Hamiltonian of the single driven atom-toroid system can be written with the

5To be correct, in case of coupled cavities we need to �nd the normal modes of the total Hamil-
tonian and cannot just use the �local� normal modes of the separate cavities (which would be A
and B). This involves �nding the eigenvalues of the total Hamiltonian which seems near impossible
to do analytically. However the �local� normal modes can explain the behaviour qualitatively.
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Figure 6.6: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for a real-valued atom-cavity
coupling g = 70. The �uxes are plotted for the 2T2A system (solid line), the 2T1A
system (dashed line) and the 2T0A system (dashed-dotted line), all in the critical-
coupled regime. The atom is resonant with the cavity (ωA = ωC) and is driven by
Ea = 0.2. The other parameters are h = 10, κex = 11.2, κi = 5, γ = 5, φa = 0 and
φb = 0.

normal modes, A = (a+ b)/
√

2 and B = (a− b)/
√

2, as

H = (ωC + h)A†A+ (ωC − h)B†B + ωAσ
+σ−

+
1√
2

[
E∗p(A+B) + Ep(A† +B†)

]
+
√

2Re{g}(A†σ− + σ+A)− i
√

2Im{g}(B†σ− − σ+B) . (6.40)

We see that for a real coupling constant, the atom only couples to mode A, of
frequency ωC + h, and for a imaginary g only to mode B, of frequency ωC − h.
This can explain the reduction of the forward �ux in the cascaded system at probe
detunings ∆ωC = −h ±

√
2g (for a real-valued g) and ∆ωC = h ±

√
2|g| (for an

imaginary g). The splitting of these two dips by the factor 2
√

2g is due to the vacuum
Rabi splitting of the mode coupled to the atom. The reduction of the forward �ux
at approximately ∆ωC = h and ∆ωC = −h, respectively, is the spectrum of the
mode which is not coupled to the atom. It is noticeable that the �displacement� for
the 2T1A is not as strong as for the 2T2A system, in particular for the dip in the
middle. Also, it is noticeable that, generally, the peaks in the forward �ux are much
higher for the 2T1A system than for the 2T2A system. From an experimental point
of view, this o�ers a way to distinguish between the two systems. The asymmetry in
the output �ux is due to the asymmetry in the system when it is driven only from
one side.

The 2T0A system shows a �normal� absorption spectrum determined by the cav-
ity loss rate κ and has already been discussed in Section 6.2. The results obtained
by numerically solving the corresponding master equation agree with the results
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Figure 6.7: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for a imaginary-valued atom-
cavity coupling g = 70i. The �uxes are plotted for the 2T2A system (solid line),
the 2T1A system (dashed line) and the 2T0A system (dashed-dotted line), all in
the critical-coupled regime. The atom is resonant with the cavity (ωA = ωC) and is
driven by Ea = 0.2. The other parameters are h = 10, κex = 11.2, κi = 5, γ = 5,
φa = 0 and φb = 0.

obtained from the analytical investigation in the previous section.
For an over-coupled 2T2A system additional features can occur in the sidepeaks

of the backward �ux. These are shown in Figure 6.8 and are due to interference
e�ects between the two coupled atom-toroid systems which do not occur in the
single atom-toroid system nor in the 2T1A or the 2T0A system.

6.3.4 Numerical results � bad-cavity limit

In this section we investigate the three systems (2T2A, 2T1A and 2T0A) in the
bad-cavity, strongly over-coupled regime, where the cavity loss rate exceeds all other
parameters (κ� γ, g).

The output photon �uxes in the forward and backward directions are computed
as a function of probe frequency by numerically solving the corresponding master
equation in steady state. As in the previous section, we assume the toroids to be
identical and the atoms and cavities to be resonant with each other. The system
is only driven from one side (Ea 6= 0 and Eb = 0) and the output photon �uxes are
normalized by the input �ux |〈ain〉|2.

The output �uxes for a sample set of parameters are shown in Figure 6.9. For
the 2T0A system, the forward �ux is approximately unity, corresponding to a back-
ward �ux of zero. For a single-toroid system in the strongly over-coupled regime,
it was shown that �in the absence of an atom, virtually no light is coupled into the
backward �eld� [PDAK09]. Hence, the incoming light is, at toroid 1 and at toroid
2, respectively, coupled into the forward �eld (apart from internal losses in the cav-
ities), which leads to the obtained results. For the chosen parameters, where the
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Figure 6.8: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for a real-valued atom-cavity
coupling g = 70. The �uxes are plotted for the 2T2A system (solid line), the 2T1A
system (dashed line) and the 2T0A system (dashed-dotted line), all in the over-
coupled regime. The atom is resonant with the cavity (ωA = ωC) and is driven by
Ea = 0.2. The other parameters are h = 10, κex = 20, κi = 1, γ = 5, φa = 0 and
φb = 0.

internal loss is much smaller than the coupling to the �bre, the forward �ux shows a
very broad, but very shallow absorption dip around resonance, which is not visible
for the scale in the plot. In contrast, the forward �ux of the 2T2A and the 2T1A
system shows a clear absorption spectrum. For small detunings most of the light
is re�ected back, indicated by an increased photon �ux in the backward direction.
The linewidth scales with g2

κ and is, for the 2T2A system, approximately twice as
large as for the 2T1A system. In particular, the full widths at half maximum can
be determined to be 8g

2

κ and 4g
2

κ , respectively, which correspond to the linewidths
of the emission spectra obtained for the spontaneous emission systems.

6.4 Re�ection and transmission coe�cient

In this section we will describe the driven 2T2A system in terms of the properties
of the single driven microtoroid described in [ADW+06a, ADW+06b, DPA+08a,
DPA+08b]. This can be done for su�ciently weak driving �elds where the response
is essentially linear.

A cascaded system can be depicted as shown in Figure 6.10, where we restrict
ourselves to driving from only one side.6 A part of the input �eld, 〈ain〉, is re�ected
back at the �rst cavity and the other part is transmitted, where it in turn is re�ected
or transmitted at the second cavity. This transmission and re�ection at a single cavity
can be described in terms of a transmission coe�cient T and re�ection coe�cient R.
The total transmission coe�cient F and total re�ection coe�cient B of a cascaded

6It is a simple task to apply the results obtained in this section to driving from the other side.
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Figure 6.9: Normalized forward �ux (a) and backward �ux (b), |〈aout〉|2/|〈ain〉|2
and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning for the 2T2A system (solid
line), the 2T1A system (dashed line) and the 2T0A system (dashed-dotted line).
The systems are in the bad-cavity, strongly over-coupled regime with the parameters
h = 10, κex = 500, κi = 1, g = 70, γ = 5, φa = 0, φb = 0 and are driven with a
strength Ea = 0.2. The atom is resonant with the cavity (ωA = ωC).

system 1 system 2

T,R T,R

B F

<ain>

Figure 6.10: Schematic of a driven cascaded toroid system. 〈ain〉 is the input
�eld amplitude, B the total backward re�ection coe�cient and F the total forward
transmission coe�cient. T and R denote the single-toroid transmission and re�ection
coe�cients, respectively.
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system consisting of two identical toroids is then,

F = T 2 + T 2R2 + T 2R4 + · · · = T 2(1 +R2 +R4 + · · · )

=
T 2

1−R2
, (6.41)

and

B = R+RT 2 +R3T 2 +R5T 2 + · · · = R(1 + T 2 + T 2R2 + T 2R4 + · · · )

= R

(
1 +

T 2

1−R2

)
, (6.42)

where the geometrical series has been summed. With these coe�cients the mean
output amplitudes can be written in terms of the input amplitudes

〈aout〉 = F 〈ain〉 and 〈bout〉 = B〈ain〉 , (6.43)

and the output �uxes yield

|〈aout〉|2 = |F 〈ain〉|2 = |F |2|〈ain〉|2 , (6.44)

|〈bout〉|2 = |B〈ain〉|2 = |B|2|〈ain〉|2 . (6.45)

6.4.1 Expressions for the re�ection and transmission coe�cients

In order to be able to compute the output �uxes we need to know the transmission
and re�ection coe�cients, F and B, of the cascaded system. This in turn means that
we need to obtain expressions for the transmission and re�ection at a single toroid.

Let us write the output �eld amplitudes of a single toroid in terms of the input,
〈ain〉,

〈aout〉 = −〈ain〉+
√

2κex〈a〉ss =

(
−1 + 2i

κex

Ep
〈a〉ss

)
〈ain〉 , (6.46)

〈bout〉 =
√

2κex〈b〉ss =

(
2i
κex

Ep
〈b〉ss

)
〈ain〉 , (6.47)

where the expression for 〈ain〉 from equation (6.14) was used. Hence, we obtain for
the transmission and re�ection coe�cient of a single toroid

T = −1 + 2i
κex

Ep
〈a〉ss and R = 2i

κex

Ep
〈b〉ss . (6.48)

The only task left is to determine expressions for the mean amplitudes of the cavity
modes in steady state (〈a〉ss and 〈b〉ss). The equations of motion for the mean
amplitudes can be obtained from the master equation of the single-toroid system,
which then have to be solved for the steady state to yield the wanted expressions.
This was done by Parkins [Par06] and we will just state the results.
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In case of an atom coupled to the toroid the mean �eld amplitudes, 〈a〉ss and
〈b〉ss, are

〈a〉ss = iEp
χ[(κ+ i∆C)χ+ |g|2]

(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2
, (6.49)

〈b〉ss = −iEp
χ(ihχ+ g2)

(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2
, (6.50)

with the abbreviation

χ =
γ

2
+ i∆A , (6.51)

where ∆A denotes the detuning between the atom frequency and the probe frequency,
and ∆C the detuning between the cavity frequency and the probe frequency:

∆A = ωA − ωp and ∆C = ωC − ωp . (6.52)

The output amplitude for the forward (〈aout〉) and the backward (〈bout〉) directions
can then be written as

〈aout〉 =

(
−1− 2κex

(χ[(κ+ i∆C)χ+ |g|2]
(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2

)
〈ain〉 ,

(6.53)

〈bout〉 =

(
2κex

Ep

χ(hχ− ig2)
(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2

)
〈ain〉 . (6.54)

Thus, we �nd for the transmission coe�cient T (∆C) and the re�ection coe�cient
R(∆C) of a single toroid

T (∆C) = −1− 2κex
χ[(κ+ i∆C)χ+ |g|2]

(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2
, (6.55)

R(∆C) =
2κex

Ep

χ(hχ− ig2)
(ihχ+ g∗2)(ihχ+ g2)− [(κ+ i∆C)χ+ |g|2]2

. (6.56)

6.4.2 Applying the transmission and re�ection coe�cient

We compute the output �uxes for a cascaded system, using equations (6.44) and
(6.45), and compare the results to the �uxes obtained from numerically solving the
master equation (see Section 6.3).

In Figure 6.11 the output �uxes |〈aout〉|2 and |〈bout〉|2 of a sample system are
plotted for di�erent driving strengths. It can be clearly seen that for weak driving
the results obtained from the di�erent methods match very well, whereas for stronger
driving the plots start to deviate. For stronger driving the response is no longer linear
and cannot be accurately described by the transmission and re�ection coe�cient
method.

However, for a su�ciently weak driving this method provides a nice, intuitive
way of determining transmission/re�ection properties of such cascaded systems, and
could in principle be applied to systems with more toroids.
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Figure 6.11: Normalized forward �ux (left column) and backward �ux (right col-
umn), |〈aout〉|2/|〈ain〉|2 and |〈bout〉|2/|〈bin〉|2, as a function of probe detuning, ob-
tained by solving the master equation (solid line) and by the re�ection/transmission
method (dashed line). Fluxes are plotted for di�erent driving strengths Ea = {1, 3, 6}
for the atom on resonance with the cavity (ωA = ωC). The other parameters are
h = 10, κex = 20, κi = 1, g = 70, γ = 5, φa = 0 and φb = 0.
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Chapter 7

Conclusion

7.1 Summary

In this thesis we investigated a cascaded cavity QED system consisting of two micro-
toroidal resonators connected via an optical �bre. The toroids act as cavities with
two counter-propagating WGMs. In addition a single atom is coupled to each of
the toroids by the evanescent �eld of its cavity modes. The main emphasis of this
investigation was on the spontaneous emission of the cascaded system. Additional
research was conducted on the coherently driven system, based upon previous work
done for the driven single-toroid system [ADW+06a, DPA+08a].

We started in Chapter 5 with an analytical investigation of the spontaneous
emission system. By employing a �Separation of the Liouvillian� we were able to
transform the complicated two-time integrals over second-order correlation functions,
from which the emission spectrum is usually calculated, to simpler one-time integrals.
These one-time integrals are over the probability amplitudes of the state vector of
the one-energy quantum subspace, for which we derived a set of equations of motion.

For the bad-cavity system, this set of equations of motion was solved by adia-
batically eliminating the cavity modes, and analytical expressions for the emission
spectra were found. These analytical results were compared to the emission spectra
obtained by numerically solving the equations of motion for the probability ampli-
tudes. It was found that in the bad-cavity limit the analytical results agree with the
numerical results.

The emission spectra of the 2T2A system were compared to the emission spectra
of the 2T1A and the 1T1A system for the bad-cavity regime. It was found that the
linewidth of the 2T2A system is, by a factor of two, larger than in the other two
systems. This was later explained by the occurrence of superradiance.

For the bad-cavity regime a master equation with the cavity modes adiabatically
eliminated was derived. This master equation is novel, in the sense that depending on
the chosen detuning (and neglecting the spontaneous emission of the atoms), it either
describes a collective atomic decay (the so-called superradiance), an individual decay
of each atom, or a combination of both. This master equation could qualitatively
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explain the shape of the emission spectra in the bad-cavity regime.
The strong-coupling regime was investigated numerically, where we found a vac-

uum Rabi splitting in the emission spectra plus several other features which in part
could be explained by the di�erent coupling strength of the atom to the normal
modes of the system. But some of the occurred features still remained unexplained.

The driven cascaded system was studied in Chapter 6. Analytical calculations
were only possible for the 2T0A system where we computed the output photon �ux.
The occurrence of an EIT-like e�ect was shown, which crucially depends on the
phase factors (corresponding to the separation of the toroids). For the 2T2A and
the 2T1A system, analytical calculations were too cumbersome and therefore these
systems were only investigated numerically. We computed the output �uxes for the
strong-coupling and bad-cavity regimes by solving the master equation in steady
state. These numerical solutions were obtained in the weak-excitation limit, and
thus we were able to truncate the cavity mode Hilbert space to make the numerical
computations feasible. For the strong-coupling regime, the results for the photon
�uxes of the two systems could, similarly to the spontaneous emission system, be
interpreted in terms of vacuum Rabi splitting and a di�erent coupling strength of
the atoms to the di�erent normal modes of the system. For the bad-cavity regime,
we found a �normal� absorption (transmission) spectrum for the forward (backward)
�ux where the linewidth of the 2T2A system is approximately twice as large as of
the 2T1A system. This corresponds with the results obtained for the spectrum of
the spontaneous emission system in the bad-cavity regime.

A method to describe the cascaded system in terms of the properties of the single-
toroid system by means of re�ection and transmission coe�cients was developed. Its
validity (agreement with the numerical results) was shown for relatively small driving
�elds, in which case the response of the toroids is essentially linear.

The mathematical treatment given in this thesis can, in principle, be applied
to other, similar systems as well; e.g., semiconductor quantum dots or quantum
wells inside a photonic crystal, micropillar or microdisk resonator. In this case,
the semiconductor quantum dot or quantum well plays the role of the two-level
atom which can emit and absorb photons, and the photonic crystal or the mi-
croresonator is a cavity where only certain optical modes are allowed. Cavity
QED e�ects in solid-state materials have indeed been observed, e.g., strong cou-
pling for single quantum dots in microresonator cavities of the type mentioned
above has been obtained [RSL+04, YSH+04, PSM+05].1 Recently, experiments on
solid state systems [SMPP08, SP07a] similar to the experiments on atomic systems
[ADW+06a, DPA+08a] have been conducted. In these experiments, a single high
quality GaAs microdisk coupled with an InAs quantum dot was driven by a coherent
probe �eld using a �bre taper waveguide. This system is mathematically described in
the same way as a single atom-toroid system [SP07b]. Therefore, the results obtained
in this thesis are also relevant to solid state systems, e.g., a coupled two-microdisk

1A review of the progress in obtaining true quantum-optical strong-coupling e�ects in semicon-
ductors can be found in [KGK+06].
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system.

7.2 Future directions

We derived the adiabatic master equation for the spontaneous emission system in the
bad-cavity limit. From this equation, the emission spectrum of the system could be
computed and could then be compared to the results obtained from the full model.
These calculations were started, but could, unfortunately, not be concluded due to
time restraints.2

In case of strong coupling, some features occurred in the emission spectra which
are still unexplained.3 The same holds for the strong-coupling regime in the driven
system. Further investigation is required to �gure out the nature of these features.

In general, the system is quite complex, having many tunable parameters. We
restricted ourself, in this thesis, to a few, simple examples to investigate the essential
behaviour. In particular, throughout the investigation of the bad-cavity regime we
set the coupling between the modes to zero and we assumed, throughout the thesis,
the cavities to be identical with no cavity-atom detuning present. In principle all
these simpli�cations can be lifted, but it is questionable as to what extent the system
will remain manageable to systematic investigations.

Another aspect to be investigated is the entanglement between the atoms when
the system is driven. However, in order for a noticeable entanglement between the
atoms to occur the system would need to be strongly driven. More photons would
be present in the cavity modes, which means that the dimension of the truncated
cavity-modes Hilbert space would need to be increased. Solving the master equation
numerically in steady state by the method used in this thesis would become much
more elaborate, if not impossible. To overcome these computational problems, a
Quantum Trajectory method, e.g., a quantum Monte-Carlo simulation, could be
used.4 The evolution of the state vector and the e�ects of entanglement can be
observed directly with this method. Alternatively, in the case of the bad-cavity
regime, the external driving could be added to the master equation where the cavity
modes have been adiabatically eliminated - equation (5.139). Numerical and even
analytical investigations for strong driving could be done using this equation, which
has a much lower dimensionality of the equations to be solved compared to the full
master equation.

Finally, the atom-toroid system is a promising candidate for a future quantum
network consisting of quantum nodes (atom-toroid subsystems) connected by a quan-
tum channel (optical �bre). The coupled two-toroid system, investigated in this the-
sis, is only the �rst step in this direction. More toroids could be added to build up
a complex network whose properties could then be studied.

2Initial calculations are presented in Appendix C.
3Namely, the dispersive like feature which seems to be connected to the coupling constant h.

See Section 5.5.
4For an introduction to Quantum Trajectory theory see [Car08, Chap. 17-18].
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Appendix A

Bad-Cavity Limit �

Supplementary Calculations

In this chapter the calculation of Section 5.4, where we adiabatically eliminate the
cavity modes to obtain a master equation for the atom alone, are presented in more
detail.

After expanding out equation (5.121) we arrive at

˙̃ρA = −
(
|g1|2

∫ t

0
dt′TrC

[
a1e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

1 (t)σ−1 (t′)ρ̃A(t′)− σ−1 (t′)ρ̃A(t′)σ+
1 (t)

)
+ |g1|2

∫ t

0
dt′TrC

[
a†1e
LC(t−t′)ρ̃ss

C(t′)a1

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

1 (t′)σ−1 (t)− σ−1 (t)ρ̃A(t′)σ+
1 (t′)

)
+ |g2|2

∫ t

0
dt′TrC

[
a2e
LC(t−t′)a†2ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

2 (t)σ−2 (t′)ρ̃A(t′)− σ−2 (t′)ρ̃A(t′)σ+
2 (t)

)
+ |g2|2

∫ t

0
dt′TrC

[
a†2e
LC(t−t′)ρ̃ss

C(t′)a2

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

2 (t′)σ−2 (t)− σ−2 (t)ρ̃A(t′)σ+
2 (t′)

)
+ g∗1g2

∫ t

0
dt′TrC

[
a2e
LC(t−t′)a†1ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

2 (t)σ−1 (t′)ρ̃A(t′)− σ−1 (t′)ρ̃A(t′)σ+
2 (t)

)
+ g1g

∗
2

∫ t

0
dt′TrC

[
a†2e
LC(t−t′)ρ̃ss

C(t′)a1

]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

1 (t′)σ−2 (t)− σ−2 (t)ρ̃A(t′)σ+
1 (t′)

)
+ . . .
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+ |g1|2
∫ t

0
dt′TrC

[
b1e
LC(t−t′)b†1ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

1 (t)σ−1 (t′)ρ̃A(t′)− σ−1 (t′)ρ̃A(t′)σ+
1 (t)

)
+ |g1|2

∫ t

0
dt′TrC

[
b†1e
LC(t−t′)ρ̃ss

C(t′)b1
]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

1 (t′)σ−1 (t)− σ−1 (t)ρ̃A(t′)σ+
1 (t′)

)
+ |g2|2

∫ t

0
dt′TrC

[
b2e
LC(t−t′)b†2ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

2 (t)σ−2 (t′)ρ̃A(t′)− σ−2 (t′)ρ̃A(t′)σ+
2 (t)

)
+ |g2|2

∫ t

0
dt′TrC

[
b†2e
LC(t−t′)ρ̃ss

C(t′)b2
]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

2 (t′)σ−2 (t)− σ−2 (t)ρ̃A(t′)σ+
2 (t′)

)
+ g∗1g2

∫ t

0
dt′TrC

[
b1e
LC(t−t′)b†2ρ̃

ss
C(t′)

]
e−iωC(t−t′)

·
(
σ+

1 (t)σ−2 (t′)ρ̃A(t′)− σ−2 (t′)ρ̃A(t′)σ+
1 (t)

)
+ g1g

∗
2

∫ t

0
dt′TrC

[
b†1e
LC(t−t′)ρ̃ss

C(t′)b2
]
eiωC(t−t′)

·
(
ρ̃A(t′)σ+

2 (t′)σ−1 (t)− σ−1 (t)ρ̃A(t′)σ+
2 (t′)

)
+ . . .

)
+ L̃Aρ̃A . (A.1)

where the �. . .� stands for all other possible combinations of operators a†1σ
−
1 , a1σ

+
1 ,

etc. of the Hamiltonian (5.123). There are 254 terms in total.
The traces can be evaluated with the relation

〈Ô1(t)Ô2(t+ τ)〉 = Tr
[
Ô2e

Lτρ(t)Ô1

]
, (A.2)

〈Ô1(t+ τ)Ô2(t)〉 = Tr
[
Ô1e

Lτ Ô2ρ(t)
]
, (A.3)

of the quantum regression formula from Section 3.2. Thus, we have to calculate
second-order correlation functions in order to be able to compute the integrals. These
correlation functions can be calculated with some other relations of the quantum
regression formula (stated in Section 3.2), namely

d

dt
〈Âµ〉 =

∑
λ

Mµ,λ〈Aλ〉 , (A.4)

d

dτ
〈Ô(t)Âµ(t+ τ)〉 =

∑
λ

Mµ,λ〈Ô(t)Âλ(t+ τ)〉 , (A.5)

d

dτ
〈Âµ(t+ τ)Ô(t)〉 =

∑
λ

Mµ,λ〈Âλ(t+ τ)Ô(t)〉 . (A.6)
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Using these equations, we �rst need to compute equations of motion for a complete
set of operators 〈Âµ〉 in order to obtain the constantsMµ,λ with relation (A.4). Then,
with relations (A.5) and (A.6), we are able to derive the equations of motion for the
second-order correlation functions which we eventually have to solve.

Since the traces in equation (A.1) are taken over the cavity modes, the mean
values of our set of operators, 〈Âµ〉, are also taken over the cavity modes and can
therefore be computed by

d

dt
〈Âµ〉 = Tr[Âµρ̇C] , (A.7)

with the reduced cavity density operator

ρC = TrC [ρ] , (A.8)

where ρ is given by equation (5.109). We transform to a rotating frame1 (denoted
by the tilde) which rotates at the atomic frequency, ωA, and can then approximately
set

˙̃ρC ≈ L̃Cρ̃C , (A.9)

since the cavity damping rate, κ, exceeds all other parameters in the rotating frame.
We �nd the following equations of motion for our complete set of operators

〈 ˙̃a1〉 = −κ1〈ã1〉 , (A.10)

〈 ˙̃a†1〉 = −κ1〈ã†1〉 , (A.11)

〈 ˙̃a2〉 = −2
√
κ1κ2〈ã1〉 − κ2〈ã2〉 , (A.12)

〈 ˙̃a†2〉 = −2
√
κ1κ2〈ã†1〉 − κ2〈ã†2〉 , (A.13)

〈 ˙̃b1〉 = −κ1〈b̃1〉 − 2
√
κ1κ2〈b̃2〉 , (A.14)

〈 ˙̃b†1〉 = −κ1〈b̃†1〉 − 2
√
κ1κ2〈b̃†2〉 , (A.15)

〈 ˙̃b2〉 = −κ2〈b̃2〉 , (A.16)

〈 ˙̃b†2〉 = −κ2〈b̃†2〉 . (A.17)

The unidirectional coupling of the cavities can be seen very clearly from these equa-
tions. The time evolution of operator ã1 of the �rst cavity and b̃2 of the second
cavity, respectively is identical to what we would expect when considering only one
cavity. Thus the cavity which is second in the propagation of the light does not have
any in�uence on the �rst one. Also, it can be seen that the equations for the a and b
modes are anti-symmetric which results from the opposite direction of propagation.

The two-time correlation function can be computed from equations (A.10)-(A.17)
by applying the quantum regression formula. The only possible non-zero correlation

1For more information about transforming to a rotating frame see Appendix B.
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functions are:

d

dτ
〈ã1(t)ã†1(t+ τ)〉 = −κ〈ã1(t)ã†1(t+ τ)〉 , (A.18)

d

dτ
〈ã1(t)ã†2(t+ τ)〉 = −κ〈ã1(t)ã†2(t+ τ)〉 − 2κ〈ã1(t)ã†1(t+ τ)〉 , (A.19)

d

dτ
〈ã2(t)ã†1(t+ τ)〉 = −κ〈ã2(t)ã†1(t+ τ)〉 , (A.20)

d

dτ
〈ã2(t)ã†2(t+ τ)〉 = −κ〈ã2(t)ã†2(t+ τ)〉 − 2κ〈ã2(t)ã†1(t+ τ)〉 , (A.21)

d

dτ
〈ã1(t+ τ)ã†1(t)〉 = −κ〈ã1(t+ τ)ã†1(t)〉 , (A.22)

d

dτ
〈ã1(t+ τ)ã†2(t)〉 = −κ〈ã1(t+ τ)ã†2(t)〉 , (A.23)

d

dτ
〈ã2(t+ τ)ã†1(t)〉 = −κ〈ã2(t+ τ)ã†1(t)〉 − 2κ〈ã1(t+ τ)ã†1(t)〉 , (A.24)

d

dτ
〈ã2(t+ τ)ã†2(t)〉 = −κ〈ã2(t+ τ)ã†2(t)〉 − 2κ〈ã1(t+ τ)ã†2(t)〉 , (A.25)

and the corresponding equations for the b modes

d

dτ
〈b̃1(t)b̃†1(t+ τ)〉 = −κ〈b̃1(t)b̃†1(t+ τ)〉 − 2κ〈b̃1(t)b̃†2(t+ τ)〉 , (A.26)

d

dτ
〈b̃1(t)b̃†2(t+ τ)〉 = −κ〈b̃1(t)b̃†2(t+ τ)〉 , (A.27)

d

dτ
〈b̃2(t)b̃†1(t+ τ)〉 = −κ〈b̃2(t)b̃†1(t+ τ)〉 − 2κ〈b̃2(t)b̃†2(t+ τ)〉 , (A.28)

d

dτ
〈b̃2(t)b̃†2(t+ τ)〉 = −κ〈b̃2(t)b̃†2(t+ τ)〉 , (A.29)

d

dτ
〈b̃1(t+ τ)b̃†1(t)〉 = −κ〈b̃1(t+ τ)b̃†1(t)〉 − 2κ〈b̃2(t+ τ)b̃†1(t)〉 , (A.30)

d

dτ
〈b̃1(t+ τ)b̃†2(t)〉 = −κ〈b̃1(t+ τ)b̃†2(t)〉 − 2κ〈b̃2(t+ τ)b̃†2(t)〉 , (A.31)

d

dτ
〈b̃2(t+ τ)b̃†1(t)〉 = −κ〈b̃2(t+ τ)b̃†1(t)〉 , (A.32)

d

dτ
〈b̃2(t+ τ)b̃†2(t)〉 = −κ〈b̃2(t+ τ)b̃†2(t)〉 . (A.33)

Keeping in mind that in the bad-cavity limit the steady state cavity modes are in the
vacuum state (since a photon in the cavity is immediately lost to its environment)
we see that the only non-zero mean values of two arbitrary cavity operators in steady
state are

〈ã1ã
†
1〉ss = 〈ã2ã

†
2〉ss = 〈b̃1b̃†1〉ss = 〈b̃2b̃†2〉ss = 1 . (A.34)

Using this as initial value when solving the di�erential equations (A.18)-(A.33) and
setting t → ∞ (long-time limit) we �nd for the non-zero correlation functions in
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steady state

〈ã1(t)ã†1(t+ τ)〉ss = 〈ã1(t+ τ)ã†1(t)〉ss = e−κτ , (A.35)

〈ã2(t)ã†2(t+ τ)〉ss = 〈ã2(t+ τ)ã†2(t)〉ss = e−κτ , (A.36)

〈ã1(t)ã†2(t+ τ)〉ss = 〈ã2(t+ τ)ã†1(t)〉ss = −2κτe−κτ , (A.37)

〈b̃1(t)b̃†1(t+ τ)〉ss = 〈b̃1(t+ τ)b̃†1(t)〉ss = e−κτ , (A.38)

〈b̃2(t)b̃†2(t+ τ)〉ss = 〈b̃2(t+ τ)b̃†2(t)〉ss = e−κτ , (A.39)

〈b̃2(t)b̃†1(t+ τ)〉ss = 〈b̃1(t+ τ)b̃†2(t)〉ss = −2κτe−κτ , (A.40)

where, for the sake of simple analytic expressions, the damping constant, κ := κ1 =
κ2, was assumed to be the same for the two cavities. Moving back to the non-rotating
frame yields

〈a1(t)a†1(t+ τ)〉ss = e(−κ+iωA)τ , (A.41)

〈a1(t+ τ)a†1(t)〉ss = e(−κ−iωA)τ , (A.42)

〈a2(t)a†2(t+ τ)〉ss = e(−κ+iωA)τ , (A.43)

〈a2(t+ τ)a†2(t)〉ss = e(−κ−iωA)τ , (A.44)

〈a1(t)a†2(t+ τ)〉ss = −2κτe(−κ+iωA)τ , (A.45)

〈a2(t+ τ)a†1(t)〉ss = −2κτe(−κ−iωA)τ , (A.46)

and equivalently for the b modes

〈b1(t)b†1(t+ τ)〉ss = e(−κ+iωA)τ , (A.47)

〈b1(t+ τ)b†1(t)〉ss = e(−κ−iωA)τ , (A.48)

〈b2(t)b†2(t+ τ)〉ss = e(−κ+iωA)τ , (A.49)

〈b2(t+ τ)b†2(t)〉ss = e(−κ−iωA)τ , (A.50)

〈b2(t)b†1(t+ τ)〉ss = −2κτe(−κ+iωA)τ , (A.51)

〈b1(t+ τ)b†2(t)〉ss = −2κτe(−κ−iωA)τ . (A.52)

These expressions coincide with equations (5.130)-(5.132) if t is replaced by t′ and τ
by t− t′.
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Appendix B

The Rotating Frame

In quantum optics it is widely used to move to a rotating frame, rotating with the
characteristic, high optical frequency of the system. This is done to separate the rapid
motion of the optical system from the slow motion that we are usually interested
in. We will demonstrate the mathematical formalism of transforming a system to a
rotating frame by an example.

Our sample system consists of an atom (described by the lowering and raising
operator σ±) coupled to a one-mode cavity (with the mode denoted by a) and driven
by an external coherent light source with the strength E . The Hamiltonian of the
system is1

H = ωAσ
+σ− + ωCa

†a+ (E∗eiωpta+ Ee−iωpta†) + (g∗a†σ− + gσ+a) , (B.1)

where g is the atom-cavity coupling constant, ωA the atomic transition frequency, ωC

the cavity frequency and ωp the frequency of the driving �eld. The master equation
of the system can be written as

ρ̇ = −i [H, ρ] + Lρ , (B.2)

with the Liouvillian

L = κ(2a · a† − a†a · − · a†a) +
γ

2
(2σ− · σ+ − σ+σ− · − · σ+σ−) , (B.3)

where κ is the cavity damping rate and γ the atomic damping rate.
We want to get rid of the fast varying exponential in the driving term and, hence,

have to move to a frame rotating with the probe frequency, ωp. Mathematical, this
is done by moving to an interaction picture, e.g., by a unitary transformation of our
system of the form

H̃ = U †HU , (B.4)

1We set ~ = 1 throughout this chapter.
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with the operator

U = e−iHTt , (B.5)

where HT is the transformation Hamiltonian

HT = ωp(σ+σ− + a†a) . (B.6)

The transformation of the master equation yields

˙̃ρ = U̇ †ρU + U †ρ̇U + U †ρU̇

= −i
[
H ′, ρ̃

]
+ L̃ρ̃ , (B.7)

with H ′ = H̃ −HT.
In the next step, we have to evaluate the transformed Hamiltonian H̃ and the

transformed Liouvillian L̃. With the commutator relations for the annihilation and
creation operators of the cavity mode[

a†a, a†
]

= a†aa† − a†a†a =
[
a, a†

]
a† = a† , (B.8)[

a†a, a
]

= a†aa− aa†a =
[
a†, a

]
a = −a , (B.9)

and the Baker-Hausdor� formula

exp (αA)B exp (−αA) = B + α [A,B] +
α2

2
[A, [A,B]] + · · · , (B.10)

we can show that

exp (αa†a)a† exp (−αa†a) = a† exp (α) , (B.11)

exp (αa†a)a exp (−αa†a) = a exp (−α) . (B.12)

In a similar way we can show that

exp (ασ+σ−)σ+ exp (−ασ+σ−) = σ+ exp (α) , (B.13)

exp (ασ+σ−)σ− exp (−ασ+σ−) = σ− exp (−α) . (B.14)

The second calculation is slightly more complicated and therefore, we will state it
here. From the Baker-Hausdor� formula, we �nd

exp (ασ+σ−)σ+ exp (−ασ+σ−) = σ+ + α [σ+σ−, σ+]

+
α2

2!
[σ+σ−, [σ+σ−, σ+]] + · · · (B.15)

with the commutator

[σ+σ−, σ+] = σ+ [σ−, σ+]︸ ︷︷ ︸
=−σz

+ [σ+, σ+]︸ ︷︷ ︸
=0

σ− = −σ+σz , (B.16)
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and

[σ+σ−, [σ+σ−, σ+]] = − [σ+σ−, σ+σz]
= −{σ+ [σ−, σ+σz] + [σ+, σ+σz]σ−}
= −{σ+σ+ [σ−, σz]︸ ︷︷ ︸

=σ−

+σ+ [σ−, σ+]︸ ︷︷ ︸
−σz

σz

+ σ+ [σ+, σz]︸ ︷︷ ︸
=−σ+

σ− + [σ+, σ+]︸ ︷︷ ︸
=0

σzσ−}

= σ+ . (B.17)

Evaluating further, gives

exp (ασ+σ−)σ+ exp (−ασ+σ−) = σ+ + α(−σ+σz) +
α2

2!
σ+

+
α3

3!
(−σ+σz) +

α4

4!
σ+ + · · ·

= σ+{(1 +
α2

2!
+
α4

4!
+ · · · )︸ ︷︷ ︸

coshα

I2

− (α+
α3

3!
+ · · · )︸ ︷︷ ︸

sinhα

σz}

= σ+(coshαI2 − sinhασz)

= σ+

(
coshα− sinhα 0

0 coshα+ sinhα

)

= σ+

(
e−α 0

0 eα

)
=

(
0 eα

0 0

)
= σ+e

α , (B.18)

where we used coshα± sinhα = e±α and σ+ =

(
0 1
0 0

)
in the second last line.

Finally, using equations (B.11)-(B.14), we �nd for the transformed Hamiltonian,
H ′ = H̃ −HT,

H ′ = ∆ωAσ
+σ− + ∆ωCa

†a+ (E∗a+ Ea†) + (g∗a†σ− + gσ+a) , (B.19)

with the frequency detunings ∆ωA = ωA − ωp and ∆ωC = ωC − ωp, and for the
transformed Liouvillian

L̃ = κ(2a · a† − a†a · − · a†a) +
γ

2
(2σ− · σ+ − σ+σ− · − · σ+σ−) = L . (B.20)

Suppressing the tilde on ρ̃ in equation (B.7), we �nd a master equation,

ρ̇ = −i
[
H ′, ρ

]
+ Lρ , (B.21)
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which is formally similar to master equation (B.2) and where, in the Hamiltonian
H ′, the fast varying exponential term has been eliminated.
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Appendix C

Adiabatic Master Equation �

Initial Calculations

The adiabatic master equation was derived in Section 5.4. In the case that the
cavities have equal properties and the atom-cavity coupling constant, g, and the
atomic decay rate, γ, are the same for both subsystems, it can be written as1

ρ̇ = −i [H, ρ] +
Γ
2

(2σ−1 ρσ
+
1 − σ

+
1 σ
−
1 ρ− ρσ

+
1 σ
−
1 )

+
Γ
2

(2σ−2 ρσ
+
2 − σ

+
2 σ
−
2 ρ− ρσ

+
2 σ
−
2 )

+
Π
2

(2σ−1 ρσ
+
2 − σ

+
2 σ
−
1 ρ− ρσ

+
2 σ
−
1 )

+
Π
2

(2σ−2 ρσ
+
1 − σ

+
1 σ
−
2 ρ− ρσ

+
1 σ
−
2 ) , (C.1)

with

H =
(
ωA − 2g2 ∆ω

κ2 + ∆ω2

)(
σ+

1 σ
−
1 + σ+

2 σ
−
2

)
+ 4g2 κ2∆ω

(κ2 −∆ω2)2 + 4κ2∆ω2

(
σ+

2 σ
−
1 + σ+

1 σ
−
2

)
, (C.2)

Γ = γ + 4g2 κ

κ2 + ∆ω2
, (C.3)

Π = −4g2 κ(κ2 −∆ω2)
(κ2 −∆ω2)2 + 4κ2∆ω2

. (C.4)

In this equation the cavity modes have been adiabatically eliminated and we are
only left with the atomic operators. This is a great reduction of the complexity of
the system, especially in terms of the dimension of the Hilbert space, which is, in
the case of a two-level atom, reduced from dH = 4N4 (with N the truncation of the

1We set ~ = 1 throughout this appendix.
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cavity modes) to dH = 4. The emission spectra for the bad-cavity regime can be
calculated from the adiabatic master equation.

The emission spectra are given by equations (5.28)-(5.31), where we need to com-
pute two-time integrals over second-order correlation functions of the cavity modes
and atoms. These integrals can be analysed in a similar way to Section 5.1.2 by a
�Separation of the Liouvillian�. The only di�erence is that we need to use the adia-
batic master equation when separating the Liouvillian. Therefore, we need to write
the cavity mode operators in terms of atomic operators (e.g. a = a(σi)), so that we
are able to write the two-time cavity mode functions in terms of two-time atomic
functions (e.g., 〈a†(t)a(t′)〉 = 〈a†(t)a(t′)〉(〈σ+

i σ
−
i 〉)), from which we eventually can

apply the formalism of �Separation of the Liouvillian�. The cavity mode operators in
terms of atomic operators are obtained by deriving the quantum Langevin equations
for the cavity modes, which are of the form

ȧ = −i [a,H]− κa+ ξ , (C.5)

where ξ is a (input) noise term,2 and formally integrating them.
The quantum Langevin equations for the a modes yield

ȧ1 = (−iωC − κ)a1 + κa2 − igσ−1 + ξ1 , (C.6)

ȧ2 = (−iωC − κ)a2 − κa1 − igσ−2 + ξ2 . (C.7)

In matrix form, this can be written as

d

dt

(
a1

a2

)
= A

(
a1

a2

)
+B

(
σ−1
σ−2

)
+

(
ξ1

ξ2

)
, (C.8)

with

A =

(
−iωC − κ κ
−κ −iωC − κ

)
, (C.9)

B =

(
−ig 0

0 −ig

)
. (C.10)

Formally integrating equation (C.8) yields(
a1(t)
a2(t)

)
= eAt

(
a1(0)
a2(0)

)
+
∫ t

0
dt′eA(t−t′)B

(
σ−1 (t′)
σ−2 (t′)

)

+
∫ t

0
dt′eA(t−t′)

(
ξ1(t′)
ξ2(t′)

)
. (C.11)

We can replace the atomic operators by

σ−i (t′) = e−iωAt
′
σ̃−i (t′) , (C.12)

2The noise term is assumed to be the vacuum �eld with a mean value of zero.
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where we have separated the fast varying term, e−iωAt
′
, from the slow varying term,

σ̃−i (t′). Substituting this into equation (C.11) and ignoring the noise term (since we
are only interested in the mean values, and the mean of any term which involves the
noise term is zero) we obtain(

a1(t)
a2(t)

)
= eAt

(
a1(0)
a2(0)

)
+
∫ t

0
dt′eiωA(t−t′)eA(t−t′)B

(
σ̃−1 (t′)
σ̃−2 (t′)

)
e−iωAt .

(C.13)

The exponential function, eAt, rapidly decays to zero (since in the bad-cavity regime
κ is large), therefore we can neglect the �rst term on the RHS of equation (C.13). On
the other hand, the atomic operator, σ̃−i (t′), varies very slowly and can be assumed
to be constant over the integration in the second term of the RHS. Evaluating the
integral yields for the cavity modes,

a1(t) = X1σ
−
1 (t) +X2σ

−
2 (t) , (C.14)

a2(t) = −X2σ
−
1 (t) +X1σ

−
2 (t) , (C.15)

with

X1 = i
g

2

(
1

−i∆ω − iκ− κ
+

1
−i∆ω + iκ− κ

)
, (C.16)

X2 =
g

2

(
1

−i∆ω − iκ− κ
− 1
−i∆ω + iκ− κ

)
, (C.17)

where ∆ω = ωC − ωA. In a similar way, the b modes can be obtained, which yield

b1(t) = X1σ
−
1 (t)−X2σ

−
2 (t) ,

b2(t) = X2σ
−
1 (t) +X1σ

−
2 (t) . (C.18)

Hence we are now able to write the two-time correlation functions for the cavity
modes and therefore also the integrals the emission spectra are computed with, given
by,

T
(j)
side,σ(ω) =

γj
2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)〈σ+
j (t)σ−j (t′)〉 , (C.19)

Taxis,aout(ω) =
1

2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)〈a†out(t)aout(t′)〉

=
κ

2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)(〈a†1(t)a1(t′)〉+ 〈a†1(t)a2(t′)〉

+ 〈a†2(t)a1(t′)〉+ 〈a†2(t)a2(t′)〉
)
, (C.20)

Taxis,bout(ω) =
κ

2π

∫ ∞
0

dt

∫ ∞
0

dt′ e−iω(t−t′)(〈b†1(t)b1(t′)〉+ 〈b†1(t)b2(t′)〉

+ 〈b†2(t)b1(t′)〉+ 〈b†2(t)b2(t′)〉
)
, (C.21)
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C. Adiabatic Master Equation � Initial Calculations

in terms of two-time correlation functions of the atomic operators. We used the
relations

aout(t) = −ain(t) + Ja(t) , (C.22)

bout(t) = −bin(t) + Jb(t) , (C.23)

and that the input, ain and bin, is the vacuum noise whose mean is zero.
The second-order correlation functions for the atomic operators can be obtained

in terms of the probability amplitudes of the pure state of the one-energy quantum
subspace, shown as,

|ψ̄(t)〉 = α(t)|eg〉+ β(t)|ge〉 , (C.24)

by separating the Liouvillian, similar to what was done in Section 5.1.2. We �nd

〈σ+
1 (t)σ−1 (t′)〉 = α∗(t)α(t′) , (C.25)

〈σ+
1 (t)σ−2 (t′)〉 = α∗(t)β(t′) , (C.26)

〈σ+
2 (t)σ−1 (t′)〉 = β∗(t)α(t′) , (C.27)

〈σ+
2 (t)σ−2 (t′)〉 = β∗(t)β(t′) , (C.28)

and for the equations of motion for the probability amplitudes

α̇(t) = Y1α(t) + Y2β(t) , (C.29)

β̇(t) = Y2α(t) + Y1β(t) , (C.30)

with

Y1 = −i
(
ωA − 2g

∆ω
κ2 + ∆ω2

)
− Γ

2
, (C.31)

Y2 = −i
(

4g2 κ2∆ω
(κ2 −∆ω2)2 + 4κ2∆ω2

)
− Π

2
, (C.32)

where Γ and Π are given by equation (C.3) and (C.4), respectively. The solutions
for the probability amplitudes are

α(t) = eY1t [cosh (Y2t)α(0) + sinh (Y2t)β(0)] , (C.33)

β(t) = eY1t [sinh (Y2t)α(0) + cosh (Y2t)β(0)] . (C.34)

These are essentially all the results needed for computing the emission spectra
which could then be compared with the emission spectra obtained from the full
model.
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1T1A 1-toroid-1-atom, 54
2T0A 2-toroids-no-atom, 54
2T1A 2-toroids-1-atom, 54
2T2A 2-toroids-2-atoms, 54

EIT electromagnetically induced transparency, 79

WGM whispering gallery mode, 12
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