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Abstract

Cavity quantum electrodynamics (cavity QED) is the study of systems in which atoms interact

with the quantised electromagnetic modes of an optical cavity. We consider two new directions

in cavity QED: two-mode cavity QED and circuit QED.

In two-mode cavity QED, an atom with Zeeman structure in its ground and excited states

interacts with two orthogonal linear polarisation modes of an optical cavity, via an F = ↔

F′ =  transition. We consider the full atomic level structure for this transition, including
the Zeeman energy shi�, as well as the atom’s coupling to the two orthogonal modes of the

cavity. By approximating the driven mode of the cavity semiclassically, we are able to investigate

quantum beats: interference fringes in the second-order photon correlation function caused by

the Larmor precession of the atom in an appliedmagnetic �eld. We go on to simulate the strong

driving behaviour of this system, and �nd that the mean photon number in the non-driven

mode of the cavity begins to decrease beyond a certain threshold driving �eld strength. We

explain this behaviour qualitatively by way of an analogy to a simple model involving an atom

with just two relevant quantum states.

Circuit QED is an implementation of cavity QED in a superconducting circuit. We develop

the background physics of one particular circuit QED system, which consists of a transmission

line cavity coupled to a superconducting charge qubit. �e type of qubit used in this system,

known as a transmon, behaves in many ways more similarly to an anharmonic oscillator than

a pure qubit. As an application of the model we develop, we investigate dispersive optical

bistability in the circuit QED system. We perform a semiclassical treatment of the system,

including a linearised stability analysis, which is indicative of bistability. We then carry out a full

quantum treatment, plotting Q-functions to visualise the bimodality of the cavity �eld. Monte
Carlo simulations based on a quantum trajectory unravelling of the master equation display

the expected “tunnelling” between metastable states due to quantum �uctuations, con�rming

the presence of dispersive optical bistability in our model.
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1

Introduc�on

Cavity quantum electrodynamics (cavity QED) is the study of systems in which atoms interact

with the quantised electromagnetic modes of an optical cavity [1, 2].

In quantum electrodynamics in general, the electromagnetic �eld may be quantised by

considering a �nite volume de�ned by conducting walls, where the �eld can be decomposed

into a discrete, though in�nite, set ofmodes. �e �eld is quantised in the usual way, by imposing

canonical commutation relations. �en, the mode volume is increased to in�nity, and the

continuous spectrum of the �eld is recovered. If, however, the conducting walls of the mode

volume are retained in the form of a cavity, this imposes boundary conditions on the �eld, and

the spectrum of the cavity �eld remains discrete. It is this discrete �eld that an atom interacts

with in a cavity QED experiment. In its simplest form, cavity QED consists of a single atom

with just two relevant quantum states, coupled to a single mode of the electromagnetic �eld.

In this thesis we consider two new directions in cavity quantum electrodynamics. �e �rst

is two-mode cavity QED, in which an atom with Zeeman structure in its ground and excited

states interacts with two orthogonal linear polarisationmodes of an optical cavity. �e inclusion

– in contrast to the prototypical form of cavity QED, which involves a two-level atom and a

single cavity mode – of the additional cavity mode and magnetic substructure of the atomic

energy levels gives rise to unique physics. �e second new direction we investigate is circuit

quantum electrodynamics, which is an implementation of cavity QED in a superconducting

circuit. We consider a circuit QED system consisting of a transmission-line cavity coupled to

a superconducting charge qubit, and make connections with the physics of traditional cavity

QED.

�is thesis is largely concerned with the modelling of open quantum systems [3]: systems
which interact with the surrounding environment. �erefore in chapter 2 we develop the

mathematical theory of open quantum systems, and derive the Lindblad master equation [4],

which is the most general form of a large class of Markovian quantum master equations. �e

Lindblad master equation describes the non-unitary evolution of the density matrix which

characterises the state of the open quantum system, and is put to much use in the following

chapters. Additionally, we present an overview of quantum trajectory theory [5], which is an
alternative conceptual and computational tool for analysing the dynamics of an open quantum

system.

In chapter 3, we review the Jaynes-Cummings model [6], which describes the interaction
of a two-level atom with a single quantised mode of the electromagnetic �eld. We derive the

Jaynes-Cummings Hamiltonian for an isolated atom-cavity system; this Hamiltonian is readily

1



2 introduction

generalised to take driving of the system into account. �e Lindblad master equation is used to

describe the damping of the Jaynes-Cummings system which arises due to its interaction with

the surrounding environment. Our consideration of the Jaynes-Cummings model underlies

much of the following theory of cavity QED.

In chapter 4, we set out to model – using the Jaynes-Cummings model as a starting point –

a two-mode cavity quantum electrodynamics experiment carried out by L. A. Orozco’s group

at the University of Maryland [7]. �is system comprises a single Rubidium-85 atom within an

optical cavity. Two optical cavity modes with orthogonal linear polarisations interact with the

atom via the atom’s S/, F = ↔ P/, F′ =  transition; one of the cavity modes is resonantly
driven by a periodic classical �eld. We consider the full atomic level structure for this transition,

including the Zeeman energy shi�, as well as the atom’s coupling to the two orthogonal modes

of the cavity. Chapter 5 is devoted to results obtained from the two-mode cavity QED model

we have developed. We �nd that this system displays quantum beats [8]: interference fringes in
the second-order photon correlation function, caused by the Larmor precession of the atom

in an applied magnetic �eld. We �nd that we can approximate the driven mode of the cavity

semiclassically, and use this approximation to further investigate quantum beat e�ects, as well

as the strong driving behaviour of the system.

In chapter 6 we introduce circuit quantum electrodynamics [9]: a radical new implementa-
tion of cavity quantum electrodynamics, in a superconducting circuit. Circuit QED is of great

interest due to potential applications in the �eld of quantum information processing [10, 11].

Chapter 7 is devoted to the detailed development of the background physics of one particular

type of circuit QED system, starting from the basic principles of quantum mechanics and of

electrical circuit theory. �e particular implementation of circuit QEDwe consider consists of a

one-dimensional transmission line cavity coupled to a superconducting charge qubit. �is type

of system �ts the experimental requirements to achieve strong coupling between the qubit and

the electromagnetic �eld, in which the rate of absorption or emission of a single photon by the

qubit is more rapid than any of the rates of loss [11, 12]. In recent years, dramatic measurements

showing the quantum mechanics of the Jaynes-Cummings model have been made in circuit

QED systems: measurements which would never have been possible with real atoms [13, 14].

�e type of qubit used in the circuit QED system we investigate is known as a transmon [15],
and behaves in many ways more similarly to an anharmonic oscillator than a pure qubit. In

chapter 8, as an application of the theory we have developed, we investigate dispersive optical

bistability in our model of the circuit QED system.

Finally, a word on the subject of notation. Some aspects of the notation used in parts of

this thesis are inconsistent. For example, we o�en use circum�exes to denote Hilbert space

operators such as â or σ̂−; Hamiltonians, however, will generally not possess circum�exes.
Where confusion is unlikely, we may omit the circum�exes altogether. Another example of

a notational change is the omission of the subscript on the density operator ρS for an open
quantum system. Where a notational change might cause confusion, we will introduce it

explicitly.



references 3

References

[1] H.Walther, B. T. H. Varcoe, B.-G. Englert, andT. Becker. Cavity quantum electrodynamics.

Reports on Progress in Physics, 69:1325–1382, 2006.
[2] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble.

Trapped atoms in cavity QED: coupling quantized light and matter. Journal of Physics B,
38:S551–S565, 2005.

[3] H.-P. Breuer and F. Pettruccione. �e theory of open quantum systems. Oxford University
Press, 2007.

[4] G. Lindblad. On the generators of quantum dynamical semigroups. Communications in
Mathematical Physics, 48:119–130, 1976.

[5] H. J. Carmichael. An Open Systems Approach to Quantum Optics. Springer-Verlag, 1993.
[6] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation

theories with application to the beam maser. Proceedings of the IEEE, 51:89–109, 1963.
[7] D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael. Observation of

ground-state quantum beats in atomic spontaneous emission. To be published in Physical
Review Letters, 2010.

[8] P. Barberis-Blostein, D. G. Norris, L. A. Orozco, and H. J. Carmichael. From quantum

feedback to probabilistic error correction: manipulation of quantum beats in cavity QED.

New Journal of Physics, 12:023002, 2010.
[9] R. J. Schoelkopf and S. M. Girvin. Wiring up quantum systems. Nature, 451:664–669,
2008.

[10] J. Q. You and F. Nori. Quantum information processing with superconducting qubits in a

microwave �eld. Phys. Rev. B, 68:064509, 2003.
[11] A. Blais, R.-S. Huang, A. Wallra�, S. M. Girvin, and R. J. Schoelkopf. Cavity quantum

electrodynamics for superconducting electrical circuits: An architecture for quantum

computation. Physical Review A, 69:062320, 2004.
[12] A. Wallra�, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M.

Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to a superconducting

qubit using circuit quantum electrodynamics. Nature, 431:162–167, 2004.
[13] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A.Wallra�. Climbing

the Jaynes-Cummings ladder and observing its
√
n nonlinearity in a cavity QED system.

Nature, 454:315–318, 2008.
[14] L. S. Bishop, J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E. �uneberg, S. M.

Girvin, and R. J. Schoelkopf. Nonlinear response of the vacuum Rabi resonance. Nature
Physics, 5:105–109, 2009.

[15] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.

Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from

the Cooper pair box. Physical Review A, 76:042319, 2007.





2

Open quantum systems

Sections 2.1 and 2.2 will largely follow the course and notation of Breuer and Pettruccione [1].

Other treatments are available in Kronenwett [2] and Carmichael [3]. �roughout this chapter

we will set h̷ ≡ .

2.1 Closed and open quantum systems

2.1.1 The von Neumann equa�on

�e Schrödinger equation for the time evolution of the state vector ∣ψ(t)⟩ is

i
d

dt
∣ψ(t)⟩ = H(t) ∣ψ(t)⟩ . (2.1)

�e solution of the Schrödinger equation with initial condition ∣ψ(t)⟩ can be written

∣ψ(t)⟩ = U(t, t) ∣ψ(t)⟩ , (2.2)

whereU(t, t) is the unitary time evolution operator. �e time evolution operator also satis�es
the Schrödinger equation:

i
∂
∂t
U(t, t) = H(t)U(t, t) , (2.3)

with initial condition

U(t, t) = I . (2.4)

�e solution of (2.3) with initial condition (2.4) can be written as

U(t, t) = Texp [−i ∫
t

t
ds H(s)] , (2.5)

where the time ordering operator T orders products of time-dependent operators such that their

time arguments increase from right to le�: “earlier operators operate earlier”. Obviously when

theHamiltonian is time-independent the above solution reduces toU(t, t) = exp[−iH(t−t)].
It may be the case that the system under consideration is driven by external forces. If,

however, the dynamics of the system can still be formulated solely in terms of a Hamiltonian

H(t) (which, as the notation suggests, may in general be time-dependent), the system is still

5



6 open quantum systems

considered to be closed. A system whose Hamiltonian is independent of time is called an
isolated system.
If the system under consideration is in a mixed state, we characterise it by way of the density

matrix ρ(t). As is well-known (and very easy to show), the equation of motion for the density
matrix is the von Neumann equation,

d

dt
ρ(t) = −i [H(t), ρ(t)] . (2.6)

�e von Neumann equation can be written in a form analogous to the well-known classical

Liouville equation,

d

dt
ρ(t) = L(t)ρ(t) , (2.7)

where the Liouville super-operator (or simply Liouvillian) is de�ned by writing

L(t)Â ≡ −i[H(t), Â] . (2.8)

If we assume that at some inital time t the state of the system is characterised by the density
matrix ρ(t) we obtain, much as in (2.5), the formal solution

ρ(t) = Texp [ ∫
t

t
dsL(s)] ρ(t) . (2.9)

If the Hamiltonian is time-independent, then so is the Liouvillian, and we get

ρ(t) = exp[L(t − t)]ρ(t) . (2.10)

2.1.2 Composite quantum systems

Consider two quantum systems SA and SB with Hilbert spacesHA andHB respectively. �e

state space of the combined system S = SA + SB is given by

H = HA ⊗HB . (2.11)

If we take a �xed orthonormal basis {∣ψA,i⟩} forHA and {∣ψB,i⟩} forHB, a general state inH

can be written ∣Ψ⟩ = ∑i j αi j ∣ψA,i⟩ ⊗ ∣ψB, j⟩. �us, the elements ∣ψA,i⟩ ⊗ ∣ψB, j⟩ form a basis for

H.

If ÔA and ÔB are operators acting inHA andHB respectively, their tensor product is de�ned

by

(ÔA ⊗ ÔB)(∣ψA,i⟩ ⊗ ∣ψB, j⟩) ≡ (ÔA ∣ψA,i⟩) ⊗ (ÔB ∣ψB, j⟩) . (2.12)

�e action of an operator on an arbitrary state is de�ned by a linear extension of the above

formula. Any operator Ô onH can be written Ô = ∑α ÔA,α⊗ ÔB,α ; speci�cally, the observables
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of system SA take the form ÔA ⊗ IB, and the observables of SB take the form IA ⊗ ÔB. If one

is only interested in observables of the subsystem SA, say, one can make use of the reduced
density matrix de�ned by

ρA ≡ trBρ , (2.13)

where trB denotes the partial trace overHB. �e reduced densitymatrix ρA completely describes
the statistical properties of all observables belonging to SA, that is observables of the form
ÔA ⊗ IB; the expectation value of such an observable can be determined using the formula
⟨Ô⟩ = trA(ÔAρA).

2.1.3 Open quantum systems

An open quantum system is a quantum system S (which we will frequently refer to as simply the
system) which is coupled to another quantum system E, called the environment. �e combined
system S + E is usually assumed to be closed, with dynamics described by the von Neumann
equation. �e dynamics of S however cannot, in general, be described in terms of unitary
time-evolution as those of a closed system can. �is is because the state of S will evolve as a
consequence of both its internal dynamics and of its interaction with the environment, the

interaction giving rise to correlations between the system and the environment.

If we denote the Hilbert spaces of S and E respectively byHS andHE , then the Hilbert

space of the combined system S+E is given byH = HS⊗HE . �eHamiltonian of the combined

system will take on the form

H(t) = HS ⊗ IE + IS ⊗HE +HI(t) , (2.14)

where HS and HE are the free Hamiltonians for the system and environment respectively, and

HI(t) describes the interaction between the two. If the environment E has in�nitely many
degrees of freedom, it is referred to as a reservoir. A reservoir in thermal equilibrium is a bath.
Sometimes a complete treatment of the dynamics of the combined system would be too

complex to be practical. For example, a reservoir or bath consisting of in�nitely many degrees

of freedom has in�nitely many equations of motion. Provided that all measurements of interest

will pertain to the system S rather than its environment, we can develop a simpler description
in the reduced state spaceHS . Referring back to section 2.1.2, all observables of S take the form
AS ⊗ IE , where AS is an operator acting onHS . If the state of the combined system S + E is
described by ρ, then the expectation values of all observables acting onHS are determined

using

⟨AS⟩ = trS[ASρS] , (2.15)

where

ρS = trE(ρ) (2.16)
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is referred to as the reduced density matrix of the open quantum system S; trS and trE denote
the partial traces over the system and environment respectively.

We see that the reduced density matrix ρS(t) is obtained from the density matrix ρ(t)
of the combined system S + E by taking the partial trace over the degrees of freedom of the
environment. Since the evolution of ρ(t) is determined by the von Neumann equation (2.6),
we can take the partial trace on both sides to obtain

d

dt
ρS(t) = −i trE{[H(t), ρ(t)]} . (2.17)

Similarly, as ρ(t) evolves unitarily, we have

ρS(t) = trE{U(t, t)ρ(t)U†(t, t)} . (2.18)

2.2 The Lindblad master equa�on

Here we will brie�y outline the formal mathematics behind the Markovian quantum master

equation known as the Lindblad master equation, or simply the Lindblad equation. �e details
are available in, for example, Breuer and Pettruccione [4], and references therein.

2.2.1 Quantum dynamical semigroups

An important property of a classical, homogeneous Markov process is the semigroup property

[5]. In the same way, a quantum Markov processes may be described by way of quantum

dynamical semigroups, which we will now introduce.

Suppose that the state of the combined system S + E at initial time t =  can be expressed
as an uncorrelated product state ρ() = ρS() ⊗ ρE , where ρE is some reference state of the
environment. From (2.18), the transformation describing the evolution of the reduced system

from t =  to some t >  can be written

ρS() ↦ ρS(t) = V(t)ρS() ≡ trE{U(t, t)[ρS() ⊗ ρE]U†(t, t)} . (2.19)

If we take ρE and the �nal time t >  to be �xed, the above relation de�nes a map from the
space of density matrices of the reduced system, S(HS), to itself: V(t) ∶ S(HS) → S(HS).

�e map V(t) is known as a dynamical map. It can be shown that the dynamical map V(t)
can always be written entirely in terms of operators inHS [4].

If we allow t to vary, we get a one-parameter family of dynamical maps,

{V(t) ∣ t ≥ } , (2.20)

with V() the identity. �is family of maps completely characterises the future time-evolution

of the open quantum system.

Provided that the time scales over which the correlation functions of the environment decay

are much smaller than the time scale of the system’s evolution, we can neglect memory e�ects in
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the dynamics of the reduced system: the dynamics of the reduced systemwill beMarkovian. �e

dynamical map corresponding to a time-homogeneous Markov process satis�es the semigroup

property,

V(t)V(t) = V(t + t) , t, t ≥  . (2.21)

A quantum dynamical semigroup is a continuous, one-parameter family of dynamical maps
satisfying the semigroup property (2.21). �e physical conditions under which the dynamics of

the system can be assumed to Markovian will be examined later.

2.2.2 Generator of a quantum dynamical semigroup

Given a quantum dynamical semigroup there exists, subject to certain mathematical conditions

[6], a linear map L that is the in�nitesimal generator of the semigroup. �us, we can represent

the dynamical map in exponential form,

V(t) = exp(Lt) , (2.22)

which yields the equation of motion

d

dt
ρS(t) = LρS(t) , (2.23)

known as theMarkovian quantum master equation. �e generator L is a super-operator – a
generalisation of the Liouvillian introduced in section 2.1.1. When confusion is unlikely, we

will refer to the generator L as the Liouvillian as well.

If dimHs = N , the corresponding Liouville space1 has dimension N, and we can de�ne a
basis for the Liouville space, comprising orthonormal operators F j, j = , , . . . ,N. �e most
general form of the generator is given by

LρS = −i [H, ρS] +
N−
∑
i=

γi (AiρSA†i −



A†iAiρs −




ρsA†iAi) , (2.24)

where the so-called Lindblad operators Ak are linear combinations of the basis functions Fi of
the Liouville space. �e master equation (2.23) corresponding to this generator is known as

themaster equation in Lindblad form, or simply the Lindblad equation.
�e form (2.24) for the generator is constructed in Breuer and Pettruccione [4], but the

actual proof that it is themost general form for the generator of a quantumdynamical semigroup,

in the case of a �nite-dimensional Hilbert space, has been given by Gorini et al. [8]; a related

theorem was proved by Lindblad [9], for whom the equation is named.

1�e generator L is an operator on Liouville space. See Breuer and Pettruccione [7].
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2.2.3 Time-dependent generator

If an open quantum system is subjected to an external time-dependent �eld, the generator may

also be time-dependent. An obvious time-dependent generalisation of (2.24) is

d

dt
ρS(t) = L(t)ρS(t) , (2.25)

where L(t) is the generator of a quantum dynamical semigroup for each �xed t ≥ . �e
corresponding propagator is

V(t, t) = Texp [ ∫
t

t
dsL(s)] . (2.26)

Compare this to (2.9). �e time-dependent generalisation of the semigroup property (2.21) is

V(t, t)V(t, t) = V(t, t) , (2.27)

which reduces to the semigroup property for �xed t.

2.2.4 Microscopic deriva�on of the Lindblad master equa�on

Consider a quantum mechanical system S weakly coupled to a reservoir E. �e combined
system’s Hamiltonian is of the form

H = HS +HE +HI . (2.28)

�e von Neumann equation in the interaction picture is

d

dt
ρ(t) = −i [HI(t), ρ(t)] , (2.29)

where HI(t) is the interaction part of Hamiltonian, transformed into the interaction picture.
Integrating, we obtain

ρ(t) = ρ() − i ∫
t


ds [HI(s), ρ(s)] . (2.30)

Substituting the integral form of the von Neumann equation back into the di�erential form

(2.29) and tracing over the reservoir degrees of freedom gives

d

dt
ρS(t) = − ∫

t


ds trE {[HI(t), [HI(s), ρ(s)]]} , (2.31)

where we have assumed that

trE {[HI(t), ρ()]} =  . (2.32)

In order to eliminate the density matrix ρ(t) of the combined system from the right-hand
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side of (2.31), we make an approximation known as the Born approximation. Provided the
coupling between the system and reservoir is weak, the in�uence of the system on the reservoir

will be small, and we can assume that the e�ect of the interaction on the reduced density matrix

ρE of the reservoir is negligible. �us, we can approximate the state of the combined system by

ρ(t) ≈ ρS(t) ⊗ ρE . (2.33)

�is approximation does not mean that the open quantum system causes no excitations in

the reservoir: the Markov approximation, which we introduce below, deals with this issue.

Substituting (2.33) into (2.31), we get

d

dt
ρS(t) = − ∫

t


ds trE {[HI(t), [HI(s), ρS(s) ⊗ ρE]]} . (2.34)

In (2.34), the time-evolution of the system state depends on all the past states of the system.

We now make theMarkov approximation: the approximation that the time-evolution of the
state of the system at time t depends only on the present state ρS(t), and not on all the past
states. �e Markov approximation amounts to replacing ρS(s) in the integrand above with
ρS(t). �e resulting equation,

d

dt
ρS(t) = − ∫

t


ds trE {[HI(t), [HI(t − s), ρS(t) ⊗ ρE]]} , (2.35)

is known as the Red�eld equation [10]. Note that we have substituted t − s for s above. �e
Red�eld equation is local in time: the future time-evolution does not depend on the history

of the system. However, it is not yet a Markovian master equation, since the time-evolution

does depend on the initial preparation of ρS at time t = . �is dependence enters the Red�eld
equation by way of the upper integration limit, and so it can be removed by letting the upper

limit of the integral go to in�nity,

d

dt
ρS(t) = − ∫

∞


ds trE {[HI(t), [HI(t − s), ρS(t) ⊗ ρE]]} . (2.36)

�is approximation is justi�ed provided that the integrand disappears su�ciently fast for

s ≫ τE , where τE is the reservoir correlation time. �us we see that the relaxation time of
the system τR, which de�nes the characteristic time-scale over which the system state varies
appreciably, must be large compared with τE for the Markov approximation to apply.

�e Markov approximation provides a description of the dynamics on a coarse-grained

time-scale, larger than the time-scale of the reservoir correlations. �e underlying assumption

is that the reservoir excitations decay over times which are not resolved, justifying the Born

approximation we made earlier. Indeed, any dynamical behaviour on time-scales of the order

of magnitude of the reservoir correlation time τE is not resolved by a Markovian quantum
master equation.

Before we continue with our derivation of the Lindblad master equation, we will make

an interesting digression. To this end we characterise the strength of the interaction between



12 open quantum systems

system and environment by a coupling strength α, writing

HI → αHI . (2.37)

�eMarkov approximation simpli�es the calculations substantially: equation (2.34), where only

the Born approximation has been made, is a rather complicated integro-di�erential equation,

and the Markov approximation removes much of the complexity. Despite this fact, to second

order in the coupling strength α, omitting the Markov approximation (and making only the
Born approximation) does not, in general, improve the accuracy of the calculation [11]. It is

interesting to note that both the Born and Markov approximations are only valid to second

order in the coupling strength.

�e approximationsmade above in equations (2.33), (2.35) and (2.36) are known collectively

as the Born-Markov approximation. However in general they do not guarantee that the equation
of motion (2.36) de�nes the generator of a quantum dynamical semigroup [12, 13]. A further

approximation is necessary: a secular approximation in which one averages over those terms in

the master equation which oscillate rapidly. �is approximation is known as the rotating-wave
approximation. Before this approximation can be made, though, some additional steps are
required.

In the Schrödinger picture, the interaction Hamiltonian can always be expanded in the

form [14]

HI = ∑
α,ω

Aα(ω) ⊗ Bα , (2.38)

where Bα are reservoir operators, and Aα(ω) are degenerate eigenoperators of the system

Hamiltonian HS , such that

[HS ,Aα(ω)] = −ωAα(ω) , (2.39a)

[HS ,A†α(ω)] = ωA†α(ω) . (2.39b)

Both∑ω Aα(ω) and Bα are Hermitian operators for all α. From these relations we �nd the
corresponding interaction picture operators:

e
iHS tAα(ω)e−iHS t = e−iωtAα(ω) , (2.40a)

e
iHS tA†α(ω)e−iHS t = eiωtA†α(ω) . (2.40b)

�e interaction Hamiltonian can now be written in the form

HI(t) = ∑
α,ω
e
−iωtAα(ω) ⊗ Bα(t)

= ∑
α,ω
e
iωtA†α(ω) ⊗ B†α(t) , (2.41)
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where

Bα(t) = eiHE tBαe
−iHE t . (2.42)

Note that the assumption (2.32) now becomes

tr{Bα(t)ρE} = ⟨Bα(t)⟩ =  , (2.43)

that is, we have in fact assumed the expectation values of Bα(t) in the reservoir vanish.
Substituting the form (2.41) of the interaction Hamiltonian into (2.36), we obtain

d

dt
ρS(t) = ∫

∞


ds trE[HI(t − s)ρS(t) ⊗ ρEHI(t) −HI(t)HI(t − s)ρS(t) ⊗ ρE] + h.c.

= ∑
α,ω′
∑
β,ω
e
i(ω′−ω)t

Γαβ(ω)[Aβ(ω)ρS(t)A†α(ω′) − A†α(ω′)Aβ(ω)ρS(t)] + h.c. ,

(2.44)

where

Γαβ(ω) = ∫
∞


ds eiωs ⟨B†α(t)Bβ(t − s)⟩ , (2.45)

with the reservoir correlation functions

⟨B†α(t)Bβ(t − s)⟩ = trE[B†α(t)Bβ(t − s)ρE] . (2.46)

Supposing that ρE is a stationary state of the reservoir Hamiltonian, [HE , ρE] = , the reservoir
correlation functions are homogeneous in time,

⟨B†α(t)Bβ(t − s)⟩ = ⟨B†α(s)Bβ()⟩ , (2.47)

which means that the quantities Γαβ(ω) do not depend on time.

In order for the Markov approximation to be justi�ed, the time τE over which the reservoir
correlation functions decaymust, as we have already remarked, bemuch smaller than the system

relaxation time τR. If we were dealing with a general environment consisting of a collection
of harmonic oscillator modes with a discrete frequency spectrum, the reservoir correlation

functions would be quasi-periodic in s [14]. Rapid decay of the reservoir correlations requires
a continuum of frequencies, which is in fact the case when we consider a reservoir, which has

in�nitely many degrees of freedom.

We are now in a position to make the rotating-wave approximation we mentioned earlier.

�e typical time-scale τS on which the system S evolves is de�ned by a typical value of ∣ω′−ω∣−,

where ω′ ≠ ω. If τS ≫ τR, then the terms for which ω′ ≠ ω oscillate very rapidly over the
typical time-scale on which the system state varies and can be neglected. Assuming that this
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condition is satis�ed, we obtain

d

dt
ρS(t) = ∑

ω
∑
α,β
Γαβ(ω)[Aβ(ω)ρS(t)A†α(ω) − A†α(ω)Aβ(ω)ρS(t)] + h.c. (2.48)

We perform the decomposition

Γαβ(ω) =



γαβ(ω) + iSαβ(ω) , (2.49)

such that, for �xed ω, the matrix formed by

Sαβ(ω) =


i
[Γαβ(ω) − Γ∗βα(ω)] (2.50)

is Hermitian, and the matrix formed by

γαβ(ω) = Γαβ(ω) + Γ∗βα(ω) (2.51)

is positive.2 Seeing the indices α and β run over the same set, these de�nitions �nally lead to
the interaction picture master equation

d

dt
ρS(t) = −i [HLS , ρS(t)] +∑

ω
∑
α,β

γαβ(ω)[Aβ(ω)ρS(t)A†α(ω)

−



A†α(ω)Aβ(ω)ρS(t) −




ρS(t)A†α(ω)Aβ(ω)] , (2.52)

where

HLS = ∑
ω
∑
α,β

Sαβ(ω)A†αAβ(ω) (2.53)

is known as the Lamb shi� Hamiltonian, because it results in a Lamb shi�-type renormalisation
of the unperturbed energy levels, caused by the system-reservoir coupling.3 From (2.40), it

is easy to show that the Lamb shi� Hamiltonian commutes with the system Hamiltonian,

[HS ,HLS] = .

Once the master equation (2.52) is transformed back into the Schrödinger picture, it can

be brought into Lindblad form – corresponding to the generator (2.24) – by diagonalising the

matrix γαβ(ω). �e �nal form of the Lindblad equation is

d

dt
ρS(t) = −i [HS +HLS , ρS(t)]+∑

i
γi[AiρS(t)A†i −




A†iAiρS(t)−




ρS(t)A†iAi] , (2.54)

where the index i runs over the various independent decay channels.

2For the proof that γαβ(ω) is positive, see Breuer and Pettruccione [14] and references therein.
3See Breuer and Pettruccione [15] for a treatment of this term.
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2.2.5 Jump operators

�emaster equation in Lindblad form, with generator given by (2.24), is also sometimes written

in a di�erent form, which we obtain by scaling the Lindblad operators,

ȷ̂i ≡
√

γiAi , (2.55)

so that the master equation becomes

d

dt
ρS(t) = −i [HS +HLS , ρS(t)] +∑

i
( ȷ̂iρS(t) ȷ̂†i −




ȷ̂†i ȷ̂iρS(t) −




ρS(t) ȷ̂†i ȷ̂i) . (2.56)

�e operators ȷ̂i are sometimes called jump operators

2.3 The quantum regression formula

We now derive a useful formula which will allow us to evaluate, in a combined quantum system

S + E, two-time averages of the form

⟨O(t)O(t′)O(t)⟩ with t′ − t ≥  , (2.57)

where the operators Oi above act inHS . Clearly such an average cannot be evaluated in the

Schrödinger picture, as Schrödinger picture operators are not general time dependent. We

must write the average as a trace in the Heisenberg picture, and then transform it back into the

Schrödinger picture. �e average in the Heisenberg picture is given by4

⟨O(t)O(t′)O(t)⟩ = trS+E [ρ(H)O(H) (t)O(H) (t′)O(H) (t)]

= trS+E [ρ(H)eiHtO(S) e
iH(t′−t)O(S) e

−iH(t′−t)O(S) e
−iHt] , (2.58)

where we have taken the Hamiltonian to be constant in time. �e total trace trS+E is equivalent

to the partial traces over the system and environment separately: trS+E = trStrE . Using the

cyclic property of the trace, this becomes

⟨O(t)O(t′)O(t)⟩ = trS+E [O(S) e
−iH(t′−t)O(S) e

−iHtρ(H)eiHtO(S) e
iH(t′−t)]

= trS+E [O(S) e
−iH(t′−t)O(S) ρ(S)(t)O(S) e

iH(t′−t)]

= trS {OtrE [e−iH(t
′−t)Oρ(t)OeiH(t

′−t)]} , (2.59)

4Heisenberg picture operators are denoted by a superscript (H), and Schrödinger picture operators by a
superscript (S).
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where in the last line we are now fully back in the Schrödinger picture. If we de�ne the collapsed
density matrix5

ρOO(τ) ≡ e−iHτO(S) ρ(S)O(S) e
iHτ

with τ ≡ t′ − t , (2.60)

the two-time average becomes

⟨O(t)O(t′)O(t)⟩ = trS {OtrE [ρOO(τ)]} . (2.61)

We also de�ne

ρOO ,S(τ) = trE [ρOO(τ)] . (2.62)

We can now make the Born approximation (2.33) for the collapsed density matrix (2.60),

obtaining

ρOO() = Oρ(t)O

= OρS(t)O ⊗ ρE

= trE [Oρ(t)O] ⊗ ρE

= ρOO ,S() ⊗ ρE . (2.63)

We see that the Born approximation carries over into the collapsed system. Finally, the de�nition

of the collapsed density matrix implies that it satis�es the von Neumann equation,

d

dτ
ρOO(τ) = −i [H, ρOO(τ)] . (2.64)

With the Born approximation and von Neumann equation applying to the collapsed system,

we have the starting point of the microscopic derivation of the Lindblad equation of section

(2.2.4), so clearly ρOO ,S obeys the same equation of motion as ρS ,

d

dτ
ρOO ,S(τ) = LρOO ,S(τ) . (2.65)

As we have noted, this equation has formal solution

ρOO ,S(τ) = eLτρOO ,S() = e
Lτ[OρS()O] . (2.66)

�us, (2.61) simpli�es to give

⟨O(t)O(t + τ)O(t)⟩ = trS {OeLτ[OρS(t)O]} , (2.67)

the quantum regression formula [16].

5To clarify our terminology: the collapsed density matrix is not itself a density matrix, unless O and O are
Hermitian adjoints of one another.
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2.4 Quantum trajectory theory

Quantum trajectory theory provides an alternative conceptual and computational tool for

analysing the master equation for some system. �is section presents an overview of quantum

trajectory theory, largely following Carmichael [17]. Further reading is available in Kronenwett

[2], Carmichael [3, 18].

Quantum trajectory theory has been introduced by other authors in di�erent ways;6 it is

part of the wider context of stochastic dynamics in Hilbert space [20].

2.4.1 Perturba�on expansion for the density operator

�emaster equation describing the time-evolution of the system density operator ρ(t) (where,
for the remainder of this chapter, we drop the subscript on ρS to simplify the notation) may be
written formally as in (2.23):

ρ̇(t) = Lρ(t) . (2.68)

In general, the Liouvillian L can be written as the sum of an unperturbed part L and a small

perturbation S , such that

L ≡ L − S . (2.69)

�e formal solution of (2.68) is therefore

ρ(t) = e(L+S)tρ() , (2.70)

provided that (L + S) is not explicitly time-dependent.7 �e �rst step towards obtaining a

perturbation expansion for ρ(t) is de�ning an auxiliary density operator ρ′(t), given by

ρ′(t) ≡ e−L tρ(t) . (2.71)

Taking the time derivative of (2.71), and substituting for L using (2.69) and for ρ′(t) using
(2.71), yields

ρ̇′(t) = −e−L tLρ(t) + e−L tLρ(t)

= e−L tSρ(t)

= e−L tSeL tρ′(t) , (2.72)

the equation of motion for ρ′(t).
We formally integrate the equation of motion (2.72), and substitute (2.72) into the result to

6See references in Carmichael [19].
7We consider only time-independent generators in this exposition of quantum trajectory theory.



18 open quantum systems

obtain

ρ(t) = eL t [ρ′() + ∫
t


dt′ ρ̇′(t′)]

= ρ() + ∫
t


dt′eL(t−t

′)SeL t
′

ρ′(t′) . (2.73)

Iterating this solution yields a Dyson series:

ρ(t) =
∞

∑
m=

∫
t


dtm ∫

tm


dtm−⋯ ∫

t


dteL(t−tm)SeL(tm−tm−)S ⋯SeL tρ() , (2.74)

with {tm} a monotonically increasing sequence. �e integration kernel in (2.74) describes a

single quantum trajectory for the initial state ρ(). �e terms eL(tm−tm−) represent continuous
time-evolution in the intervals [tm−, tm), while S represents discontinuous quantum jumps

(to be de�ned below) at the times {tm}. One can interpret (2.74) as a generalised sum over all

the possible “jump” pathways that the system might follow during its evolution from time t = 
to time t. Speci�cally, (2.74) is a sum over all the possible numbers of jumps, m = , . . . ,∞,

and an integration over all possible times of these jumps within the interval [, t).
It may be the case that several distinguishable perturbations, each causing the system

to “jump” in a di�erent fashion at di�erent times, will need to be taken into account. If in

addition to the �rst perturbation S there is a second perturbation to L, say S
′, each period

of free evolution in the time intervals [tm−, tm) (that is, between the jumps due to S) will be

interrupted by some number of jumps due to S ′. As such, each free evolution term will need

to be replaced by a Dyson series much like that in (2.74):

eL(tm−tm−) →
∞

∑
n=
∫

tm

tm−
dtn ∫

tn

tm−
dtn−⋯ ∫

t

tm−
dteL(t−tn)S ′eL(tn−tn−)S ′⋯S ′eL tρ() .

(2.75)

Instead of substituting this Dyson series for every free evolution in (2.74), we rede�ne m as the
total number of quantum jumps due to all Si , i = , . . . ,N , and sum over the N possibilities at
each jump, giving a general Dyson series

ρ(t) =
∞

∑
m=

N
∑

νm=

N
∑

νm−=
⋯

N
∑
ν=

∫
t


dtm ∫

tm


dtm− ⋯ ∫

t


dt

eL(t−tm)Sνm e
L(tm−tm−)Sνm−⋯ Sν e

L tρ() . (2.76)

�e integration kernel of this Dyson series is a density operator, called the unnormalised
conditioned density operator,

ρ̄c(t) ≡ eL(t−tm)Sνm e
L(tm−tm−)Sνm−⋯Sν e

L tρ() ; (2.77a)
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the normalised conditioned density operator is given by

ρc(t) ≡
ρ̄c(t)
tr [ρ̄c(t)]

, (2.77b)

and describes the state of the system at time t with an initial state ρ() conditioned on a
particular sequence of jump times in the interval [, t).

�us far, the quantum trajectory formalism has been developed in a general language, for

any choice of L and S , so long as S can be considered to be a small perturbation. �e next

section will be concerned more speci�cally with the unravelling of the master equation in

Lindblad form.

2.4.2 Unravelling the Lindblad master equa�on

�emaster equation in Lindblad form [9] is given formally by (2.68) with the Liouvillian L

given, as in (2.56), by

Lρ = −i [H, ρ] +∑
i
( ȷ̂iρ ȷ̂†i −




ȷ̂†i ȷ̂iρ −




ρ ȷ̂†i ȷ̂i) . (2.78)

�e jump operators ȷ̂i are determined by the particular system under consideration. �e terms
− ȷ̂i ȷ̂†i ρ and −ρ ȷ̂i ȷ̂†i in the Liouvillian describe the loss of population from the current states,
while the terms ȷ̂iρ ȷ̂†i describe the gain of population of the states toward which the system
propagates. As such, ȷ̂iρ ȷ̂†i can be understood as the densitymatrix a�er the transition described
by ȷ̂i ; such transitions can be interpreted as “quantum jumps” in the state of the system [21].
�is suggests an unravelling of the master equation in which the terms ȷ̂i ⋅ ȷ̂†i are interpreted
as causing quantum jumps in the trajectories of the reduced density operator. �e remaining

terms are interpreted as causing a modi�ed coherent time-evolution.

As such, the master equation in Lindblad form is re-written

ρ̇(t) = (L + S) ρ(t) , (2.79)

with

Lρ(t) = −i [H, ρ(t)] −



∑
i
[ ȷ̂†i ȷ̂i , ρ(t)]+ , (2.80)

where [⋅, ⋅]+ denotes the anti-commutator; and

S = ∑
i
Si , (2.81)

where

Siρ(t) = ȷ̂iρ(t) ȷ̂†i . (2.82)
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�e unperturbed Liouvillian L can also be written

Lρ(t) = −i [He� ρ(t) − ρ(t)H†e�] , (2.83)

where He� is an e�ective, non-Hermitian Hamiltonian given by

He� ≡ H − i



∑
i
ȷ̂†i ȷ̂i . (2.84)

�e non-Hermitian Hamiltonian generates non-unitary time-evolution, described by the

non-unitary Schrödinger equation

i
d

dt
∣Ψ(t)⟩ = He� ∣Ψ(t)⟩ . (2.85)

�is relation only holds between quantum jumps. �e dual correspondence

He� ∣Ψ(t)⟩ DC
←→ ⟨Ψ(t)∣H†e� (2.86)

gives the equation of motion for the state bra

i
d

dt
⟨Ψ(t)∣ = −⟨Ψ(t)∣H†e� . (2.87)

Suppose that the density operator ρ(t) factorises as a pure state,

ρ(t) = ∣Ψ(t)⟩⟨Ψ(t)∣ . (2.88)

Di�erentiating this density operator and substituting in the equations ofmotion for the intervals

between jumps, (2.85) and (2.87), yields

d

dt
ρ(t) = [

d

dt
∣Ψ(t)⟩] ⟨Ψ(t)∣ + ∣Ψ(t)⟩ [

d

dt
⟨Ψ(t)∣]

= −i [He� ∣Ψ(t)⟩⟨Ψ(t)∣ − ∣Ψ(t)⟩⟨Ψ(t)∣H†e�]

= Lρ(t) . (2.89)

�is con�rms that, provided the density operator factorises as a pure state, the non-Hermitian

Hamiltonian generates the non-unitary coherent time-evolution for that state.

2.4.3 Stochas�c wavefunc�ons

Equations (2.77) de�ne a quantum trajectory for a prescribed sequence of emission times.

However, the times of the quantum jumps – the emissions of photons into the reservoir –

are not deterministic. �e time intervals between two consecutive jumps (tm − tm−) in the
exponentials of (2.76) have to follow a quantum-mechanical randomness. Speci�cally, if the

conditioned density operator at time t, as de�ned in (2.77), is ρc(t), then the probability for a
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jump due to Si to occur in the interval [t, t + ∆t) is given by [22]

pc,i(t) = tr [Siρc(t)]∆t . (2.90)

Using the cyclicity of the trace, we obtain

tr [Siρc(t)] = tr [ ȷ̂iρc(t) ȷ̂†i ] = tr [ ȷ̂
†
i ȷ̂iρc(t)] (2.91)

it is clear that, in a quantum optical system where the jump operators ȷ̂i represent photon
emissions, (2.90) is the product of the conditioned mean photon �ux due to Si at time t and
the time interval ∆t. �e probability to �nd at least one jump in the time interval [t, t + ∆t)
due to any Si is given by

pc(t) = ∑
i
pc,i(t) = tr [Sρc(t)]∆t , (2.92)

with S given by (2.81).

O�en, the form of the various superoperators L and Si allows the conditioned density

operator ρc(t) to be factorised as a pure state, as in (2.88); as such, one can de�ne

ρc(t) = ∣Ψc(t)⟩⟨Ψc(t)∣ , (2.93a)

and

ρ̄c(t) = ∣Ψ̄c(t)⟩⟨Ψ̄c(t)∣ . (2.93b)

�e particular unravelling of the Lindblad master equation presented in section 2.4.2 has the

property that if the conditioned density operator factorises as a pure state initially, then it does

so for all times [23, 24].

In the intervals between the quantum jumps, the motion of the unnormalised ket is gov-

erned by the non-unitary Schrödinger equation (2.85); as a result the propagation without

photon emission over a time ∆t is given by

∣Ψ̄c(t + ∆t)⟩ = e−iHeff∆t ∣Ψ̄c(t)⟩ , (2.94)

where He� is the non-Hermitian Hamiltonian given by (2.84). At the times of the quantum
jumps, the unnormalised ket evolves discontinuously. If a jump due to Si occurs at a time t,
then

∣Ψ̄c(t)⟩ Ð→ ȷ̂i ∣Ψ̄c(t)⟩ . (2.95)

�e probability for a jump due to Si to occur in the interval [t, t + ∆t) is

pc,i(t) = ⟨Ψc(t)∣ ȷ̂†i ȷ̂i ∣Ψc(t)⟩∆t . (2.96)
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2.4.4 Monte Carlo simula�on

Clearly, using the quantum trajectory formalism as an analytic tool will, for all but the most

simple examples, be impractical or impossible (although this could also be said to be the case

for any other formalism). Monte Carlo simulations provide the most useful implementation of

quantum trajectory ideas. �is section outlines a Monte Carlo algorithm for the generation

of stochastic quantum trajectories, based on the unravelling of the Lindblad master equation

developed thus far. �e trajectories produced are statistically equivalent to the solution of the

master equation.8

In the Monto-Carlo simulation, time is discrete with a time-step ∆t. Given the conditioned
state ket at time tn, ∣Ψc(tn)⟩, the state ket at time tn+ = tn +∆t is calculated using the following
algorithm:

1. Calculate the N probabilities pc,i(tn) (i = , . . . ,N) for a quantum jump to occur in the
interval [tn , tn + ∆t) using

pc,i(tn) = ⟨Ψc(tn)∣ ȷ̂†i ȷ̂i ∣Ψc(tn)⟩∆t , (2.97)

as well as the total probability for any jump to occur,

pc(tn) = ∑
i
pc,i(tn) . (2.98)

2. Draw a uniformly distributed (pseudo)random number rn from the interval [, ), and
compare pc(tn) with rn.

(a) If pc(tn) ≥ rn, a jump occurs. Subdivide the unit interval into N sub-intervals
in proportion to the individual jump probabilities pc,i(tn), and draw a second
uniformly distributed random number r′n from the interval [, ). �e random
number r′n will fall into one of the N sub-intervals. For the sub-interval i in which
r′n falls, calculate ∣Ψ̄c(tn+)⟩ using

∣Ψ̄c(tn+)⟩ = ȷ̂i ∣Ψc(tn)⟩ . (2.99)

(b) If pc(tn) < rn, no jump occurs. Calculate ∣Ψ̄c(tn+)⟩ using

∣Ψ̄c(tn+)⟩ = e−iHeff∆t ∣Ψc(tn)⟩ . (2.100)

3. Normalise the new state:

∣Ψc(tn+)⟩ =
∣Ψ̄c(tn+)⟩

√
⟨Ψ̄c(tn+)∣Ψ̄c(tn+)⟩

. (2.101)

8Refer to Carmichael [25, 26] and the references therein for a mathematical justi�cation of the statistical
equivalence between the stochastic quantum trajectories produced by Monte Carlo simulation and the master
equation.
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4. Go to 1.

One �nal thing to note is that for the superoperator S in the Dyson series (2.76) to be a small

enough perturbation for this derivation – and this Monte Carlo algorithm – to apply, the

probability for a quantum jump to occur in a time interval ∆t must be very small. �is can
be ensured by choosing ∆t small enough that each jump is separated by many time steps,
∆t ≪ tm − tm−, so that most of the time the system evolves coherently.
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3

The Jaynes-Cummings model

�e Jaynes-Cummings model [1, 2] describes the interaction of a two-level atom with a single
quantised mode of the electromagnetic �eld.

3.1 The Jaynes-Cummings Hamiltonian

In the Coulomb gauge [3], where∇⋅A = , theHamiltonian for an atom (with electron positions

ri andmomenta pi) coupled to a radiation �eld characterised by the vector and scalar potentials
A and Φ is [4, 5]

H =


m

Z
∑
i=

[p̂i + eÂ(ri)]

+


 ∫V dr σ(r)Φ(r)+


 ∫V dr [єÊT(r)

+ µ−B̂(r)


] . (3.1)

�is is known as theminimal coupling form of the Hamiltonian. �e quantity σ(r) is the charge
density of the atomic system, and V is the mode volume occupied by the �eld.

�e complete Hamiltonian for a system described by the Jaynes-Cummings model consists

of parts describing the two-level atomic excitation, the radiation �eld, and the interaction

between the two:

HJCM = HA +HF +H . (3.2)

We are going to use the minimal coupling form of the Hamiltonian to derive each of the three

parts of the Jaynes-Cummings Hamiltonian.

3.1.1 The Hamiltonian of the atom

�e �rst term in (3.1) includes the kinetic energies of the electrons; the second term is the

electrostatic energy of the charges that constitute the atom, and does not involve any quantum

operators of the transverse radiation �eld. �e electrostatic interaction combines with the

kinetic energy terms mentioned above to give the energy of the atom in the absence of its

coupling to the transverse part of the electromagnetic �eld. �e Hamiltonian of the electrons

in the atom can, however, be simpli�ed by considering a simple energy level structure, which

we will do below.

Consider an atom with n energy eigenstates ∣En⟩ having energies En. �e Hamiltonian for

such an atom would be written HA = ∑n En ∣En⟩ ⟨En∣. However for the purposes of the Jaynes-

Cummingsmodel, wemake the two-level approximation: we consider only two non-degenerate

25
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energy levels satisfying

Ee − Eg = h̷ωA , (3.3)

where ωA is the frequency of the atomic transition in question. All other energy levels are

ignored. �is approximation is valid in the case where the frequency of the light with which the

atom interacts is close to ωA, while being far from resonance with any other atomic transition,

and where the Zeeman substructure of the levels can be ignored.

For a two-level atom with ground state ∣g⟩ and excited state ∣e⟩, the atomic Hamiltonian
can be expressed as H = Eg ∣g⟩ ⟨g∣ + Ee ∣e⟩ ⟨e∣. If we take the zero of energy to be half way
between the energies of the ground and excited states, the atomic Hamiltonian becomes

HA =
h̷ωA


(∣e⟩ ⟨e∣ − ∣g⟩ ⟨g∣) . (3.4)

Here we introduce the atomic raising and lowering operators

σ̂+ = ∣e⟩ ⟨g∣ , σ̂− = ∣g⟩ ⟨e∣ , (3.5)

along with

σ̂z = [σ̂+, σ̂−] . (3.6)

�us, the Hamiltonian of the two-level atom becomes

HA =



h̷ωAσ̂z . (3.7)

3.1.2 The Hamiltonian of the radia�on �eld

As is well-known, the second-quantised form of the Hamiltonian for the full, multi-mode

radiation �eld is given by [6]

HF = ∑
k
∑
λ
h̷ωk (â†kλ âkλ +




) , (3.8)

where n̂kλ ≡ â†kλ âkλ is the occupation number of the �eld mode speci�ed by the wavevector

k and the polarisation state λ: λ =  and λ =  denote the two transverse polarisations. �e

third term in the minimal coupling Hamiltonian (3.1) is the transverse �eld energy, which can

be shown to be identical with (3.8). �e boundary conditions imposed by the presence of an

optical cavity determine what modes kλ are supported.
�e term∑k∑λ  h̷ωk is due to the zero-point energy, and does not contribute to the energy

of the electromagnetic �eld as measured by way of photon detection. As such, we shi� the zero

of energy in order to eliminate this term. �is does not a�ect the equations of motion, as all

operators commute with a constant.

In the Jaynes-Cummings model, only a single cavity mode is to be considered; speci�cally,
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we neglect all modes from which the two-level atomic transition is far from resonance, leaving

only a single mode to which the atom couples. As such we drop the mode indices for simplicity

of notation. �e resulting single-mode radiation �eld Hamiltonian is written

HF = h̷ωF â† â . (3.9)

3.1.3 The interac�on Hamiltonian

�e�rst step in deriving theHamiltonian for the interaction between the atom and the radiation

�eld is to perform an harmonic decomposition of the vector potential of the electromagnetic

�eld [6–8]:

Â(r) = ∑
k
∑
λ

(
h̷

ωkє
)



[âkλukλ(r) + â†kλu

∗
kλ(r)] , (3.10)

where, assuming the �eld is contained in a mode volume V , the spatial mode functions ukλ(r)
are given by

ukλ(r) = V−  ekλ fk(r) . (3.11)

Here ekλ is the unit polarisation vector. In free space, fk(r) = exp(ik ⋅ r); in a cavity the mode
functions will depend on the particular geometry of the cavity considered.

�e �rst term in (3.1) includes the kinetic energies of the electrons (which we have already

considered in section 3.1.1), as well as additional terms

HI =
e
m∑i

[p̂i ⋅ Â(ri) + Â(ri) ⋅ p̂i] +
e

m∑i
Â(ri)


, (3.12)

which represent the interaction between the atom and the radiation �eld. Terms in the inter-

action Hamiltonian involving Â refer to two-photon processes which make a contribution
much smaller than one-photon processes; thus, they can be neglected. �e resulting interaction

Hamiltonian is

HI =
e
m∑i

p̂i ⋅ Â(ri)

=
e
m∑i

∑
k
∑
λ

(
h̷

ωkє
)



p̂i ⋅ [âkλukλ(ri) + â†kλu

∗
kλ(ri)] . (3.13)

�e momentum operators p̂i can be expressed in terms of the corresponding position
operators r̂i using Heisenberg’s equation of motion,

p̂i = m˙̂ri =
m
ih̷

[r̂i ,HA] , (3.14)

which yields the result that the matrix elements ⟨g∣p̂i ∣g⟩ and ⟨e∣p̂i ∣e⟩ are both identically zero.
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Furthermore we obtain the result that

⟨g∣p̂i ∣e⟩ = −imωA ⟨g∣r̂i ∣e⟩ , (3.15a)

⟨e∣p̂i ∣g⟩ = imωA ⟨e∣r̂i ∣g⟩ . (3.15b)

We can now use these results, along with closure over the atomic ground and excited states, to

obtain

p̂i = ∑
α=g ,e

∑
α′=g ,e

(∣α⟩ ⟨α∣ p̂i ∣α
′⟩ ⟨α′∣)

= ∣g⟩ ⟨g∣p̂i ∣g⟩ ⟨g∣ + ∣e⟩ ⟨e∣p̂i ∣e⟩ ⟨e∣ + ∣g⟩ ⟨g∣p̂i ∣e⟩ ⟨e∣ + ∣e⟩ ⟨e∣p̂i ∣g⟩ ⟨g∣

= −imωA(⟨g∣r̂i ∣e⟩ ∣g⟩ ⟨e∣ − ⟨e∣r̂i ∣g⟩ ∣e⟩ ⟨g∣)

=
mωA

e
(idge,i σ̂− − id∗ge,i σ̂+) , (3.16)

where we have de�ned dge,i ≡ −e ⟨g∣r̂i ∣e⟩.
Substituting (3.16) in (3.13) yields

HI = h̷∑
i
∑
k
∑
λ

(
ωA


h̷ωkє
)




(idge,i σ̂− − id∗ge,i σ̂+) ⋅ [âkλukλ(ri) + â†kλu
∗
kλ(ri)] . (3.17)

Now, consider the case where the spatial variation of the vector potential Â is slow compared
with the size of the atom. �is is usually the case in quantum optical experiments, where the

wavelength of the electromagnetic �eld interacting with the atom is much larger than the size

of the atom itself. Under these conditions, one can expand fk(r) in ukλ around the position

of the atom, which we denote R. Writing r = R + δr, we obtain (for the case of the free space
mode functions; the argument is easily adapted to take into account general mode functions)

exp(ik ⋅ r) = exp(ik ⋅R) exp(ik ⋅ δr)

= exp(ik ⋅R) [ + ik ⋅ δr −



(r ⋅ δr) +⋯] . (3.18)

�e dipole approximation amounts to keeping the only the leading term. It is clear that this
approximation is valid when the wavelength of the electromagnetic �eld is much larger than

the characteristic length scale of the atom, that is when π/ ∣k∣ ≫ ∣δr∣. Making the dipole
approximation, we can evaluate the electromagnetic �eld at the position R of the atom rather
than the position ri of the electron. �is allows us to re-write the interaction Hamiltonian
(3.17) as

HI = h̷∑
k
∑
λ

(
ωA


h̷ωkє
)




(idge σ̂− − id∗ge σ̂+) ⋅ [âkλukλ(R) + â†kλu
∗
kλ(R)] , (3.19)

where we have de�ned the dipole matrix element dge ≡ ∑i dge,i .
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3.1.4 Rota�ng-wave approxima�on

We consider a near-resonant atom-cavity system with a Hamiltonian consisting of two parts,

H = H +HI . �e interaction part is given by (3.19), while the unperturbed Hamiltonian is

H =



h̷ωAσ̂z +∑

k
∑
λ
h̷ωk â†kλ âkλ . (3.20)

We transform into the interaction picture, recalling that in this picture the time-dependence of

operators is given by the transformation

Â(t) = exp(iHt/h̷)Âexp(−iHt/h̷) , (3.21)

where Â is an arbitrary Schrödinger picture operator. From this we obtain,1

σ̂−(t) = σ̂−e−iωAt , σ̂+(t) = σ̂+eiωAt , (3.22a)

âkλ(t) = âkλ(t)e−iωk t , â†kλ(t) = â†kλ(t)e
iωk t . (3.22b)

Transforming the coupling Hamiltonian (3.19) into the interaction picture, we obtain

HI(t) = h̷∑
k
∑
λ

(
ωA


h̷ωkє
)




[idge σ̂− ⋅ ukλ(R)âkλe
−i(ωA+ωk)t (3.23)

+ idge σ̂− ⋅ u∗kλ(R)â†kλe
−i(ωA−ωk)t (3.24)

− id∗ge σ̂+ ⋅ ukλ(R)âkλe
i(ωA−ωk)t (3.25)

− id∗ge σ̂+ ⋅ u∗kλ(R)â†kλe
i(ωA+ωk)t] . (3.26)

�ere are two types of oscillatory terms present in the interaction picture Hamiltonian (3.23),

whose frequencies have magnitudes ∣ωA ± ωk∣. �e interactions most e�ective in absorption

and emission of photons are those which occur near resonance, with ωA ≈ ωk. As such, for

those processes which make large contributions to the interaction, ∣ωA − ωk∣ ≪ ∣ωA + ωk∣.

�e slowly oscillating terms with frequencies of magnitude ∣ωA − ωk∣ contain operator

combinations σ̂+ âkλ and σ̂− â†kλ, while the rapidly oscillating terms with frequencies of magni-

tude ∣ωA + ωk∣ contain operators σ̂+ â†kλ and σ̂− âkλ. �e latter processes are much less probable

than those corresponding to the former type; thus, we can neglect the rapidly oscillating terms,

making the rotating-wave approximation. �e interaction Hamiltonian in the rotating-wave
approximation is denoted H, and is given by

H = h̷∑
k
∑
λ
(−id∗ge ⋅ ukλ(R)σ̂+ âkλ + idge ⋅ u∗kλ(R)σ̂− â†kλ) . (3.27)

�is Hamiltonian admits an intuitive physical explanation, wherein the atom absorbs a photon

from, or emits a photon into, the cavity.

1With the use of, for example, the Baker-Hausdor� lemma [9].
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If we now de�ne

dge ≡ −i(
ωA


h̷ωkєV
)




d∗ge ⋅ ekλ , (3.28)

as well as the dipole coupling constant

kλ = dge fk(R) , (3.29)

then the interaction Hamiltonian can be re-written

H = h̷∑
k
∑
λ
(kλ σ̂+ âkλ + ∗kλ σ̂− â†kλ) . (3.30)

We may here absorb the complex phase of the dipole coupling constant into the cavity creation

and annihilation operators (while preserving commutation relations), to yield a real coupling

constant kλ = ∣dge fk(R)∣. �is results in the Hamiltonian

H = h̷∑
k
∑
λ
kλ(σ̂+ âkλ + σ̂− â†kλ) . (3.31)

We see that the dipole coupling constant depends on the position of the atom. In the Jaynes-

Cummings model we consider a stationary atom, so this dependence is not usually written out

explicitly, being of no importance. In more complicated cavity QED systems we may need to

take the dependence on position into account.

Considering only a single cavitymode, aswe did in section 3.1.2, the interactionHamiltonian

reduces to

H = h̷(σ̂+ â + σ̂− â†) . (3.32)

We now combine the various Hamiltonians for the two-level atom, the single-mode radiation

�eld, and the interaction between the two, to obtain the Jaynes-Cummings Hamiltonian:

HJCM =



h̷ωAσ̂z + h̷ωF â† â + h̷(σ̂+ â + σ̂− â†) . (3.33)

3.2 The Jaynes-Cummings ladder

In this section we diagonalise the Jaynes-Cummings Hamiltonian (3.33), closely following

Carmichael [10] and Whalen [11]. For simplicity we set h̷ ≡ :

H =



ωAσ̂z + ωF â† â + (σ̂+ â + σ̂− â†) . (3.34)

�e ground state of the system is ∣g , ⟩ ≡ ∣g⟩ ⊗ ∣⟩, where the atom is in its ground state and

the cavity is empty. �e ground state energy is −ωA. In the rotating-wave approximation, the
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interaction couples the states in pairs:

H ∣g , n⟩ = (−



ωA + nωF) ∣g , n⟩ + 

√
n ∣e , n − ⟩ (3.35a)

H ∣e , n − ⟩ = (



ωA + (n − )ωF) ∣e , n − ⟩ + 

√
n ∣g , n⟩ . (3.35b)

In the two-dimensional subspace de�ned by

∣g , n⟩ ≐
⎛

⎝





⎞

⎠
, ∣e , n − ⟩ ≐

⎛

⎝





⎞

⎠
, (3.36)

the Hamiltonian can be written

H ≐
⎛

⎝


ωA + (n − )ωF 

√
n


√
n − ωA + nωF

⎞

⎠
. (3.37)

We want to �nd the energy eigenvalues, so we must solve H ∣En⟩ = En ∣En⟩. If we de�ne

λn ≡ En − (n −



)ωF , (3.38a)

and

∆ωAF ≡ ωA − ωF , (3.38b)

then we obtain the equations

⎛

⎝


∆ωAF − λn 

√
n


√
n − ∆ωAF − λn

⎞

⎠
∣En⟩ =  . (3.39)

From the above we derive a characteristic equation, which has solutions

λn = ±

√
∆ωAF




+ n . (3.40)

�erefore the excited state energies are given by

E±n = (n −



)ωF ±

√
∆ωAF




+ n . (3.41)
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�e corresponding energy eigenstates, also known as the dressed states [12], are easily obtained.
�e dressed states are:

∣E+n ⟩ =


√
 (∆ωAF



 + n)



⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀ(

∆ωAF



+ n)




+
∆ωAF


∣e , n − ⟩

+

¿
Á
Á
ÁÀ(

∆ωAF



+ n)




−
∆ωAF


∣g , n⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.42a)

∣E−n ⟩ =


√
 (∆ωAF



 + n)



⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀ(

∆ωAF



+ n)




−
∆ωAF


∣e , n − ⟩

−

¿
Á
Á
ÁÀ(

∆ωAF



+ n)




+
∆ωAF


∣g , n⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.42b)

When the atom is resonant with the cavity (∆ωAF = ) the energy eigenvalues are

E±n = (n −



)ω ± 

√
n , (3.43)

where we have de�ned ω ≡ ωA = ωF . �e dressed states are given by

∣E+n ⟩ =


√

(∣e , n − ⟩ + ∣g , n⟩) , (3.44a)

∣E−n ⟩ =


√

(∣e , n − ⟩ − ∣g , n⟩) . (3.44b)

�e eigenvalue spectrum of the Jaynes-Cummings Hamiltonian is referred to as the Jaynes-
Cummings ladder. �e ladder of energy eigenvalues is depicted for the resonant case in Fig.
3.1.

3.3 Driving

�e Jaynes-Cummings Hamiltonian (3.33) by itself is not usually su�cient to describe experi-

ments. It is useful to describe the case where the combined system of atom and cavity is driven

by a periodic classical �eld. �e Hamiltonian for such a driven system can be written

H = H +HE(t) , (3.45)

where H is the unperturbed Hamiltonian for the standard Jaynes-Cummings system, given
by (3.33), and HE(t) is the Hamiltonian for the periodic interaction with the driving �eld [13].
�e driving �eld may couple to either the cavity or the atom. In the former case the driving
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∣g⟩

∣e⟩
∣⟩

∣⟩
±
̷h

∣⟩
±

√

̷h

∣⟩
±

√

̷h

−












n − 


∣n⟩
±

√

n̷h

Uncoupled Coupled

Atom Photons Dressed States

En
er
gy
in
un
its
of
̷ hω

Figure 3.1: �e Jaynes-Cummings ladder. Shown on the le� are the energies of the uncoupled
states of the atom and the �eld modes. Shown on the right is the ladder of dressed states, which
describes a coupled atom-photon system with dipole coupling constant . Each “rung” of the
ladder, except for the very lowest, comprises two dressed states.

Hamiltonian is given by

HE(t) = h̷E (â†e−iωL t + âeiωL t) , (3.46)

and in the latter case by

HE(t) = h̷E (σ̂+e−iωL t + σ̂−eiωL t) . (3.47)

In both cases we have denoted the frequency of the driving laser by ωL.

�e above Hamiltonians for the interaction with the driving laser �eld are obtained by a

procedure which is broadly similar to that employed in section 3.1.3. If the laser frequency

ωL is near resonance with the atomic transition or cavity mode (whichever of the two the

laser couples to), then the interaction is well-approximated by a linear coupling similar to the

p ⋅A-type coupling we considered above [4, 14]. Making the rotating-wave approximation then
leads to the interaction Hamiltonians (3.46) and (3.47).

3.4 The rota�ng frame

Let us consider the case of a driven Jaynes-Cummings system. Such a system is described by

the Hamiltonian

H = HE(t) +



ωAσ̂z + ωF â† â + (σ̂+ â + σ̂− â†) . (3.48)

Once again we have de�ned h̷ ≡ . It is desirable to remove the time-dependence involved

in the driving Hamiltonian, so we transform to the so-called rotating frame. �is is like an
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interaction picture transformation, with an unperturbed Hamiltonian

HωL =



ωL σ̂z + ωL â† â . (3.49)

�e resulting Hamiltonian, transformed into the rotating frame, is

H = HE +



∆ωAσ̂z + ∆ωF â† â + (σ̂+ â + σ̂− â†) , (3.50)

where ∆ωA ≡ ωA − ωL and ∆ωF ≡ ωF − ωL. In the rotating frame, the now time-independent

driving Hamiltonian HE is given by

HE = E(â† + â) , (3.51)

in the case where the driving �eld couples to the cavity, or

HE = E(σ̂+ + σ̂−) , (3.52)

in the case where the driving �eld couples directly to the atom.

3.5 Master equa�on for the Jaynes-Cummings system

Consider a Jaynes-Cummings system described by the driven Hamiltonian (3.48). We want

to describe the coupling of this system to a reservoir; in order to use the Lindblad equation

(2.54), we must de�ne the decay channels by which the system couples to the reservoir, and

investigate the e�ect of the Lamb shi� Hamiltonian (2.53).

3.5.1 Damping of the cavity �eld

We consider a system S comprising a collection of uncoupled harmonic oscillators, each
representing a single cavity mode. �is system will have a Hamiltonian of the same form as

(3.8), but for our purposes here it will be useful to write the Hamiltonian in the form

HS = ∑
i
h̷ωi â†i âi , (3.53)

where we have referred the energy of each oscillator to its ground state. �e index i runs over
all modes supported by the cavity, including those degenerate in energy h̷ωi . �e reservoir,

too, is modelled as a collection of harmonic oscillators, so its Hamiltonian is written in the

same form,

HE = ∑
j
h̷ω j r̂†j r̂ j . (3.54)
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Just as with the interaction between the driving �eld and the cavity, we assume a linear coupling

between the cavity and reservoir �elds. �e interaction Hamiltonian, in the form (2.38), is

HI = h̷∑
i
∑
j
(âi + â†i )(κi j r̂ j + κ∗i j r̂

†
j ) , (3.55)

where κi j characterises the strength of the interaction. In the interaction picture this becomes

HI(t) = h̷∑
i
[e−iω i t âi + eiω i t â†i ]Bi(t) , (3.56)

where Bi(t) = ∑ j[κi j r̂ j(t) + κ∗i j r̂
†
j (t)]. We assume that each eigenoperator âα couples to its

own group of reservoir modes, statistically independent from the reservoir modes that all other

âβ (with α ≠ β) couple to. �is assumption means that κα jκ∗β j is non-zero only when α = β, a
condition we will make use of later.

�e master equation (2.52) is immediately adapted to the case of the interaction (3.56),

giving

d

dt
ρS(t) =



ih̷
[HLS , ρS(t)] +∑

α,β
γ−αβ [âβρS(t)â†α −




â†α âβρS(t) −




ρS(t)â†α âβ]

+∑
α,β

γ+αβ [â†βρS(t)âα −



âα â†βρS(t) −




ρS(t)âα â†β] , (3.57)

where

HLS = h̷∑
α,β

(S−αβ â
†
α âβ + S+αβ âα â†β) , (3.58)

with

Γ
±
αβ = ∫

∞


ds e∓iωα strE[B†α(t)Bβ(t − s)ρE] =




γ±αβ + iS

±
αβ . (3.59)

Note that the coe�cient Γ±αβ is only non-zerowhen themodes denoted by α and β are degenerate
in frequency (ωα = ωβ), by the rotating wave approximation.

�e correlation functions in Γ±αβ are homogeneous in time, so we obtain

Γ
±
αβ = ∑

j
∑
j′
∫
∞


ds [κα jκβ j′⟨r̂ j r̂ j′⟩e−i(ω j±ωα)s + κα jκ∗β j′⟨r̂ j r̂

†
j′⟩e

−i(ω j±ωα)s

+ κ∗α jκβ j′⟨r̂†j r̂ j′⟩e
i(ω j∓ωα)s + κ∗α jκ

∗
β j′⟨r̂

†
j r̂
†
j′⟩e

i(ω j∓ωα)s] . (3.60)

If we assume that the reference state of the environment ρE is the vacuum,2

ρE = ∣⟩ ⟨∣ , (3.61)

2�is approximation is reasonable, since at optical frequencies ̷hω j ≫ kBT , and thermal excitations of the
reservoir can be neglected [15].
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then of the four expectation values in (3.60) above, the only non-zero one is

⟨r̂ j r̂†j′⟩ = δ j j′ . (3.62)

�us, we obtain

Γ
±
αβ = ∑

j
κα jκ∗β j ∫

∞


ds exp[−i(ω j ± ωα)s] . (3.63)

Using the assumption of statistical independence discussed earlier, with the result that κα jκ∗β j ≠
 only when α = β, we can insert a delta function into the relation above, obtaining

Γ
±
αβ = δαβ∑

j
κα jκ∗β j ∫

∞


ds exp[−i(ω j ± ωα)s] . (3.64)

As the modes of the reservoir, in this case the electromagnetic �eld, form a continuum, we go

over into the continuum limit,

Γ
±
αβ = δαβ ∫

∞


dω′ g(ω′)κα(ω′)κ∗β(ω′) ∫

∞


ds exp[−i(ω′ ± ωα)s] , (3.65)

where we have introduced the density of states g(ω′): there are g(ω′)dω oscillators with
frequencies in the interval (ω′,ω′ + dω′). Using the relation

∫
∞


ds exp(−iєs) = πδ(є) − iP



є
, (3.66)

where P denotes the Cauchy principal value, we obtain

Γ
±
αβ = δαβ [ ∫

∞


dω′ g(ω′)κα(ω′)κ∗β(ω′)πδ(ω′ ± ωα)

−iP ∫
∞


dω′ g(ω′)κα(ω′)κ∗β(ω′)



ω′ ± ωα
] . (3.67)

Simplifying, we obtain

Γ
−
αβ = δαβ [πg(ωα) ∣κα(ωα)∣

 + iP ∫
∞


dω′ g(ω′) ∣κα(ω′)∣



ωα − ω′
] (3.68a)

and

Γ
+
αβ = δαβiP ∫

∞


dω′ g(ω′) ∣κα(ω′)∣



ωα + ω′
(3.68b)

�us, we obtain a master equation in the interaction picture

d

dt
ρS(t) =



ih̷
[HLS , ρS(t)] +∑

i
γi [âiρS(t)â†i −




â†i âiρS(t) −




ρS(t)â†i âi] , (3.69)
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with a Lamb shi� Hamiltonian

HLS = h̷∑
i
Si (â†i âi + âi â†i ) , (3.70)

where

γi = πg(ωi) ∣κi(ωi)∣

, (3.71)

and

Si = P ∫
∞


dω′ g(ω′) ∣κi(ω′)∣


[



ωi − ω′
+



ωi + ω′
] . (3.72)

In the case of an atom coupled to an external electromagnetic �eld, the Lamb shi� Hamiltonian

leads to a renormalisation of the system Hamiltonian HS which is induced by the vacuum

�uctuations of the radiation �eld (the Lamb shi�) and by thermally induced processes (the

Stark shi�). In the present context of a cavity coupled to a reservoir, the Lamb shi� Hamiltonian

leads to an analogous renormalisation of the unperturbed energy levels of the cavity. As can

be seen from the expression for Si above, the contribution from HLS is formally in�nite, and

must be renormalised according to the renormalisation procedure from relativistic quantum

electrodynamics [16]. We are not going to do this here. Fortunately for us, the contribution

from the Lamb shi� Hamiltonian is typically very small, and can be neglected (or at least

absorbed into the de�nition of some transition frequency). We will neglect such contributions

throughout this thesis.

3.5.2 Damping of the two-level atom

We now turn to a two-level atom with Hamiltonian

HS =



h̷ωAσ̂+σ̂− , (3.73)

coupled to a reservoir via the same type of coupling as in (3.19). If we follow the steps of the

last section – the only real di�erence being that instead of summing over reservoir oscillators,

we sum over polarisation states and integrate over wave-vectors – we obtain a master equation

in the interaction picture for the decay of this two-level system

d

dt
ρS(t) = γ [σ̂−ρS(t)σ̂+ −




σ̂+σ̂−ρS(t) −




ρS(t)σ̂+σ̂−] , (3.74)

where we have neglected the Lamb shi� and Stark shi� contributions discussed above, and

γ = π∑
λ
∫ dk g(k) ∣κ(k, λ)∣ δ(ωk − ωA) , (3.75)
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where

κ(k, λ) ≡ −ieik⋅R (
ωA


h̷ωkєL
)




d∗ge ⋅ ekλ . (3.76)

�e plane waves that �t into a box of side length L, with periodic boundary conditions, have
wave numbers k = π(nx , ny , nz)/L. �us, the mode density g(k) used above is given by

g(k) = (
L
π

)

, (3.77)

From this we obtain

g(k)dk = (
L
π

)

k sin θdkdθdϕ

=
ωkL



πc
sin θdωkdθdϕ , (3.78)

and thus

γ =
ωA


πh̷єc
∑
λ
∫∫∫ ωkδ(ωk − ωA) ∣d∗ge ⋅ ekλ∣


sin θdωkdθdϕ . (3.79)

With the help of the relations [17, 18]

∑
λ=,

ekλiekλ j = δi j −
kik j
∣k∣

, i , j = , ,  , (3.80)

and

∫∫ sin θdθdϕ (δi j −
kik j
∣k∣

) =
π


δi j , (3.81)

we obtain

∣d∗ge ⋅ ekλ∣

=
π


∣dge ∣

. (3.82)

�us we obtain the spontaneous emission rate,

γ =
ωA
 ∣dge ∣



πh̷єc
. (3.83)

3.5.3 The damped Jaynes-Cummings model

For the case of a single-mode cavity, there is loss through both mirrors, and thus the cavity

mode couples to two reservoir modes. From (3.69) we obtain (neglecting the Lamb shi� term)

d

dt
ρS(t) = (γa + γa) [âρS(t)â† −




â† âρS(t) −




ρS(t)â† â] . (3.84)
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It is convenient to de�ne the cavity mode damping rate,

κ ≡
γa + γa


. (3.85)

We now consider a system consisting of a two-level atom coupled to a single-mode cavity,

which couples to the surrounding environment, and may in general be driven by a periodic

classical �eld.

We have two decay channels: loss of light through the cavity mirrors, and spontaneous

emission from the atom into modes other than that of the cavity. �e dissipation terms

corresponding to these decay channels are those we have already described, relating to the

two-level atom (3.74) and to the cavity mode (3.84) respectively. Adding these gives the master

equation in the interaction picture for the undriven Jaynes-Cummings system.

Transforming to the Schrödinger picture, and appending a term to the Hamiltonian to take

into account the classical driving �eld, as in (3.48), we obtain the complete master equation

d

dt
ρS(t) =



ih̷
[HS , ρS(t)] + κ [âρS(t)â† −




â† âρS(t) −




ρS(t)â† â]

+ γ [σ̂−ρS(t)σ̂+ −



σ̂+σ̂−ρS(t) −




ρS(t)σ̂+σ̂−] , (3.86)

with

HS = HE(t) +



ωAσ̂z + ωF â† â + (σ̂+ â + σ̂− â†) . (3.87)

If we transform into the rotating frame (section 3.4) rather than into the Schrödinger picture,

we obtain for the system Hamiltonian

HS = HE +



∆ωAσ̂z + ∆ωF â† â + (σ̂+ â + σ̂− â†) . (3.88)

�e driving Hamiltonians HE(t) and HE are as given in section 3.3 and 3.4.
We introduce the notation

D[Â] ρ =



([Âρ, Â†] + [Â, ρÂ†])

= ÂρÂ† −



Â†Âρ −




ρÂ†Â (3.89)

for the Lindblad damping superoperatorD (also sometimes called the dissipator). Using this
notation, we write (3.86) in the form

d

dt
ρS(t) =



ih̷
[HS , ρS(t)] + D[

√
κâ]ρS(t) + D[

√
γσ̂−]ρS(t) . (3.90)
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4

Two-mode cavity QED I: theory

Starting from the Jaynes-Cummings model, we set out to model a two-mode cavity quantum

electrodynamics experiment carried out by L. A. Orozco’s group at the University of Maryland,

College Park [1–3]. �is chapter considers a model originally developed by Kronenwett [4],

and developed further by Viveros [5] and Whalen [6].

4.1 Schema�c experimental set-up

�e system we consider comprises a single Rubidium-85 atom within an optical cavity. Two op-

tical cavity modes with orthogonal linear polarisations interact with the atom via the S/, F =

↔ P/, F′ =  transition (the D-line of 85Rb). An external magnetic �eld de�nes a quanti-
sation axis, perpendicular to the axis of the cavity, such that one cavity mode couples the F = 

atomic ground state to the F′ =  excited state via ∆mF =  transitions. �is mode is driven

by a coherent laser �eld. �e other cavity mode, having orthogonal polarisation to the driven

mode, couples the atomic states via ∆mF = ± transitions.

Light escaping from the system by way of spontaneous emission from the atom leaks out

the side of the cavity without necessarily being detected. Light leaking out through one of

the cavity mirrors, on the other hand, is passed through a polarising beam splitter, such that

the output from each cavity mode might be detected separately. In this experiment, we are

interested in measurements pertaining to the non-driven mode in particular. A schematic

diagram of the experimental setup is shown in Fig. 4.1.

4.2 Photon correla�on measurements

In the following chapter we will calculate second-order photon correlation functions for the

non-driven mode of the two-mode cavity QED system. �erefore we review some of the

background of these correlation measurements.

4.2.1 The classical second-order intensity correla�on func�on

In order to quantitatively investigate temporal �uctuations in the intensity I(t) of a classical
light beam, as originally measured in the Hanbury Brown-Twiss experiment [7], it is useful to

introduce the second-order intesity correlation function,

g()(τ) =
⟨I(t)I(t + τ)⟩

⟨I(t)⟩ ⟨I(t + τ)⟩
. (4.1)

41



42 two-mode cavity qed i: theory

atom
laser

pbs

detector 1

detector 2

Figure 4.1: Schematic set-up of the two-mode cavity QED experiment, as described in section
4.1. �e abbreviation ‘PBS’ refers to a polarising beam splitter.

Here the symbols ⟨⋯⟩ denote an average with respect to t, computed by integrating over a long
time period. Let us consider light with a constant mean intensity, such that ⟨I(t)⟩ = ⟨I(t + τ)⟩.
We can write the intensity of such light as the sum of its mean and a �uctuation,

I(t) = ⟨I⟩ + ∆I(t) , (4.2)

with ⟨∆I(t)⟩ = . �e second-order intensity correlation function therefore takes on the form,

g()(τ) =  +
⟨∆I(t)∆I(t + τ)⟩

⟨I⟩
. (4.3)

It is clear that g()() satis�es the inequality

g()() =
⟨I(t)⟩

⟨I(t)⟩
=  +

⟨∆I(t)⟩

⟨I⟩
≥  . (4.4)

Furthermore, it can be shown that g()(τ) has a global maximum at τ =  [8].
�e time-scale of the intensity correlations is characterised by the coherence time τc of the

source. For τ ≫ τc , �uctuations at times t and t + τ will be completely uncorrelated, giving

⟨∆I(t)∆I(t + τ)⟩τ≫τc =  . (4.5)

�erefore, for light with constant mean intensity, and for su�ciently large τ, we have

g()(τ ≫ τc) =  +
⟨∆I(t)∆I(t + τ)⟩τ≫τc

⟨I⟩
=  . (4.6)

A limiting case of note is that of perfectly coherent, monochromatic light with a constant

intensity I. For such light, it is trivial to see that

g()(τ) =
I

I
=  , (4.7)

for all τ, because I = I(t) = I(t + τ) is a constant.
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4.2.2 The second-order photon correla�on func�on

Forquantum light, comprising a streamofphotons, the numberof counts registeredon a photon-

counting detector is is proportional to the intensity, so the second-order photon correlation

function is given by

g()(τ) =
⟨∶ n̂(t)n̂(t + τ) ∶⟩
⟨n̂(t)⟩ ⟨n̂(t + τ)⟩

=
⟨â† (t)â

†
(t + τ)â(t + τ)â(t)⟩

⟨â† (t)â(t)⟩ ⟨â
†
(t + τ)â(t + τ)⟩

, (4.8)

where n̂i(t) = â†i (t)âi(t) is the occupation number of the light impinging on detector i = , 
at time t. �e reason we must now explicitly distinguish between the two detectors is that
once a photon has been detected by one detector it cannot be detected by the other. In the

classical case, we can split a beam in two and send half to each detector, but we cannot split a

photon in two; each photon goes to one detector or the other, and hence the detectors must be

distinguished. Note that the two detectors i = ,  here do not necessarily correspond to the
two detectors in Fig. 4.1; they can refer to measurements made on the same mode or on two

di�erent modes as the case may be. In the case of the photon correlation function, ⟨⋯⟩ denotes

a quantum-mechanical expectation value, obtained by taking the trace of the product of the

operator in question and the density operator of the light beam.

�e symbols ∶ ⋯ ∶ denote normal ordering, where all photon annihilation operators are writ-
ten to the right of the creation operators in the expansion of the photon occupation operators.

�is is a consequence of the photoelectric detection process, which relies on the absorption of

light, or the annihilation of photons [9].

�e second-order photon correlation function is positive,

g()(τ) ≥  , (4.9)

but it does not in general satisfy either of the classical inequalities g()() ≥  or g()() ≥
g()(τ) [10]. It is possible to classify light according to the properties of the second-order
photon correlation function; one such classi�cation is whether the light satis�es the classical

inequalities above, or whether it is “non-classical”. Classifying light in this way leads to a rich

and interesting �eld of study, but it is not the subject of this thesis, so we will not consider it

here, instead referring the interested reader to other literature [4, 6, 11, 12].

4.3 Extensions of the Jaynes-Cummings model

4.3.1 Two-mode cavity

In section 3.5.1 we derived a master equation, and in 3.5.3 we specialised to the case of a single-

mode cavity. Here, we consider a cavity which supports two modes of the electromagnetic �eld,

degenerate in energy and orthogonal in polarisation. �e Hamiltonian for the cavity �eld is

HF = h̷ωF â† â + h̷ωF b̂†b̂ . (4.10)
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From (3.69), the interaction picture master equation describing the loss for such a cavity is

ρ̇ = (γa + γa)D[â]ρ + (γb + γb)D[b̂]ρ , (4.11)

where we have written ρ in place of ρS(t) in the interests of simplifying our notation.
Light is lost through the cavity mirrors at rates γai and γbi (i = , ) for the two orthogonal

cavity modes. �ese rates are equal, that is to say γai = γbi . �us, (4.11) may be re-written

ρ̇ = κ (D[â]ρ +D[b̂]ρ) , (4.12)

where

κ ≡
γa + γa


=
γb + γb


. (4.13)

4.3.2 Selec�on rules

�eminimal coupling Hamiltonian (3.1) can be transformed under a unitary transformation

into an alternative form which results in the same physical predictions [13]. �e resulting

interaction Hamiltonian in its complete form is known as the Power-Zienau-Woolley, or

multipolar, Hamiltonian, and contains terms which take into account electric and magnetic

potential energy, as well as nonlinear terms [14, 15]. �e electric potential energy Hamiltonian

has the form

H = ∫V drP(r) ⋅ ÊT(r) , (4.14)

where the atomic polarisation is given by [13]

P(r) = −e∑
i
ri ∫




dζ δ(r − ζri) ; (4.15)

this integral form of the polarisation is obtained by solving the usual relation σ(r) = −∇ ⋅ P(r)
[16], where σ(r) = Zeδ(r) − e∑i δ(r − ri) is the atomic charge density. Keeping only the
dominant dipole interaction term in the multipole expansion of (4.14) is equivalent to the

dipole approximation of section 3.1.3, and results in the well-known electric dipole interaction

Hamiltonian,

HED = −d̂ ⋅ ÊT(R) , (4.16)

where

d̂ = −eD̂ = −e∑
i
ri . (4.17)



extensions of the jaynes-cummings model 45

We remind ourselves that R is the position of the atom. �e transverse electric �eld operator is
given by

ÊT(r) = i∑
k
∑
λ

(
h̷ωk

є
)



[âkλukλ(r) − â†kλu

∗
kλ(r)] . (4.18)

In �rst-order time-dependent perturbation theory, Fermi’s golden rule states that the

probability per unit time for a transition from an initial state ∣ϕi⟩ with energy Ei to a �nal state

∣ϕ f ⟩ with energy E f , due to a perturbation V , is

Pi→ f =
π
h̷

∣⟨ϕ f ∣V ∣ϕi⟩∣
 δ(E f − Ei) , (4.19)

where this expression is integrated over a continuum of states ∫ dE f ρ(E f ), with density of

�nal states ρ(E f ). Assuming that the interaction between the atom and the electromagnetic

�eld provides only a small contribution to the total Hamiltonian, Fermi’s golden rule can be

applied. In this case, it is clear that the electric dipole interaction Hamiltonian (4.16) induces

no transition between states ∣ϕi⟩ and ∣ϕ f ⟩ if the matrix element

M� ≡ ⟨ϕ f ∣HED∣ϕi⟩ (4.20)

vanishes. Transitions for which this matrix element vanishes are termed forbidden in the electric
dipole interaction, but may occur due to another interaction (the magnetic dipole or electric

quadrupole interactions, for example). Investigation of the matrix element (4.20) therefore

yields the selection rules for electric-dipole transitions.

Now we must evaluate the matrix elementM�. We �nd, considering only a single mode kλ
of the transverse electric �eld,

M� = ⟨ϕi ∣−d̂ ⋅ ÊT(R)∣ϕ f ⟩

= ⟨ϕ f

RRRRRRRRRRR

ie (
h̷ωkλ

є
)



D̂ ⋅ [âkλukλ(R) − â†kλu

∗
kλ(R)]

RRRRRRRRRRR

ϕi⟩

= ie (
h̷ωkλ

єV
)



[⟨ϕ f ∣D̂ ⋅ ekλ fk(R)âkλ∣ϕi⟩ − ⟨ϕ f ∣D̂ ⋅ ekλ f ∗k (R)â†kλ∣ϕi⟩] (4.21)

If we de�ne

∣ϕi⟩ ≡ ∣ψi⟩ ∣nkλ,i⟩ , and ∣ϕ f ⟩ ≡ ∣ψ f ⟩ ∣nkλ, f ⟩ , (4.22)

we obtain

M� = ie (
h̷ωkλ

єV
)



[⟨ψ f ∣D̂∣ψi⟩ ⋅ ekλ fk(R) ⟨nkλ, f ∣âkλ∣nkλ,i⟩

− ⟨ψ f ∣D̂∣ψi⟩ ⋅ ekλ f ∗k (R) ⟨nkλ, f ∣â†kλ∣nkλ,i⟩] . (4.23)
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Note that ⟨nkλ, f ∣âkλ∣nkλ,i⟩ is non-zero only when nkλ, f = nkλ,i − , and ⟨nkλ, f ∣â†kλ∣nkλ,i⟩ is

non-zero only when nkλ, f = nkλ,i + .

Energy conservation requires that

E f − Ei ≈  . (4.24)

�e change of energy of the atom must be approximately equal and opposite to that of the �eld

(a mismatch on the order of the atomic linewidth being allowed). If the energies of the atom in

its initial and �nal states are EA,i and EA, f respectively, we get

EA, f − EA,i ≈ −(nkλ, f − nkλ,i)h̷ωk . (4.25)

From (4.23), we see that the matrix elementM� is proportional to the atomic dipole matrix

element

D� ≡ ⟨ψ f ∣D̂∣ψi⟩ , (4.26)

and we �nd the transition probability per unit time

Pi→ f = π
e

πh̷cє
c
V
h̷ωkλ ∣D� ⋅ ekλ fk(R) ⟨nkλ, f ∣âkλ∣nkλ,i⟩−

D� ⋅ ekλ f ∗k (R) ⟨nkλ, f ∣â†kλ∣nkλ,i⟩∣
 ρ(E f ) . (4.27)

We see that in fact the quantity of interest is D�, because when D� = , Pi→ f =  and the

corresponding transition is forbidden.

In the case of a single-electron (hydrogenic) atom, we have

D� = r� = ⟨ψ f ∣r∣ψi⟩ , (4.28)

where r is the position of the electron. �e hydrogenic atom is a pretty good approximation to
atoms with a single valence (“optical”) electron, if we neglect perturbations due to screening

[17, 18], and the results gained from looking at hydrogenic atoms are readily generalised to

many-electron atoms [19].

�eWigner-Eckart theorem [20] states that thematrix elements of a spherical tensoroperator
T(k)q (of rank k with k +  components {q}) with respect to angular momentum eigenstates
satisfy

⟨α′, j′,m′∣T(k)q ∣α, j,m⟩ = ⟨ j, k;m, q∣ j, k; j′,m′⟩
⟨α′, j′∥T(k)∥α, j⟩

√
 j + 

, (4.29)

where the double-bar matrix element ⟨α′, j′∥T(k)∥α, j⟩ is independent of m and m′, and of q.
�e quantity ⟨ j, k;m, q∣ j, k; j′,m′⟩ is a Clebsch-Gordan coe�cient for adding j and k to get j′.
Using the Wigner-Eckart theorem, we can evaluate the matrix element r� via its spherical



extensions of the jaynes-cummings model 47

vector components. Each of these components is obtained by �nding the components of r in
the direction of a polarisation vector, denoted e [21]. Let ex , ey and ez be unit vectors in the
directions of the x-, y- and z-axes. For linear polarisation in the z-direction, e = ez , and

e ⋅ r = ez ⋅ r = z = r cos θ = r (
π


)



Y (θ , ϕ) . (4.30)

For circularly polarised photons in the xy-plane, which possess ± unit of angular momentum
about the z-axis, the polarisation vectors are e = (ex ± iey)/

√
, giving

e ⋅ r =


√

(ex ± iey) ⋅ r =


√

(x ± iy) = ∓r (

π


)



Y±
 (θ , ϕ) . (4.31)

�us, we denote the spherical vector components of r,

r ≡ z and r± ≡


√

(x ± iy) . (4.32)

A spherical vector such as r is a spherical tensor of rank one. �us in the case of the position
operator r, we have k =  in (4.29). Hence the Wigner-Eckart theorem gives us

⟨α′, j′,m′∣rq∣α, j,m⟩ = ⟨ j, ;m, q∣ j, ; j′,m′⟩
⟨α′, j′∥r∥α, j⟩

√
 j + 

, (4.33)

with q = ,± corresponding to the three spherical vector components of r. Referring back
to (4.27), we see that the allowed transitions are those with non-vanishing Clebsch-Gordan

coe�cients ⟨ j, ;m, q∣ j, ; j′,m′⟩. �e known properties (recursion relations) of the Clebsch-

Gordan coe�cients [22, 23] yield the well-known selection rules for �ne structure [21, 24]. �e

selection rules for �ne structure are:

∆ j = ,± , (4.34a)

∆m = ,± (4.34b)

are allowed transitions, but

j = ↮ j′ =  (4.34c)

m = ↮ m′ =  if ∆ j =  (4.34d)

are forbidden transitions.

If we include the spin of the atomic nucleus, F and mF are good quantum numbers, and

the angular momentum eigenstates are labelled ∣α, F ,mF⟩. Following the same procedure as

we did for the selection rules for the �ne structure, the Clebsch-Gordan coe�cient which leads

to the hyper�ne structure selection rules is ⟨F , ;mF , q∣F , ; F′,m′
F⟩. �e resulting selection
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− − −    

− − − −     

F = 

F′ = 

Figure 4.2: Atomic level structure and allowed electric dipole transitions for an F =  to F′ = 
transition. �e relative transition strengths are determined by appropriate Clebsch-Gordan
coe�cients. �e driven cavity mode interacts with the atom via ∆mF =  transitions (red lines),
and the non-driven mode via ∆mF = ± transitions (blue lines).

rules for hyper�ne structure are:

∆F = ,± (4.35a)

∆mF = ,± (4.35b)

are allowed, but

F = ↮ F′ =  (4.35c)

mF = ↮ m′
F =  if ∆F =  (4.35d)

are forbidden. �e allowed transitions for an F =  to F′ =  transition are shown in Fig. 4.2.

4.3.3 Two-level atom with magne�c substructure

We now consider the Hamiltonian for a two-level atom with magnetic substructure. We assume

a quantisation axis such that the driven mode a couples the atomic ground and excited states
via ∆mF =  (π) transitions, and the non-driven mode b (which, like a, is linearly polarised)
couples the states via ∆mF = ± (σ+ + σ−) transitions. Such a quantisation axis may be imposed
by, for example, a weak magnetic �eld with negligible Zeeman e�ect. Stronger magnetic �elds,

for which the energy level splitting due to the Zeeman e�ect will need to be taken into account,

will be considered later.

�e maximum dipole coupling strength of the atomic F to F′ transition is denoted by .
To take into account the additional cavity mode and the more complicated level structure, the

Jaynes-Cummings interaction Hamiltonian (3.32) for the two-level atom coupled to a single-

mode cavity will need to be modi�ed based on the selection rules derived in section 4.3.2. �e

dipole coupling part of the Hamiltonian now takes the form

HI = h̷ (Σ̂† â + Σ̂ â
†) + h̷ [(

Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†] . (4.36)

�emodi�ed atomic raising and lowering operators Σ̂,± (the so-called atomic dipole transition
operators) have expansions in terms of atomic states and Clebsch-Gordan coe�cients. In
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particular, the atomic lowering operators are given by1

Σ̂q =
F
∑

mF=−F
⟨F , ;mF , q∣F , ; F′,m′

F⟩ ∣F ,mF⟩ ⟨F′,mF + q∣ . (4.37)

We see that the matrix elements of the dipole operator are equal to the Clebsch-Gordan coe�-

cients for adding spin  to spin F to reach total spin F′. Such coe�cients can be evaluated by way
of several known formulae; many such formulae are provided by Edmonds [23]. �e Clebsch-

Gordan coe�cients are closely related to Wigner’s 3- j symbol, and can also be evaluated in this
fashion. Several computer algebra packages, such as Sage [25], implement Clebsch-Gordan
coe�cient calculators.

In the cavity QED experiment we are modelling, the atomic transition is an F =  to F′ = 
transition. In this case the atomic lowering operators are given by:

Σ̂− = ∣g − ⟩ ⟨e − ∣ +

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g , ⟩ ⟨e ,−∣

+

√



∣g , ⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣ , (4.38a)

Σ̂ =

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g , ⟩ ⟨e , ∣

+

√



∣g , ⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣ , (4.38b)

Σ̂+ =

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g ,−⟩ ⟨e ,−∣ +

√



∣g ,−⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣

+

√



∣g , ⟩ ⟨e , ∣ +

√



∣g , ⟩ ⟨e , ∣ + ∣g , ⟩ ⟨e , ∣ . (4.38c)

�e raising operators can of course be found by taking the Hermitian adjoint of the lowering

operators.

4.3.4 The Zeeman energy shi


We now consider stronger magnetic �elds, for which the energy level splitting due to the

Zeeman e�ect needs to be taken into account. �e Zeeman shi� manifests itself as a detuning

of the atomic energy levels within the ground and excited manifolds. Our task is to evaluate, to

�rst order, the magnitude of this detuning, so that it can be included phenomenologically in

the atomic Hamiltonian.

�e interaction between the electrons in the atom and the nuclear spin I gives rise to the

1�is expression can be obtained by making an expansion of the r operator in terms of matrix elements in the
Hilbert space spanned by {∣F ,mF⟩}, along the lines of the expansion we made in section 3.1.3 for the two-state
atom.
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hyper�ne structure. �e hyper�ne interaction Hamiltonian has the form [26]

HHFS = AI ⋅ J , (4.39)

where J = L + S is the resultant of the total orbital and spin momenta of the electrons, and A
is the hyper�ne structure constant. �e interaction energy of the magnetic moment µ of the
atom with an applied magnetic �eld B is given by Hmag = −µ ⋅ B. �e total atomic magnetic
moment is the sum of the electronic and nuclear moments [27],

µ = −gJ
µB
h̷
J + gI

µN
h̷
I ≈ −gJµBJ (4.40)

where gJ is the Landé g-factor, gI is the nuclear g-factor, and µB and µN are the Bohr and
nuclear magnetons. Since µN ≪ µB we can neglect the nuclear contribution for all but the
most precise measurements. �us, we obtain

Hmag = gJ
µB
h̷
J ⋅ B . (4.41)

When the interaction with the external magnetic �eld is much weaker than the hyper�ne

interaction, that is to say Hmag ≪ HHFS , the magnetic interaction Hmag can be considered to
be a perturbation. If this is the case, the vectors J and Imove rapidly around their resultant
F, while F precesses more slowly about the magnetic �eld. In this regime F and mF are good

quantumnumbers, whilemJ andmI are not. �us the unperturbed eigenstates are simultaneous

eigenstates of F, J, I and Fz, labelled ∣FJImF⟩. To evaluate the �rst-order energy shi�, we

need to take the projection of the magnetic moment along F, and evaluate its interaction with
B:

Hmag = gJ
µB
h̷

⟨J ⋅ F⟩
F(F + )

F ⋅ B = gF
µB
h̷
F ⋅ B , (4.42)

with

gF ≈
F(F + ) + J(J + ) − I(I + )

F(F + )
gJ , (4.43)

where the approximation sign indicates thatwe have neglected a nuclear contribution, consistent

with our earlier approximation. For Rubidium-85, I = /. �e Landé g-factor is given by [28]

gJ =  +
J(J + ) + S(S + ) − L(L + )

J(J + )
. (4.44)

Choosing the magnetic �eld to be applied along the z-axis, B = Bez , we obtain the interaction
energy

Hmag = gF
µB
h̷
BFz . (4.45)
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�e Zeeman energy shi� is therefore given by the �rst-order energy shi�

∆E = ⟨FJImF ∣Hmag∣FJImF⟩

=


h̷
⟨FJImF ∣gFµBBFz ∣FJImF⟩

= gFµBmFB , (4.46)

where we have used Fz ∣FJImF⟩ = h̷mF ∣FJImF⟩.

�e degeneracy of the magnetic sublevels of the atom is now li�ed, and we obtain a Hamil-

tonian which includes detunings due to the Zeeman e�ect,

HA =
F
∑

mF=−F
Eg ,mF ∣g ,mF⟩ ⟨g ,mF ∣ +

F′

∑
m′

F=−F
′

Ee,m′

F
∣e ,m′

F⟩ ⟨e ,m
′
F ∣ , (4.47)

with

Eg ,mF = Eg , + gFµBmFB ,

Ee,m′

F
= Ee, + g′FµBm

′
FB ,

where Eg , and Ee, are the unperturbed ground and excited state energies, and gF and g′F are
the di�erent g-factors for the ground and excited states respectively.

4.3.5 The complete system Hamiltonian for two-mode cavity QED

We can now combine the various parts of the Hamiltonian derived in the above sections, to

obtain the complete Hamiltonian for a two-mode cavity QED system. We de�ne the frequency

of the central mF = ↔ m′
F =  transition to be ωA, giving

Eg , = −



h̷ωA and Ee, =




h̷ωA . (4.49)

In the experiment we are modelling the cavity (rather than the atom) is driven by a periodic

classical �eld. �us, the driving term in the Hamiltonian will take the form (3.46). Finally, in

the Schrödinger picture, the Hamiltonian for a two-mode cavity QED system, in which the

atom is resonant with both cavity modes (ω ≡ ωA = ωF), is

HS =h̷E (â†e−iωL t + âeiωL t) + h̷ω (â† â + b̂†b̂)

+
F
∑

mF=−F
(−



h̷ω + gFµBmFB) ∣g ,mF⟩ ⟨g ,mF ∣

+
F′

∑
m′

F=−F
′

(



h̷ω + g′FµBm

′
FB) ∣e ,m′

F⟩ ⟨e ,m
′
F ∣

+ h̷ (Σ̂† â + Σ̂ â
†) + h̷ [(

Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†] . (4.50)
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Transforming to the rotating frame gives

HS =h̷E (â† + â) + h̷∆ω (â† â + b̂†b̂)

+
F
∑

mF=−F
(−



h̷∆ω + gFµBmFB) ∣g ,mF⟩ ⟨g ,mF ∣

+
F′

∑
m′

F=−F
′

(



h̷∆ω + g′FµBm

′
FB) ∣e ,m′

F⟩ ⟨e ,m
′
F ∣

+ h̷ (Σ̂† â + Σ̂ â
†) + h̷ [(

Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†] . (4.51)

It is in fact the case, for the experiment we are modelling, that the cavity QED system is driven

on-resonance, that is ωL = ω. �us, the Hamiltonian takes on a simpler form,

HS =h̷E (â† + â)

+
F
∑

mF=−F
(gFµBmFB) ∣g ,mF⟩ ⟨g ,mF ∣ +

F′

∑
m′

F=−F
′

(g′FµBm
′
FB) ∣e ,m

′
F⟩ ⟨e ,m

′
F ∣

+ h̷ (Σ̂† â + Σ̂ â
†) + h̷ [(

Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†] . (4.52)

�is is the form we will use throughout our two-mode cavity QED calculations, as it is the only

one relevant to the experimental set-up in question [1–3].

�ere are several things that have been le� out of this model, which could potentially be

included in future work. For example, we have neglected any birefringence of the cavity mirrors.

4.4 Master equa�on for the two-mode cavity QED system

If we refer back to section 4.3.1, we have a starting point for the construction of a master

equation for the complete two-mode cavity QED system. We have already seen that the

dissipator κ(D[â]ρ + D[b̂]ρ) accounts for light of both orthogonal modes leaking out of
the cavity. When we include the magnetic substructure of the atomic levels in our model, we

also have to take into account the polarisation of the light that exits out the side of the cavity.

Atomic dipole transitions with di�erent ∆mF refer to light with di�erent polarisation2 and

couple to statistically independent reservoirs. �us, in addition to the two decay channels for

each of the two cavity modes, we have an additional three decay channels corresponding to

spontaneous emission events of the atom, that is, one for each of the ∆mF = ,± transitions.

�e dissipation term which will be added to the master equation to account for spontaneous

emission is the sum over these three decay channels,

∑
q

γD[Σ̂q]ρ . (4.53)

2∆mF =  refers to linearly polarised light, orπ photons. ∆mF = ± refers to σ± photons, with σ+ corresponding
to le� circular polarisation, and σ− corresponding to right circular polarisation [29]. �e b mode is linearly
polarised, corresponding to an equal combination of σ+ and σ− photons.
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�e atomic decay rate γ represents only the emission of a photon of the resonant frequency
in a direction other than that of the cavity mode. �e rate is in reality determined by several

factors, but other processes, such as the atom decaying to other levels, represent a breakdown

of the two-level atom approximation we are using, and will thus not be considered.

�us, we obtain the master equation for the two-level atom with magnetic substructure,

two-mode cavity QED system,

ρ̇ =


ih̷
[HS , ρ] + κ (D[â]ρ +D[b̂]ρ) +∑

q
γD[Σ̂q]ρ , (4.54)

where HS is given by (4.52). Recall that κ and γ denote the cavity mode and atomic decay rates
respectively.
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5

Two-mode cavity QED II: results

In this chapter we apply the theory developed in chapter 4, performing two speci�c calculations.

We compute second-order photon correlation functions for the non-driven mode of the cavity,

and investigate interference e�ects known as quantum beats which appear in these. We also
simulate the strong driving behaviour of the system and explain the results obtained by way of

an analogy to a simpler model.

5.1 Numerical solu�on of the master equa�on

In general, a quantum master equation may be di�cult or impossible to solve analytically.

�erefore numerical solutions of the master equation are necessary to model the behaviour of

the system. In this section we detail some of the considerations necessary when doing this type

of modelling.

All the numerical results presented in the following sections, and indeed in later chapters

of this thesis, were computed using programs written in the Python programming language
[1]. Much use was made of the Python libraries NumPy [2, 3] and SciPy [4]: the former adds
support for large, multi-dimensional arrays andmatrices to the Python language, while the latter

contains many algorithms and mathematical tools, in particular sparse matrix data structures

and numerical integration tools. Several of the Python programs written were based on the

methods used by Sze Tan’s quantum optics toolbox for theMatlab programming language [5].

5.1.1 Dimensionless master equa�on

�e �oating point numbers used in computing have a mantissa of limited precision, and

their magnitude is limited, due to the limited number of bits available. �ese limitations

inevitably lead to accuracy problems (rounding errors, for example), particularly when adding

two numbers that di�er by many orders of magnitude. To avoid this problem, we rewrite the

master equation so that all its terms are of a similar order of magnitude. We can construct

a dimensionless master equation which satis�es these conditions by scaling (4.54) by the

reciprocal of some parameter of the system which has the dimensions of a rate, that is, inverse

seconds. Choosing to scale by /γ, (4.54) gives

d

d(γt)
ρ = −i [

HS

h̷γ
, ρ] +

κ
γ

(D[â]ρ +D[b̂]ρ) +∑
q
D[Σ̂q]ρ , (5.1)

55
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with

HS

h̷γ
=
E

γ
(â† + â) +


γ
(Σ̂† â + Σ̂ â

†) +

γ
[(
Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†]

+
F
∑

mF=−F
(gFmF

B

γ
) ∣g ,mF⟩ ⟨g ,mF ∣ +

F′

∑
m′

F=−F
′

(g′Fm
′
F
B

γ
) ∣e ,m′

F⟩ ⟨e ,m
′
F ∣ , (5.2)

where we have de�ned B = µBB/h̷.
Another advantage of scaling by /γ is that we have reduced the number of parameters

that determine the dynamics of the system. We now have four dimensionless parameters to

consider: E/γ, B/γ, /γ and κ/γ.

5.1.2 Fock space trunca�on

For a given set of parameters and a given driving �eld strength, the number of photons in a

given cavity mode µ is unlikely to exceed some maximum number Nµ . �erefore it is clearly a

good approximation to neglect all Fock states with a photon number larger than Nµ. �is is

referred to as truncating the Fock space of the cavity mode µ.
If, in our two-mode calculation, Na and Nb are the maximum allowed photon numbers

in the driven and non-driven cavity modes respectively, and NA is the number of atomic

states considered, then the Hilbert space of the atom-cavity system, H = HA ⊗ Ha ⊗ Hb,

will be NA(Na + )(Nb + )-dimensional. As we will see in the following section, solving

a master equation in a Hilbert space of this dimensionality requires the solution of a set of

[NA(Na + )(Nb + )]
 coupled ordinary di�erential equations. For small Na and Nb it is a

straightforward numerical task to solve these equations, but the results may be a�ected by the

absence of some relevant Fock states. For large Na and Nb this task can become too di�cult

numerically to be worth pursuing. �erefore we must try to choose small enough Na and Nb

that the solution of the master equation will be straightforward, but not so small that the results

are a�ected by the approximation.

5.1.3 Numerical modelling in Liouville space

�e Liouvillian super-operator is a linear operator on Liouville space. Provided the Hilbert

space of the system is �nite-dimensional, then the density matrix can be written as an N × N
matrix, with N the dimension of the Hilbert space. If the density matrix is instead written
as a vector in which each element corresponds to an element of the N × N matrix, then the
Liouvillian super-operator can be expressed as a square N × N matrix. As a result, the form
of the master equation (2.23) is preserved; we repeat it here for convenience:

d

dt
ρ(t) = Lρ(t) . (5.3)

Given an initial condition ρ(), we can integrate the master equation numerically.
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�e steady state of the system is of course de�ned by

ρ̇(∞) = Lρ(∞) =  , (5.4)

where ρ(∞) is the steady state density matrix of the system. Finding the null space of the

Liouvillian matrix yields the solution of this equation. �e null space of a matrix can be

computed by several methods, such as the singular value decomposition (SVD). When the null

space is only one-dimensional we can employ the inverse power method, or transform (5.4)

into an inhomogeneous equation. �e latter can be done because tr(ρ) =  at all times, which
reduces the dimensionality of the problem by one. �is means that L can be transformed into

an (N − ) × (N − )matrix; the transformation results in an inhomogeneous equation when
applied to both sides of (5.4), and the null space (assuming it is one-dimensional) can be found

by solving the system of linear equations numerically.

5.1.4 Second-order photon correla�on func�ons

Using the quantum regression formula (2.67), we can evaluate the second-order photon corre-

lation function (4.8) as

g()µν (τ) =
⟨µ̂†()ν̂†(τ)ν̂(τ)µ̂()⟩

⟨µ̂† µ̂⟩ ⟨ν̂†ν̂⟩τ
=



⟨ν̂†ν̂⟩τ
tr{ν̂†ν̂ exp(Lτ) [

µ̂ρ(t)µ̂†

⟨µ̂† µ̂⟩
]} , (5.5)

where all expectation values are taken with respect to the density operator at some time t,
ρ(t), except for ⟨ν̂†ν̂⟩τ = tr[ν̂†ν̂ρ(t+ τ)]. If we let t →∞, we obtain the steady state second-

order photon correlation function; in this case it is clear that ρ(t + τ) = ρ(t), so we can drop
the subscript τ from ⟨ν̂†ν̂⟩τ and evaluate it using the same steady-state density matrix as for

all the other expectation values. �e collapsed density matrix µ̂ρ(t)µ̂† has been normalised
by ⟨µ̂† µ̂⟩ so that it has unit trace: this has numerical advantages, in that it prevents matrix
elements from becoming too small during computation, but is not strictly speaking necessary.

If we de�ne

ρµµ†(τ) = exp(Lτ) [
µ̂ρ(t)µ̂†

⟨µ̂† µ̂⟩
] , (5.6)

it is clear that

ρµµ†() = [
µ̂ρ(t)µ̂†

⟨µ̂† µ̂⟩
] , (5.7)

and

d

dτ
ρµµ†(τ) = L exp(Lτ) [

µ̂ρ(t)µ̂†

⟨µ̂† µ̂⟩
] = Lρµµ†(τ) . (5.8)

�us, we have a �rst-order di�erential equation for ρµµ† with initial condition (5.7). �is is

used to compute the second-order photon correlation function using numerical integration.



58 two-mode cavity qed ii: results

From (5.5) and (5.6), the second-order photon correlation function is given in terms of ρµµ† by

g()µν (τ) =


⟨ν̂†ν̂⟩τ
tr{ν̂†ν̂ρµµ†(τ)} . (5.9)

Note that all these results generalise quite simply to the case of a time-dependent generator (as

introduced in section 2.2.3): (5.8) becomes

d

dτ
ρµµ†(τ) = L(t + τ)ρµµ†(τ) . (5.10)

�e formula (5.9) makes the physical interpretation of the correlation function clear: if we

refer to the detection of a photon of the µ mode at time t as event E, and detection of a
photon in the ν mode at time t + τ as event E, then the correlation function is equivalent to
P(E∣E)/P(E).

5.2 Atom-cavity coupling strength & choice of parameters

�e relative strength of the atom-cavity coupling is characterised by three parameters: the cavity

mode damping rate κ, the spontaneous emission rate γ, and the atom-cavity dipole coupling
constant . �e interaction is said to be in the strong coupling regime when  ≫ (κ, γ), and
in the weak coupling regime when  ≪ (κ, γ). In the case of strong coupling, where the
atom-cavity coupling rate is larger than the decay rates, the interaction between the photons in

the cavity mode and the atom is a reversible process: a photon emitted by the atom may be

reabsorbed before it is lost from the cavity. On the other hand, in the case of weak coupling,

the decay rates κ and γ dominate; photons are lost from the system (either by leakage through
the cavity mirrors or by spontaneous emission) at a rate greater than the characteristic rate 
of the atom-cavity interaction. A typical emission of light by the atom in the cavity is therefore

irreversible.

�e strong coupling regime is very interesting; it has been the subject of many theoretical

investigations and experimental measurements. However, the experiment of Norris et al. [6],

which we are in principle modelling, is not operated in the strong coupling regime, but in an

intermediate regime where the characteristic parameters of the system are all of the same order

of magnitude,  ∼ (κ, γ). We therefore choose for our simulations parameters based on, but
not identical to, those used by Barberis-Blostein et al. in their recent work [7]. Our model is

too simple to seek quantitative agreement with experiment: the primary de�ciency is that we

consider only a single atom, while the experiment deals with an atomic beam. �us, we are

not going to worry overly about choosing parameters that agree exactly with experimental

values. �e parameters we have chosen to use for all calculations in this chapter, unless stated

otherwise, are given in table 5.1.

�e parameters w and v in table 5.1 relate to later simulations, in which we will allow the
atom to move through the cavity mode waist, resulting in a time-varying (t). �e beam
waist is w =  µm. �e velocity of the atom is also given in metres, because we will be
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Parameter Description Value

B/γ Magnetic �eld parameter 
/γ Atom-cavity dipole coupling constant /
κ/γ Cavity mode damping rate /
w Cavity waist  × −m
v Velocity of atom ms−/(π ×  × Hz)

Table 5.1: Parameters used in calculations pertaining to the two-mode cavity QED system.
Note that all rates are divided by γ, such that they become dimensionless (see section 5.1.1).

integrating with respect to the dimensionless “time” parameter γt: the velocity parameter
is v = ms−/(π × MHz), which corresponds to an atom with spontaneous emission

rate γ = π × MHz moving at a velocity of v = ms−. �e parameter  is the maximum
dipole coupling strength, taken with respect to the transitions with the largest Clebsch-Gordan

coe�cients in equations (4.37) and (4.38): the mF = − ↔ m′
F = − and mF =  ↔ m′

F = 

transitions. �e coupling strength for the central mF = ↔ m′
F =  transition will be

√
/.

�e driving strength E/γ remains an adjustable parameter.

5.3 Semiclassical treatment of the driven mode

We have already noted that the a-mode of the cavity is driven by an external �eld; photons
present in the b-mode, on the other hand, are due entirely to the interaction with the atom.
In the case where the cavity is strongly driven and the damping rate κ of the cavity small in
comparison with E , the number of photons in the driven mode will be large. Also, with the

parameters listed in table 5.1, we are not in the strong coupling regime where single photons

have signi�cant interactions with the atom. In light of these facts, we suspect that we can

approximate the driven mode of the cavity as a coherent classical �eld.

We turn now to the details of this semiclassical approximation. We replace the cavity mode

operators with mean �eld amplitudes,

â → ⟨â⟩ = α , â† → ⟨â†⟩ = α∗ . (5.11)

From equations (5.1) and (5.2) we obtain the modi�ed master equation

d

d(γt)
ρ = −i [

HS

h̷γ
, ρ] +

κ
γ
D[b̂]ρ +∑

q
D[Σ̂q]ρ , (5.12)

and Hamiltonian

HS

h̷γ
=

γ
(αΣ̂† + α∗Σ̂) +


γ
[(
Σ̂
†
− + Σ̂

†
+√


) b̂ + (

Σ̂− + Σ̂+
√


) b̂†]

+
F
∑

mF=−F
(gFmF

B

γ
) ∣g ,mF⟩ ⟨g ,mF ∣ +

F′

∑
m′

F=−F
′

(g′Fm
′
F
B

γ
) ∣e ,m′

F⟩ ⟨e ,m
′
F ∣ , (5.13)

in which the driven mode a is treated semiclassically. We also need to �nd an equation of
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motion for α, including, in particular, its dependence on the driving strength E , our sole
adjustable parameter. In the absence of an atom in the cavity, the master equation is given by

ρ̇ ≡
d

d(γt)
ρ = −i [

E

γ
(â† + â), ρ] +

κ
γ

(âρâ† −



â† âρ −




ρâ† â) . (5.14)

From this, we can obtain the equation of motion for the mean-�eld amplitude with no atom in

the cavity,

d

d(γt)
⟨â⟩ = tr(âρ̇)

= −i
E

γ
tr{â[â† + â, ρ]} +

κ
γ
tr [â (âρâ† −




â† âρ −




ρâ† â)]

= −i
E

γ
−

κ
γ
tr(âρ) , (5.15)

where we have made ample use of the cyclic property of the trace. In order to take into account

the back-action of the atom on the �eld, we use the full master equation (5.1) and Hamiltonian

(5.2), instead of (5.14). �e resulting equation of motion for the mean-�eld amplitude is

d

d(γt)
⟨â⟩ = −i [

E

γ
+

γ
tr(Σ̂ρ)] −

κ
γ
tr(âρ) , (5.16)

giving the equation of motion for α = ⟨â⟩,

α̇ = −i(
E

γ
+

γ
⟨Σ̂⟩) −

κ
γ

α . (5.17)

�e equation of motion for α∗ is the Hermitian conjugate of the above,

α̇∗ = i(
E

γ
+

γ
⟨Σ̂†⟩) −

κ
γ

α∗ . (5.18)

Now, suppose it is the case that the state of the system, and in particular the expectation value

⟨Σ̂⟩, varies slowly compared with the damping rate κ/γ. If this is the case, α will follow the state
of the system adiabatically, remaining in an instantaneous “steady state” which only depends

on the state of the system by way of a dependence on ⟨Σ̂⟩. In this case we have

α = −i
E +  ⟨Σ̂⟩

κ
. (5.19)

Here we are basically neglecting the small amount time it takes for the mean-�eld amplitude α
to relax towards the steady state following a change in the expectation value ⟨Σ̂⟩.

We see that we now have three slightly di�erent models of the system:

1. a full quantum model,

2. a model with a semiclassical driven mode,
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3. a model in which the driving mode is semiclassical and adiabatically follows the state of

the system.

In order to characterise the di�erence between the three di�erent treatments, we will examine a

quantity of interest calculated using each of the three di�erent models. �e quantity of interest

is the second-order photon correlation function for the non-driven mode b.
�e self-correlation of the non-driven mode is calculated in the manner given in section

5.1.4. We specialise the formula (5.5) to the case of the steady state, obtaining

g()bb (τ) =
⟨b̂†()b̂†(τ)b̂(τ)b̂()⟩ss

⟨b̂†b̂⟩ss ⟨b̂
†b̂⟩ss

=


⟨b̂†b̂⟩ss
tr

⎧⎪⎪
⎨
⎪⎪⎩

b̂†b̂ exp(Lτ)
⎡
⎢
⎢
⎢
⎢
⎣

b̂ρssb̂†

⟨b̂†b̂⟩ss

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (5.20)

�e steady state density matrix used in this calculation could be obtained, for the case of the full

quantum treatment, by �nding the kernel of the Liouvillian matrix. However this method is not

as suitable when we also have to take into account a semiclassical cavity mode, which depends

on some expectation value such as ⟨Σ̂⟩. Consider how wemight deal with the numerical issues

surrounding case 2 in the list above. �e equations of motion for α and α∗ are still linear, so
we could write down a matrix which would generate the evolution of α and α∗ as well as the
matrix elements of ρ, but we have not chosen this method. Instead, we have chosen the simple
and e�ective, if somewhat inelegant, method of simply integrating the coupled equations of

motion for α, α∗, and ρ for a long period of time, until an approximately steady state has been
reached. �e same technique is used for case 3.

In order to compare the three variations of our model detailed above more directly, we

have integrated all three in similar fashion. For cases 1 and 2, we have used the common

fourth-order Runge-Kutta (RK4) numerical integration algorithm. For case 3, in which the

Liouvillian L for the quantum part of the system is a function of the mean-�eld amplitudes, we

have used a modi�ed RK4 scheme in which L(α, α∗) is only computed once per time-step (at
the beginning of each time-step); this is justi�ed by the assumption underlying the adiabatic

approximation: α varies slowly. In all three cases we integrate the master equation over a time
period t f − ti = γ−. �e results are shown in Figs. 5.1 and 5.2.

5.4 Quantum beats

All the correlation functions shown in Fig. 5.2 show prominent oscillations, which are due to

quantum beats. In order to elucidate, qualitatively, the cause of these oscillations, we consider,
following Barberis-Blostein et al. [7], a subset of the allowed electric dipole transitions for

the F =  to F′ =  transition we are modelling.1 �e transitions we are going to consider are
shown in Fig. 5.3a: they are the transitions which couple the six central hyper�ne levels, with

magnetic quantum numbers mF = ,±. As is shown in the �gure, the applied magnetic �eld

1Refer back to section 4.3.2, in particular Fig. 4.2, for information about these transitions.
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Figure 5.1: Comparison of quantum (red), semiclassical (green) and semiclassical with adiabatic
following (blue) models. �ese results were obtained using the parameters in table 5.1, with
E/γ = ..

creates ground and excited state frequency detunings, ±δg and ±δe respectively, between the
mF = ± and mF =  magnetic sublevels. From our consideration of the Zeeman energy shi�,

these detunings are given by

δg = gFµBB , δe = g′FµBB . (5.21)

We will consider two principle processes by which the atom may emit a photon into the non-

driven cavity mode. �ese processes are illustrated in Figs. 5.3b and 5.3c, and will be explained

in further detail below.2

We consider an initial condition in which optical pumping has prepared the atom in the

state ∣g , ⟩. �e interaction with the driven cavity mode then excites the atom to the ∣e , ⟩ state.
From the excited state, the atom may decay back to the ground state through the emission

of a π, σ+ or σ− photon. If a π photon is emitted, it is added to the driven mode and we are
not terribly interested. If, on the other hand, a σ+ or σ− photon is emitted, it will populate the
non-driven b-mode. When this photon is detected,3 the atom ends up in the superposition
state

cg ,− ∣g ,−⟩ + cg , ∣g , ⟩ . (5.22)

�is is because photons are detected in the “x-y basis” (corresponding to the linear polarisation
of the b-mode), so the measurement does not tell us anything about the helicity of the photon
that has been detected. It is not necessary for the purposes of this discussion to evaluate the

coe�cients cg ,±, but they are of course subject to the constraint ∣cg ,−∣+∣cg ,∣ = . �is process
is illustrated in Fig. 5.3b.

A�er the emission of the �rst σ-polarised photon described above, the atom continues to
interact with the driven mode of the cavity. �e atom once again becomes excited by way of its

interaction with the driven mode, and, starting from the prepared ground state superposition

2�e following argument is adapted from the work of Barberis-Blostein et al. [7].
3With the cavity decay rate κ comparable to the atom-cavity coupling , it is probable that the photon will leak

from the cavity and be detected before it can be reabsorbed by the atom.
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Figure 5.2: Comparison of second-order photon correlation functions obtained using quantum
(red), semiclassical (green) and semiclassical with adiabatic following (blue) models. �ese
resultswere obtainedusing the parameters in table 5.1, for various di�erent driving �eld strengths.
Here the atom is held to be stationary in the centre of the cavity, and the master equation is
integrated over a time period t f − t i = γ−. For the quantum simulation, the driven a-mode is
truncated at the -photon level; for all three simulations, the non-driven b-mode is truncated
at the -photon level.

(5.22), ends up in the excited state superposition

ce,− ∣e ,−⟩ + ce, ∣e , ⟩ . (5.23)

From here, the atom can return to its original state ∣g , ⟩ by emitting a second photon into the
non-driven b-mode. �is process is illustrated in Fig. 5.3c.

�e conditional detection of both the non-driven photons emitted in the processes de-

scribed above is equivalent to a measurement of the second-order photon correlation function

g()bb . �e two photons necessary for this measurement may be emitted into the non-driven

mode by either of two indistinguishable paths: ∣g , ⟩ → ∣e , ⟩ → ∣g ,−⟩ → ∣e ,−⟩ → ∣g , ⟩, and
∣g , ⟩ → ∣e , ⟩ → ∣g , ⟩ → ∣e , ⟩ → ∣g , ⟩. We denote the phase factor along the former path ϕ−,
while the phase factor gained along the latter path is denoted ϕ+. Due to the detunings δg

and δe created by the applied magnetic �eld, the phase change along each of the two paths is
di�erent (ϕ− ≠ ϕ+). Interference between the two paths therefore results in oscillations in
g()bb : quantum beats.
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Figure 5.3: (a) Atomic energy level structure, with π transitions shown in red, and σ transitions
shown in blue. �e applied magnetic �eld creates ground and excited state frequency detunings,
±δg and ±δe respectively, between the mF = ± and mF =  magnetic sublevels. (b) & (c) Two
processes by which a photon may be emitted by the atom into the non-driven cavity mode.

�e di�erence between the phase factors gained along each of the two paths can also be

seen as a consequence of the atom’s Larmor precession [8, 9] in the applied magnetic �eld.

Note that, as we can see in Fig. 5.2, the quantum beats are suppressed around γτ = . �is is
due to the photon antibunching of single-atom resonance �uorescence [10–12].

Of course, the qualitative explanation of the origin of quantum beats presented in this

section, in which we considered only six atomic states out of a total of sixteen, does not describe

the whole picture. It does, however, capture the essential physics. All the calculations relating

to the two-mode cavity QED system presented in this chapter take into account the full atomic

level structure.

5.4.1 Quantum beats with a moving atom

Ourmodel of the two-mode cavityQED system can bemodi�ed to take into account themotion

of the single atom through the cavity. When we derived the Hamiltonian for the interaction

between the atom and the radiation �eld in section 3.1.3, we noted that the dipole coupling

constant in reality depends on the position of the atom. When considering a stationary atom

(as one does, for example, in the Jaynes-Cummings model), one suppresses this dependence,

but here we wish to restore it. �e master equation (5.1) remains the same, while the only

change to the Hamiltonian (5.2) is that we replace the stationary  with (R), which includes

the position dependence.

�e position dependence we are to include is fairly simple. Say the cavity axis is oriented
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in the z direction. �e �eld within the cavity has a Gaussian pro�le, so its amplitude falls o�
radially from the centre of the beam, going as exp(−r/w). �e atom traverses the cavity
radially (perpendicular to the z direction), at an antinode of the cavity mode standing wave, so
we have a position-dependent atom-cavity coupling,

(r) =  exp(−
r

w
) , (5.24)

where r is the radial distance from the optic axis of the cavity, and w is the cavity waist, given
in table 5.1 as w =  µm. �e parameter  is the maximum atom-cavity coupling strength; its
value is equal to that given for the coupling strength in table 5.1: /γ = /. �e radial location

r of the atom is time-dependent, and ṙ = v. �us the coupling strength may be considered to
depend on time,

(t) =  exp(−
r(t)

w
) . (5.25)

�is result is substituted into (5.2) in place of , yielding a time-dependent Hamiltonian, and
thus a time-dependent Liouvillian L(t).
In the case of a time-dependent coupling, we can still treat the driven mode semiclassically,

substituting (5.25) into (5.13). In view of our previous success with the approximation of allowing

the mean �eld amplitude α to adiabatically follow the state of the system, we use this technique
here, obtaining

α = −i
E + (t) ⟨Σ̂⟩

κ
. (5.26)

We integrate the resulting equation of motion for a time period ti ≤ t ≤ t f , where t f − ti = d/v.
�e position of the atom is given by r(t) = −d + vt; thus the atom moves, over the period of
the integration, from r = −d to r = d. Ideally we would let d → ∞, but this is numerically

impossible. Instead, we choose d = w, so that (r = ±d) is very small.
During the aforementioned integration we take a number, N , of regularly-spaced samples of

the system state. For each of these sampled states, we compute an unnormalised second-order

photon correlation function,

G()bb (t,i , τ) = ⟨b̂†(t,i)b̂†(t,i + τ)b̂(t,i + τ)b̂(t,i)⟩ , (5.27)

where t,i is the time at which the particular sample was taken. �en by applying the quantum
regression formula, we �nd that we can compute the unnormalised correlation function using

G()bb (t,i , τ) = tr{b̂†b̂ρ̄bb† ,i(τ)} , (5.28)
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where ρ̄bb† ,i(τ) has the equation of motion

d

dτ
ρ̄bb† ,i(τ) = L(t,i + τ)ρ̄bb† ,i(τ) , (5.29)

with initial condition

ρ̄bb† ,i() = b̂ρ(t,i)b̂† . (5.30)

We also de�ne the quantities

G()bb (τ) ≡


N ∑i
G()bb (t,i , τ) ≈



t f − ti ∫
t f

t i
dt G()bb (t, τ) , (5.31)

and

⟨b̂†b̂⟩ ≡


N ∑i
⟨b̂†b̂(t,i)⟩ ≈



t f − ti ∫
t f

t i
dt ⟨b̂†b̂(t)⟩ , (5.32)

where N is the number of samples taken.
Suppose we consider our atom to be just one of many atoms which are to pass through the

cavity. �is is physically sensible given that real-world experiments of this type are performed

using atomic beams. In the steady state, the normalised second-order correlation function g()bb
will be given by

g()bb (τ) =  +
∫
t f
t i dt G

()
bb (t, τ)

(∫
t f
t i dt ⟨b̂

†b̂(t)⟩ )


=  + G()bb (τ)/(⟨b̂†b̂⟩)

. (5.33)

We have added  in the above expressions to ensure that g()bb (τ) tends to unity as τ →∞. It

would not do so otherwise, as eventually the atom leaves the cavity, but in an atomic beam

experiment it would be replaced by another atom a�er some extended time period. When we

add unity, we are adding the contribution from uncorrelated joint counts where the �rst count

comes while one atom is in the interaction volume, and the second comes when the �rst atom

has le� and a second, independent atom is in the interaction volume. �is approximation is

valid assuming a su�ciently dilute atomic beam, so that there are never two or more atoms in

the interaction volume simultaneously.

We have implicitly assumed throughout our derivation that multi-atom e�ects (arising

from the real-world atomic beammentioned above) can be neglected. �is assumption requires

the mean number of atoms in the cavity N̄A to be much less than one (the appearance of an

atom in the interaction volume is a Poisson process). In a simulation of a dilute atomic beam,

such as that of Barberis-Blostein et al. [7], the amplitude of the fringes which appear in the

normalised second-order photon correlation function due to quantum beating is scaled by
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Figure 5.4: Second-order photon correlation functions, computed using the semiclassical
approximation with adiabatic following. �ese results were obtained using the parameters in
table 5.1, for various di�erent driving �eld strengths. Here the atom moves through the cavity
in the manner described in section 5.4.1. �e non-driven b-mode is truncated at the -photon
level.

/N̄A. �is scaling is neglected for the purposes of our single-atom simulation.

Second-order photon correlation functions obtained using (5.33) are displayed in Fig. 5.4.

For each of the calculations shown, we have taken N =  samples of the system state.

5.5 Strong driving in two-mode cavity QED

In this section we investigate the dependence of the non-driven mode photon number, b̂†b̂, on
the strength of the classical driving �eld E .

In order to evaluate the mean photon number ⟨b̂†b̂⟩, we use the model in which the
driven mode is treated semiclassically, de�ned by equations (5.12), (5.13) and (5.19). We use the

parameters given in table 5.1, except we have B/γ = , and the atom is held stationary in the

centre of the cavity. For each driving �eld strength E , we wish to compute the mean photon

number in the steady state. As in the case of Fig. 5.2, we integrate the master equation over

a time period t f − ti = γ− to yield a pseudo-steady state which we use to evaluate ⟨b̂†b̂⟩.
Figure 5.5 is the result of this calculation.

�e main interesting feature of the dependence of the mean photon number on driving
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Figure 5.5: Mean photon number in the non-driven mode against E /κ. �ese results were
obtained using the parameters in table 5.1, except withB/γ = . Here the atom is held stationary
in the centre of the cavity, and themaster equation is integrated over a time period t f −t i = γ−.
�e non-driven b-mode is truncated at the -photon level.

�eld strength, as shown in the �gure, is how ⟨b̂†b̂⟩ peaks in the vicinity of E/κ = , and
then turns over and decreases. �is feature is what we now seek to explain.

5.5.1 Simpli�ed model

�e additional atomic energy levels involved in our model of the two-mode cavity QED system

may obscure the essential physics involved in the strong driving behaviour of the mean photon

number in the non-driven mode. In order to investigate this phenomenon in a less complicated

context, we use a simple model derived from the Jaynes-Cummings model:

H = h̷Eα(σ̂+ + σ̂−) + h̷b(σ̂+b̂ + σ̂−b̂†) , (5.34)

with master equation

ρ̇ =


ih̷
[H, ρ] + κD[b̂]ρ + γD[σ̂−]ρ . (5.35)

Eα is a real constant.

Similarly to the two-mode QED model, we have an atom – in this case a two-level atom –

which is driven by a classical �eld. �e atom interacts with an optical cavity mode, and photons

may be lost from the system by way of spontaneous emission, or by leaking from the cavity.

�e mean photon numbers for di�erent values of Eα are obtained by �nding the kernel of

the Liouvillian by direct numerical calculation; the resulting steady state density matrix yields

the expectation values. �e parameters used are similar to those in table 5.1: b/γ = / and

κ/γ = /. �e resulting curve showing ⟨b̂†b̂⟩ against driving �eld strength is presented in
Fig. 5.6. It is clear that this model also exhibits the reduction in mean photon number at high

driving �eld strength observed in Fig. 5.5. Explaining this phenomenon in the context of the
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Figure 5.6: Steady state mean photon number in the non-driven mode against (Eα/γ), for the
simpli�ed model. �ese results were obtained using the parameters: b/γ = /, κ/γ = /. �e
cavity mode is truncated at the -photon level. �e steady state has been computed by direct
numerical calculation.

simpli�ed model may lead us to an explanation in the context of two-mode cavity QED.

5.5.2 Explana�on of the strong driving behaviour

Consider a two-level atom which is driven by a periodic classical �eld, such as the atom

described by (5.34) with the coupling to the cavity (and the spontaneous emission) neglected.

�e state vector describing the two-level atom can be written

∣ψ⟩ = cg ∣g⟩ + ce ∣e⟩ . (5.36)

We are interested in the e�ect of the driving Hamiltonian HE = h̷Eα(σ̂+ + σ̂−) on this state, so
from the time-dependent Schrödinger equation,

ih̷
d

dt
∣ψ⟩ = HE ∣ψ⟩ , (5.37)

we obtain

ċg(t) = −iEαce(t) , (5.38a)

ċe(t) = −iEαcg(t) . (5.38b)

If the atom is in the ground state at time t = , so that cg() =  and ce() = , the solutions of
the above equations are

cg(t) = cos(Eα t) , (5.39a)

ce(t) = −i sin(Eα t) . (5.39b)



70 two-mode cavity qed ii: results

∣g⟩

∣e⟩

ωA

±Eα

±Eα

ωAωA − Eα ωA + Eα

Bare atom Dressed atom

(a)

Frequency

Fl
uo
re
sc
en
ce
si
gn
al

−Eα Eα

(b)

Figure 5.7: (a) When a two-level atom interacts with an intense resonant light �eld, the AC
Stark e�ect splits the bare atom states into doublets separated by the Rabi frequency Eα . �is
results in three emission lines, at frequencies ωA, ωA ± Eα . (b) �e Mollow triplet spectrum
which results from the dressing of the atom states.

�ese equations describe Rabi oscillations4 with Rabi frequency ΩR = Eα . �ese oscillations

can be interpreted in terms of dressed atoms [14, 15]: in the presence of an intense resonant

light �eld, the AC Stark e�ect splits the bare atom states into doublets separated by the Rabi

frequency, as shown in Fig. 5.7a. Transitions between the dressed atom states lead to three

emission lines at frequencies ωA, ωA ± Eα . �e �uorescence spectrum5 of an atom driven in

this way is of course the well-known Mollow triplet [16, 17], in which the coherent oscillations

of the atomic state beat with the fundamental transition frequency to produce side bands in

the emission spectrum at ωA ±ΩR.

When Eα is su�ciently large, the side bands in the Mollow triplet spectrum will lie outside

the cavity linewidth. Consider a driven cavity, described by the master equation

ρ̇ =


ih̷
[Ec(b̂† + b̂) + δb̂†b̂, ρ] + κD[b̂]ρ , (5.40)

where δ represents a detuning of the driving laser from resonance with the cavity. �is master
equation yields the steady state expectation values

⟨b̂⟩ss = −i
Ec

κ + iδ
, ⟨b̂†⟩ss = i

Ec
κ − iδ

, (5.41)

and

⟨b̂†b̂⟩ss = −i
Ec
κ

(⟨b̂†⟩ss − ⟨b̂⟩ss) =
Ec


κ + δ
, (5.42)

illustrating a Lorentzian dependence on detuning.

Referring to the Mollow triplet spectrum shown in Fig. 5.7b, we see that the detuning of

the side bands from resonance with the cavity will depend on Eα . �us, as Eα increases, we

except a Lorentzian drop-o�, going approximately as (κ + Eα
)−, in the steady state mean

4See Fox [13] and references therein for an overview.
5When we introduced the Rabi oscillations, we neglected the atomic decay terms in the master equation for

simplicity’s sake; however, when speaking of transitions and �uorescence we must of course consider the decay
terms, and the coupling of the atom to the cavity mode.
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Figure 5.8: Atomic level structure for an F =  to F′ =  transition, with splitting due to the
AC Stark e�ect shown as dashed lines. �e driven cavity mode interacts with the atom via π
(∆mF = ) transitions, and the non-driven mode via σ (∆mF = ±) transitions. Example σ
transitions between the dressed states are shown. �e variation in the splittings is due to the
various Clebsch-Gordan coe�cients, written out in (4.38), which characterise the strength of
the coupling between the atom and the driven mode.

photon number ⟨b̂†b̂⟩ss. �e central peak of the Mollow triplet will always remain within the
cavity linewidth, and thus the steady state mean photon number will fall o� to some fraction of

its peak value as we increase Eα , but it will not get all the way to zero. �is is approximately

what is observed in Fig. 5.6.

�e results obtained from the simpli�ed model can be generalised to the two-mode cavity

QED system, as shown in Fig. 5.8. �e two rightmost σ transitions shown in the diagram lie
outside the cavity linewidth, and contribute to sidebands analogous to those of the Mollow

triplet. �e various magnetic sublevels of the atom complicate the situation, but we can see the

qualitative similarity between the two-mode cavity QED system and the simpli�ed system of

section 5.5.1. �e transitions which lie outside the cavity linewidth are the primary cause of the

strong driving behaviour that we observe in Fig. 5.5 – the decrease in mean photon number

above a certain driving strength.

At very high driving strengths, the mean photon number shown in Fig. 5.5 continues to

decrease (and will eventually reach zero), while the mean photon number in Fig. 5.6 settles

down to a non-zero value. �is is due to the variation in the splittings between the di�erent

mF and m′
F states, caused by the di�ering Clebsch-Gordan coe�cients in the atomic dipole

transition operator Σ̂. For a large enough driving �eld strength, the di�ering splittings will

cause all possible σ transitions (such as those shown in Fig. 5.8) to lie outside the cavity
linewidth, and the mean photon number in the non-driven mode will fall o� to zero.
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6

Circuit QED I: review

6.1 Introduc�on to circuit quantum electrodynamics

Circuit quantum electrodynamics [1] is an implementation of a cavity QED system in a super-

conducting circuit, originally designed as an architecture for quantum computation [2]. In a

circuit QED system, a superconducting Josephson junction qubit plays the role of an arti�cial

atom. To complete the analogy with cavity QED, the qubit must be coupled to a quantised

harmonic oscillator. In an electrical circuit, photons can be understood as the quantised excita-

tions of any electromagnetic resonator, including the simple combination of an inductor and a

capacitor (see appendix A). A solid-state electromagnetic resonator can therefore play the role

of the cavity in the circuit QED system. Strong coupling (see section 5.2) was �rst achieved in

circuit QED in 2004 [3, 4].

One particular implementation of circuit QED makes use of a transmission line resonator,
which consists of a superconducting wire placed between two ground plates. Photons are

con�ned in one dimension along the transmission line, and gaps in the wire, placed an integer

number of half-wavelengths apart, are the “mirrors” used to form a microwave cavity. �e rate

at which photons enter and leave the cavity depends on the size and shape of the gaps. To form

a circuit QED system, the electric �elds of the transmission line resonator are coupled to a

superconducting charge qubit, one of several di�erent types of superconducting qubit which

we will consider below.

In the past couple of years, two notable experiments have made use of the particular type of

system described above [5, 6]. Both experiments involved themeasurement of the characteristic
√
n scaling of the spacing of the Jaynes-Cummings energy ladder (see Fig. 3.1). It has been

pointed out that an observation of this scaling is su�cient to prove that the system is quantum

mechanical in nature [7].

Consider the �rst “rung” of the Jaynes-Cummings ladder, depicted in Fig. 6.1a, which

comprises two dressed states separated by an energy h̷. Strong coupling, where the coupling
 greatly exceeds the dissipation rates, allows transitions from the ground state to each of
these dressed states to be resolved, resulting in the splitting of the cavity transmission peak

into a doublet. �is is known as vacuum Rabi splitting; the type of doublet spectrum which

might be observed is illustrated in Fig. 6.1b. �e vacuum Rabi spectrum for a single trapped

atom in an optical Fabry-Pérot cavity has been observed by Boca et al. [8], with a separation

between the peaks of less than ten peak linewidths. �e analogous measurement of Bishop

et al. [6] has a vacuum Rabi splitting, /π, exceeding  linewidths. Another vacuum Rabi

73
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Figure 6.1: Vacuum Rabi splitting. (a) Transitions from the ground state to the �rst “rung” of
the Jaynes-Cummings ladder. (b) �e vacuum Rabi spectrum which is observed in the regime
of strong coupling: the cavity transmission peak is split into a doublet.

spectrum result is given by Schoelkopf and Girvin [1], in which the coupling  approaches the
�ne-structure limit for cavity QED, which gives the maximum strength of the electric dipole

coupling between an atom and a cavity [9].

�e experiment of Bishop et al. furthermore observed the supersplitting of each vacuum

Rabi peak into a doublet, as predicted by Carmichael and co-workers [10]. �e excellent

agreement between theory and experiment obtained by these authors provides the impetus for

our theoretical consideration of circuit quantum electrodynamics.

6.2 Superconduc�ng quantum bits

�ere exist several di�erent types of superconducting quantum bit, but there are three main

types, classi�ed according to the variables by which they are controlled and excited: the �ux

qubit, the phase qubit, and the charge qubit. Here we will consider the prototypical form of

each type. For an excellent and thorough review of the various superconducting qubits, see

Clarke and Wilhelm [11].

6.2.1 The RF SQUID

�e prototypical �ux qubit is the RF SQUID (radio frequency superconducting quantum

interference device), consisting of a superconducting ring interrupted by a single Josephson

junction as shown in Fig. 6.2a [12]. �e junction has capacitance CJ , the superconducting loop

has self-inductance L, and an externally applied magnetic �ux Φx biases the system. Taking

into account contributions from the charging energy, magnetic energy, and Josephson coupling,

we obtain the Hamiltonian1

H =
Q

CJ
+

(Φ −Φx)


L
− EJ cos(π

Φ

Φ
) . (6.1)

1�e phase di�erence across the Josephson junction γ is related to the �ux in the loop by γ/π = Φ/Φ+integer.
Recall that Φ = h/e is the �ux quantum.
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Figure 6.2: Schematic depictions of various types of superconducting quantum bit. (a) An RF
SQUID qubit. (b) A current-biased Josephson junction qubit. (c) A Cooper pair box qubit. �e
superconducting charge island, or “box” lies between the capacitively shunted junction and the
gate capacitor.

�e dynamics described by this Hamiltonian are analogous to the dynamics of a particle2 with

“mass” CJ moving in a one-dimensional potential given by the sum of the magnetic energy of

the loop and the Josephson coupling energy of the junction. For appropriate parameters,3 the

two central minima of the aforementioned potential form a double well separated by a barrier

whose height depends on the Josephson coupling energy EJ ; see Fig. 6.3a.

�e le� and right potential wells correspond to the quantum states ∣⟩ and ∣⟩ respectively.

When the qubit is in state ∣⟩, there is a current present in the loop which tends to cancel Φx ;

when the qubit is in state ∣⟩ the current tends to augment Φx . �ese circulating supercurrents

are equal and opposite, with magnitude Jq. �e system can coherently tunnel between these
two states.

At the degeneracy point where Φx = Φ/, the magnetic energy of the loop contributes

a constant, which can be neglected. In the spirit of the tight-binding approximation [13], we

can write the Hamiltonian for the qubit at the degeneracy point as H = −∆/ (∣⟩ ⟨∣ + ∣⟩ ⟨∣),

where ∆ is a coupling parameter known as the tunnel splitting [12]. Away from the degeneracy

point we must add a term to take into account the circulating supercurrents. From the relation

for the energy stored in an inductor, we obtain

H =



εσz −




∆σx , (6.2)

where ε = Jq (Φx − Φ). �e energy eigenvalues of (6.2) are ±



√
∆ + ε. When Φx =

Φ/, the ground and excited states are the antisymmetric and symmetric combinations

(∣⟩ ∓ ∣⟩) /
√
 respectively.

Of course, several other �ux qubit con�gurations have been proposed. For example, three-

junction SQUID rings are common [14]. Flux qubits play no further role in this thesis, so we

will not consider any other con�gurations here. For more information, see Makhlin et al. [15].

2Due to the identi�cation Q = −i̷h∂/∂Φ, the Hamiltonian can be written entirely in terms of the variable Φ.
3See, for example, the experimental parameters used by Friedman et al. [12].
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Figure 6.3: (a) Flux qubit potentials. �e solid line shows the symmetric potential obtained
when Φx = Φ/. �e dashed line shows the tilted potential obtained when Φx ≠ Φ/; in
this case Φx/Φ = .. (b) �e tilted-washboard potential, with J/Jc = .. Reproduced from
appendix B.

6.2.2 The current-biased junc�on

�e prototypical phase qubit is the current-biased Josephson junction [16, 17], consisting of a

single Josephson junction connected to a current source. A schematic depiction of the current-

biased junction is shown in Fig. 6.2b. Referring to sections B.4.3 and B.4.4 of appendix B, we

see that the dynamics of the phase di�erence between the sides of the junction are analogous

to the dynamics of a particle moving in a potential U(γ), given by (B.41). �is potential has
the form of a “tilted washboard”, and is depicted in Fig. 6.3b. See Clarke et al. [18] for further

reading.

When the external bias current J is less than the critical current of the junction, that is
J < Jc , U has local minima in which the motion of the coordinate γ (which we can alternatively
think of in terms of our �ctitious particle) can be localised. When the bias current is equal

to the critical current, the local minima become points of in�ection, so for J ≳ Jc no bound
states exist. �e local potential wells are approximately cubic [16], and as such anharmonic; the

energy level spacing becomes smaller as the quantum number n increases. �e qubit involves
transitions between the ground state ∣⟩ of one of these potential wells, and �rst excited state

∣⟩.

6.2.3 The Cooper pair box

�e prototypical charge qubit is the Cooper pair box [2, 15, 19]. �is type of qubit plays a major

role in the theory of circuit quantum electrodynamics presented in the following chapter, so we

will not consider it in great detail here. Chapter 7 will contain a more comprehensive treatment.

�e Cooper pair box is depicted schematically in Fig. 6.2c. It consists of a superconducting

island (“box”) connected by a Josephson junction (with Josephson coupling energy EJ and

capacitance CJ) to a superconducting electrode. A gate voltage Vg is coupled to the system via

a gate capacitor Cg . �e number of excess Cooper pairs on the charge island is a quantised,

integer operator n̂. If the circuit is operated in a suitable parameter regime, Cooper pair number
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states with n >  may be neglected. In this case, the Cooper pair box Hamiltonian reduces to
that of a qubit.

�e transmon is a charge-insensitive qubit design derived from the Cooper pair box [20].
While it behaves in many ways more similarly to an anharmonic oscillator than a qubit, it has

seen use in recent circuit QED experiments [5, 6], and as such will be considered in detail in

the following chapter.
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Circuit QED II: theory

Recent experiments in circuit quantum electrodynamics [1, 2] have used a transmon qubit [3]
as an arti�cial atom, coupled to a transmission-line resonator to realise a cavity QED system.

In this chapter we develop a model of each of the elements of such a system, as well as the

coupling between them, and explore connections to the Jaynes-Cummings model. We also

construct the Lindblad master equation which models the damping of the circuit QED system.

7.1 The ar��cial atom

7.1.1 The Cooper pair box

In section 6.2.3 we introduced the Cooper pair box qubit, which is depicted schematically in

Fig. 6.2c. Here we consider the physics of this qubit in greater detail.

Firstly, we will derive the Hamiltonian for the electrostatic energy of the charge island.

�e island has total capacitance CΣ = CJ + Cg , where CJ is the geometric capacitance of the

Josephson junction, and Cg is the gate capacitance. �e Cooper pair charging energy of the

island – the electrostatic charging energy to add a single Cooper pair to the superconducting

island – is given by Ec = (e)/CΣ. �e dimensionless gate charge ng ≡ CgVg/e accounts for
the e�ect of the gate voltageVg , and can be thought of as the preferred number of excess Cooper

pairs on the superconducting island (although it is a continuous variable). �e actual excess

charge is a quantised, integer operator n̂. �e Hamiltonian for the electrostatic component of
the junction is given by

Hc = Ec (n̂ − ng)

=




(Q̂ − eng)


CΣ
. (7.1)

To take into account the coherent tunnelling of Cooper pairs across the junction, we must add

an interaction term to the Hamiltonian. Using eigenstates of the Cooper pair number operator

n̂, we obtain

H = ∑
n

[Ec (n − ng)

∣n⟩ ⟨n∣ −




EJ (∣n⟩ ⟨n + ∣ + ∣n + ⟩ ⟨n∣)] . (7.2)

Figure 7.1 shows the e�ect of the Josephson coupling on the energy levels of a charge qubit.

In the so-called charge regime, where Ec ≫ EJ , and in the vicinity of the degeneracy points

where ng =

 ,

 , . . ., the energy di�erence between the n =  and n =  (and higher) Cooper

pair number states is very large, so we can neglect number states with n > . Making this
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Figure 7.1: Charge qubit energy levels. Dotted and dashed black lines show the electrostatic
energy of the superconducting island for various even and odd numbers of Cooper pairs present
on the island, respectively. Near the degeneracy points, the Josephson couplingmixes the charge
states andmodi�es the energy of the eigenstates: blue, red and green solid lines show the ground,
�rst excited, and second excited state energy levels with EJ/Ec = ., obtained via numerical
diagonalisation of the Hamiltonian (7.2).

approximation, the Hamiltonian becomes

H ≈ Ecng ∣⟩ ⟨∣ + Ec ( − ng)

∣⟩ ⟨∣ −




EJ (∣⟩ ⟨∣ + ∣⟩ ⟨∣) . (7.3)

Subtracting the mean of the unperturbed energies of the states ∣⟩ and ∣⟩, given by Ec( −

ng + ng), and thus shi�ing the zero of energy gives

H =



Ec ( − ng) (∣⟩ ⟨∣ − ∣⟩ ⟨∣) −




EJ (∣⟩ ⟨∣ + ∣⟩ ⟨∣) . (7.4)

If we make the identi�cations

∣⟩ ≐
⎛

⎝





⎞

⎠
and ∣⟩ ≐

⎛

⎝





⎞

⎠
, (7.5)

the Hamiltonian (7.4) can be written in terms of the Pauli matrices σx and σz as

H =



Ec ( − ng) σz −




EJσx . (7.6)

At the charge degeneracy point where ng =  (we restrict our attention to the gate charge range

ng ∈ [, ], as we can see from Fig. 7.1 that the energy level structure repeats periodically as we

scan across ng) the Hamiltonian (7.6) simpli�es to

H = −



EJσx . (7.7)

�is Hamiltonian is diagonal in the basis {∣+⟩ , ∣−⟩}, where

∣±⟩ =


√

(∣⟩ ∓ ∣⟩) ≐


√


⎛

⎝

∓



⎞

⎠
; (7.8)



the artificial atom 81

the energy eigenvalues are thus given by

H ∣+⟩ =



EJ ∣+⟩ and H ∣−⟩ = −




EJ ∣−⟩ , (7.9)

allowing us to write the Hamiltonian transformed into the ∣±⟩ basis as

H =



EJσz . (7.10)

It is also possible to express the Hamiltonian (7.2) in terms of the phase γ of the supercon-
ducting order parameter of the charge island, which is the canonical conjugate to Cooper pair

number n [4]. �e eigenstates of number and phase are related to one another by1

∣γ⟩ =
∞

∑
n=−∞

e
iγn ∣n⟩ , (7.11a)

∣n⟩ = ∫
π


dγ e−iγn ∣γ⟩ . (7.11b)

In the phase basis, the Cooper pair number operator is given by

n̂ = −i
∂
∂γ
, (7.12)

and so in the phase representation [6] the Hamiltonian (7.2) becomes

H = Ec (−i
∂
∂γ

− ng)



− EJ cos γ̂ . (7.13)

�e time-independent Schrödinger equation derived from this Hamiltonian is a form of Math-

ieu’s di�erential equation, and has analytic solutions [7]. We will notmake use of these solutions

in this thesis, but a brief derivation is presented in appendix C.

Using (7.13), we can evaluate the current passing through the Josephson junction. �e

current in the Cooper pair box circuit is given by

Ĵ = −e ˙̂n , (7.14)

the charge of a Cooper pair multiplied by the rate at which the pairs tunnel o� the charge island.

1For information about phase operators, see Loudon [5].
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We can thus evaluate the current,

Ĵ = −e


ih̷
[n̂,H]

= −e


ih̷
[n̂,−EJ cos γ̂]

= −e


ih̷
[−i

∂(−EJ cos γ̂)
∂γ̂

]

=
eEJ

h̷
sin γ̂

= Jc sin γ̂ , (7.15)

where we have used the fact that EJ = JcΦ/π, and that Φ = h/e. We see that the phe-
nomenological Josephson coupling Hamiltonian �rst introduced in (7.2) eventually leads to

the correct Josephson current-phase relation.2

7.1.2 Island poten�al

From (B.35), the potential di�erence across the junction of two superconducting electrodes in

a quantum circuit is related to the phase di�erence between the electrodes by

V̂ =
Φ

π
dγ̂
dt
. (7.16)

Because the phase di�erence γ and the Cooper pair number n are conjugate variables, in the
Heisenberg picture we can write [8, 9]

dÂ
dt

=


ih̷
[Â,H] , (7.17)

and

∂Â
∂γ̂

=


i
[Â, n̂] , (7.18a)

∂Â
∂n̂

= −


i
[Â, γ̂] , (7.18b)

where Â is any operator.
Using the above relations, we can write the potential di�erence across a Josephson junction

– and thus the potential of the Cooper pair box charge island – as

V̂ =


ih̷
Φ

e
[γ̂,H] =



e
∂H
∂n̂
. (7.19)

Because the electrostatic component of the Cooper pair box Hamiltonian (7.1) is a function

2See sections (B.4.1) and (B.4.2).
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Jc Jc

Cg

Vg

Φ

Figure 7.2: Split Cooper pair box.

only of (n̂ − ng), we have

V̂ = −


e
∂Hc

∂ng
, (7.20)

which yields

V̂ =
e
CΣ

(n̂ − ng) . (7.21)

7.1.3 The split Cooper pair box

�e electrostatic component of the Cooper pair box Hamiltonian (7.2) can be tuned by varying

the gate voltage Vg . Splitting the Josephson junction as shown in Fig. 7.2 provides the ability to

tune the tunnelling portion of the Hamiltonian as well.

When the Josephson junction coupling the superconducting electrode to the charge island

is split into two, the Josephson component of the qubit Hamiltonian becomes the sum of the

contributions of the two junctions,

HJ = −EJ cos γ − EJ cos γ , (7.22)

which is equivalent to

HJ = −



∑
n

EJ (∣n⟩ ⟨n + ∣ + ∣n + ⟩ ⟨n∣)

−



∑
n

EJ (∣n⟩ ⟨n + ∣ + ∣n + ⟩ ⟨n∣) . (7.23)

Our discussion of theDC SQUIDdevice in section B.5.1 includes the result that the di�erence be-

tween the phase di�erences across the two junctions can bewritten γ−γ = πΦ/Φ (mod π);
see equation (B.49). Substituting this relation into (7.22), andmaking use of some trigonometric

identities, we �nd that (7.22) becomes

HJ = −(EJ + EJ) cos(π
Φ

Φ
) cos γ − (−EJ + EJ) sin(π

Φ

Φ
) sin γ , (7.24)

where we have de�ned γ ≡ (γ + γ)/. In the case where the junctions are symmetric (having



84 circuit qed ii: theory

the same critical currents and thus the same coupling energies), or when there is no external �ux

present in the DC SQUID loop, the Hamiltonian (7.22) reduces to an e�ective single-junction

Hamiltonian, with a �ux-tunable Josephson coupling energy

HJ = −Ee�J (Φ) cos γ . (7.25)

In order to consider cases where the above conditions do not hold, we de�ne the variables

EJΣ = EJ + EJ , (7.26)

d =
EJ − EJ

EJΣ
. (7.27)

Using the transformation between the phase and charge bases introduced in §7.1.1, we can now

write the split Cooper pair box Hamiltonian as

HJ = −



EJΣ∑

n
[cos(π

Φ

Φ
) (∣n⟩ ⟨n + ∣ + ∣n + ⟩ ⟨n∣)

+id sin(π
Φ

Φ
) (∣n⟩ ⟨n + ∣ − ∣n + ⟩ ⟨n∣)] . (7.28)

In the two-state approximation, the complete Hamiltonian for the split Cooper pair box is

H = Ec ( − ng) σz −



EJΣ [cos(π

Φ

Φ
) σx + d sin(π

Φ

Φ
) σy] . (7.29)

See Cottet [10], Schuster [11] for further information about the split Cooper pair box.

7.1.4 The transmon

�e transmon [3] is a charge qubit, similar in design to the split Cooper pair box. �e chief
di�erence from the split Cooper pair box is, as we can see from Fig. 7.3,3 an additional large

capacitance CB. �is additional capacitance means that the total capacitance to ground of the

charge island CΣ = CJ + Cg + CB (where Cg is the total capacitance of the split junction) is

larger than in the case of the Cooper pair box, and so the electrostatic charging energy of the

island, Ec = (e)/CΣ, is comparatively small. Indeed, the transmon is, in contrast to both
types of Cooper pair box, operated in a regime where Ec ≪ EJ . �e reason for this will become

clear below.

We now consider the Josephson tunnelling component of the transmon Hamiltonian. �is

Hamiltonian is identical to the relevant component of the split Cooper pair box Hamiltonian,

so the reader can refer back to section 7.1.3 for details, but we reproduce it here for convenience:

3Figure 7.3 does not depict the full capacitance network for the transmon device; an e�ective network is
presented here as it is su�cient for our purposes. A complete analysis of the full network is presented in Koch et al.
[3].
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Jc Jc

Cg

CBVg

Φ

Figure 7.3: Schematic diagram of a transmon charge qubit. �e split Josephson junction, which
forms a DC SQUID loop, has total capacitance CJ .

HJ = −EJΣ [cos(π
Φ

Φ
) cos γ̂ + d sin(π

Φ

Φ
) sin γ̂] . (7.30)

�is Hamiltonian can be rewritten [3]

HJ = −EJΣ cos(π
Φ

Φ
)

√

 + d tan (π
Φ

Φ
) cos (γ̂ − γ) , (7.31)

where the phase γ is determined by tan γ = d tan(πΦ/Φ). When the magnetic �ux through

the DC SQUID loop is constant, this phase can be eliminated by a shi� of variables [3], and the

split Josephson junction can be taken to have an e�ective single-junction coupling energy,

Ee�J = EJΣ cos(π
Φ

Φ
)

√

 + d tan (π
Φ

Φ
) . (7.32)

As such, we may as well take the two junctions to be symmetrical from here onwards, writing

HJ = −EJ cos γ̂ (7.33)

for the Josephson component of the transmon Hamiltonian. �e full result for asymmetrical

junctions can always be recovered by letting EJ → Ee�J .
If we now take into account the charging component of the Hamiltonian, including the

new capacitance CB mentioned above, we obtain the full phenomenological Hamiltonian for

the transmon device,

H = Ec (n̂ − ng)

− EJ cos γ̂ . (7.34)

�is Hamiltonian is identical to that of the basic Cooper pair box charge qubit, which we have
already considered in section 7.1.1.

We see, therefore, that the only fundamental di�erence between the Cooper pair box and

the transmon is the regime in which it is operated: the Cooper pair box is operated with

EJ/Ec ≪  in order that it might behave as a qubit, whereas the transmon is operated with

EJ/Ec ≫ . As is clear from Fig. 7.4, when the ratio EJ/Ec is increased, the anharmonicity of the

transmon energy levels decreases substantially. However, the so-called charge dispersion – the
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Figure 7.4: Eigenenergies Em of the transmon Hamiltonian (7.34) as a function of e�ective
gate charge ng , obtained by numerical diagonalisation. �e minimum di�erence between the
energies of the ground state and the �rst excited state is denoted E.

peak-to-peak variation of each eigenenergy as we sweep across ng – also decreases. Speci�cally,

the charge dispersion of the mth transmon energy level, which has energy Em, is given by

єm = Em(ng = ) − Em(ng = ) . (7.35)

�is decrease in the charge dispersion also decreases the sensitivity of the transmon to

charge noise, which is of experimental value. It is shown by Koch et al. [3] that an increase of the

ratio EJ/Ec results in an exponential decrease in the charge dispersion, with only a polynomial
decrease in the anharmonicity of the energy levels.

In order to further understand these results, and the transmon itself, we need to search for

analytic and perturbative expressions for the energy levels of the transmon.

7.1.5 Transmon: perturba�on theory

In the large EJ/Ec limit, the transmon behaves like an anharmonic oscillator. �e quantisation

of this oscillator follows the treatment of the quantised LC oscillator presented in appendix A,

but with the inductor replaced by a Josephson junction.4

4Here we follow the treatments in Schuster [12] and Koch et al. [3].
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We have already seen that the Cooper pair box Hamiltonian – and thus the transmon

Hamiltonian – can be expressed in the phase basis using equations (7.11). and . �e transmon

Hamiltonian in the phase basis, given by (7.13), is repeated here for convenience:

H = Ec (−i
∂
∂γ

− ng)



− EJ cos γ̂ . (7.36)

�is is the Hamiltonian for a rigid pendulum or rotor, with a strong gravitational force−EJ cos γ̂
restricting the motion of the rotor to a small range of angles. �us, we expand out the cosine

(Josephson) term in the transmon Hamiltonian, keeping terms up to fourth order,

H ≈ Ec (−i
∂
∂γ

)



− EJ ( −
γ̂

!
+

γ̂

!
) , (7.37)

where the gate charge ng , which plays the role of a “vector potential”, has been eliminated by a

gauge transformation. �is Hamiltonian consists of a harmonic oscillator part, and a quartic

perturbation:

H ≈

⎡
⎢
⎢
⎢
⎢
⎣

Ec (−i
∂
∂γ

)



+



EJ γ̂

⎤
⎥
⎥
⎥
⎥
⎦

− EJ −



EJ γ̂ . (7.38)

We introduce the annihilation operator for the harmonic oscillator which approximates the

transmon,

b̂ =
√

mpωp


(γ̂ + i

n̂
mpωp

) , (7.39)

with mp = h̷/Ec and ωp =
√
EcEJ/h̷. �us, we can write the phase operator as

γ̂ =
b̂ + b̂†
√


(
Ec

EJ
)

/

. (7.40)

And so the transmon Hamiltonian can be written as

H ≈
√
EcEJ (b̂†b̂ +




) − EJ −




Ec (b̂ + b̂†)


. (7.41)

�e �rst-order energy correction to the jth state is given by

−



Ec ⟨ j∣(b̂ + b̂†)


∣ j⟩ = −




Ec ( j +  j + ) , (7.42)

which means that the energy of the jth level is given by

E j ≈ h̷ωp j −
Ec


( j +  j + ) . (7.43)

To put this another way, when ωc ≪ ωp, as is the case for the transmon, we can neglect those



88 circuit qed ii: theory

γ

E/EJ

− −   


.



.

Figure 7.5: �e transmon as an anharmonic oscillator. �e blue lines represent the potential
and energy levels of a harmonic oscillator. �e red lines show the e�ect adding a quartic
perturbation to the harmonic potential has on the energy eigenvalues. �e relative sizes of the
energy corrections are correct to �rst order in perturbation theory, as the energy levels are given
by the result (7.43). Parameters are arbitrary.

terms in the expansion of (b̂ + b̂†) which provide no �rst-order perturbative correction to the
Hamiltonian, obtaining

H = h̷ωpb̂†b̂ −



h̷ωc [b̂†b̂ + (b̂†b̂)


] , (7.44)

where h̷ωc = Ec . Because the transmon will be coupled to some sort of cavity which is resonant

with the ground–�rst excited state transition (the “qubit” transition), we wish to write the

Hamiltonian in terms of this resonant frequency, ω ≡ ωp − ωc/. When we do this, we obtain

H = h̷ωb̂†b̂ +



h̷ωc [b̂†b̂ − (b̂†b̂)


]

= h̷ωb̂†b̂ −



h̷ωc b̂†b̂†b̂b̂ . (7.45)

We have obtained a simple Hamiltonian for the transmon: a charge qubit “reimagined” as an

anharmonic oscillator. Figure 7.5 shows qualitatively the e�ect of the quartic perturbation, and

of the �rst-order energy correction (7.42).

7.2 The transmission-line resonator

A cavity quantum electrodynamics experiment involves an atom coupled to a cavity or other

electromagnetic resonator. In circuit QED, a superconducting qubit, or a transmon as described

above, can be used as an arti�cial atom. �e “cavity” used in recent experiments [1, 2] is a

quasi-one-dimensional superconducting transmission line resonator, also sometimes referred

to as a stripline resonator. �is is essentially just a superconducting wire placed between two
ground plates. Gaps in the wire, placed an integer number of half-wavelengths apart, play the

role of “mirrors”, forming a microwave cavity analogous to the Fabry-Pérot geometry used in
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optics. �e rate at which photons enter and leave the cavity depends on the size and shape of

the gaps.

For relatively low frequencies, when the cross-sectional dimension of the resonator is much

less than the wavelength of the transmitted signal, the transmission line can be described by a

one-dimensional model: an in�nite series of inductors with each node capacitively connected

to ground. �e classical Lagrangian density for such an LC oscillator is

L =
l

j +



c
q , (7.46)

where l and c are respectively the inductance and capacitance per unit length, and j(x , t) and
q(x , t) are the local current and the local charge density. We follow Blais et al. [13] in quantising
the oscillator in the usual way. First, we de�ne

θ(x , t) ≡ ∫
x

−M/
dx′q(x′, t) , (7.47)

where the resonator has lengthM. �is allows us to write the Lagrangian as

L = ∫
M/

−M/
dx (

l


θ̇ −


c
(∇θ)) . (7.48)

�e correspondingEuler-Lagrange equation is awave equation θ̈ = v∇θ with speedv = /
√
l c.

�e overall charge neutrality of the resonator imposes Dirichlet boundary conditions

θ(−M/, t) = θ(M/, t) =  . (7.49)

�e general solution for θ(x , t) thus becomes5

θ(x , t) =

√


M ∑
k odd

ϕk(t) cos(
πkx
M

) +

√


M ∑
k even

ϕk(t) sin(
πkx
M

) . (7.50)

�is normal mode expansion allows us to write the Lagrangian (7.48), a�er spatial integration,

as

L = ∑
k

[


l
πk
 −

lωk

ϕk] , (7.51)

with πk = l ϕ̇k and ωk = πkv/M.
�e Hamiltonian obtained from the Lagrangian (7.51) is in the typical form of a set of

5Note that there will exist some k above which the assumption that the resonator can be considered to be
one-dimensional will no longer apply.
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harmonic oscillators, and thus we de�ne boson annihilation and creation operators,

âk(t) =

√
lωk

h̷
(ϕ̂k(t) + i

π̂k(t)
lωk

) , (7.52a)

â†k(t) =

√
lωk

h̷
(ϕ̂k(t) − i

π̂k(t)
lωk

) , (7.52b)

which satisfy

[âk , â†k′] = δkk′ . (7.53)

�e Hamiltonian for the cavity, therefore, is

H = ∑
k
h̷ωk (â†k âk +




) , (7.54)

as expected.

7.3 Coupling of qubit to cavity

�e voltage on the resonator is given by

V̂(x , t) =


c
∂θ
∂x

= − ∑
k odd

√
h̷ωk

cM
sin(

πkx
M

) [âk(t) + â†k(t)]

+ ∑
k even

√
h̷ωk

cM
cos(

πkx
M

) [âk(t) + â†k(t)] . (7.55)

If the qubit is coupled to a certain mode k of the resonator, and the combined system is driven
at or close to the resonant frequency, other modes can be neglected. Here, the qubit is placed

at the centre of the resonator (x = ), and coupled to the k =  mode. �us, the potential that
the qubit feels is given by

V̂(t) = V [â(t) + â†(t)] , (7.56)

with V =
√
h̷ω/cM. We have dropped the mode index on the resonator operators for

simplicity of notation.

Recall that the electrostatic part of the Cooper pair box (or transmon) Hamiltonian is given

by

Hc = Ec (n̂ − ng)

, (7.57)
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where

ng =
CgVg

e
, (7.58)

Vg being the classical bias voltage coupled to the Josephson junction. Inside the transmission

line cavity, the total voltage that the qubit feels is the sum of the classical gate voltage and the

quantum voltage due to the photons in the resonator,

V̂tot = Vg + V̂

= Vg + V (â + â†) . (7.59)

Replacing Vg with V̂tot and expanding out the electrostatic Hamiltonian gives

Hc = Ec (n̂ − ng)

+
Cg

e
ngV̂ +

Cg


e
V̂ −

Cg

e
V̂ n̂ . (7.60)

�e �rst term is the electrostatic Hamiltonian with classical bias, which we have already taken

into account. �e middle two terms are the extra energy stored in the geometric capacitance

of the Josephson junction; as they do not depend on the qubit state, they do not a�ect the

qubit-cavity interaction and can be neglected (by way of shi�ing the zero of energy). �e last

term is our interaction term, which we will write as

HI = h̷ (â + â†) n̂ , (7.61)

with

 =
eV
h̷

β , (7.62)

where β = Cg/CΣ accounts for division of voltage within the qubit.
Recall that earlier, when we were deriving (7.4), we shi�ed the zero of energy, making the

substitution n̂ → (∣⟩ ⟨∣ − ∣⟩ ⟨∣)/. In the qubit basis {∣+⟩ , ∣−⟩} this becomes n̂ = −σx/,
giving

HI = −h̷ (â + â†) σx . (7.63)

If we make the rotating wave approximation,6 neglecting terms like âσ− and â†σ+ which do not
conserve energy to �rst order, and absorb a phase into the de�nitions of σ+ and σ−, we obtain

HI = h̷ (âσ+ + â†σ−) , (7.64)

the usual Jaynes-Cummings coupling.

In the case of the transmon, the Cooper pair number operator can be related to the transmon

6Recall section 3.1.4.
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Figure 7.6: Energy eigenvalues of the coupled transmon-resonatorHamiltonian (7.69), obtained
by numerical diagonalisation. �e “ladder” on the le�, with only two transmon states, is
equivalent to the Jaynes-Cummings ladder.

ladder operators using (7.39),

n̂ = −i


√

(
EJ

Ec
)



(b̂ − b̂†) . (7.65)

We may absorb a phase into the de�nition of b̂, giving

n̂ =


√

(
EJ

Ec
)



(b̂ + b̂†) , (7.66)

which in the rotating wave approximation gives a similar result [1–3],

HI = h̷ (âb̂† + â†b̂) , (7.67)

with di�erent coupling strength .
Combining the contributions from the cavity, the qubit, and the interaction, we obtain the

full Hamiltonian for a Cooper pair box qubit coupled to a transmission line resonator,

H = h̷ωâ† â +



h̷ωσz + h̷ (âσ+ + â†σ−) , (7.68)

the usual Jaynes-Cummings Hamiltonian.

�e complete Hamiltonian for a transmon coupled to a resonator becomes

H = h̷ωa â† â + h̷ωb b̂†b̂ −



h̷ωc b̂†b̂†b̂b̂ + h̷ (âb̂† + â†b̂) . (7.69)

An example calculation of the energy eigenvalues of the coupled transmon-resonator Hamilto-

nian is shown in Fig. 7.6.

In order to help evaluate the resonator-transmon coupling strength , we re-write the
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Hamiltonian in the basis of uncoupled transmon states ∣i⟩, obtaining [3]

H = h̷∑
j

ω j ∣ j⟩ ⟨ j∣ + h̷ωa â† â + h̷∑
i
∑
j
i j ∣i⟩ ⟨ j∣ (â + â†) , (7.70)

with coupling energies

h̷i j = h̷∗ji = eβV ⟨i∣n̂∣ j⟩ . (7.71)

�e matrix element ⟨i∣n̂∣ j⟩ is easily evaluated using (7.66). We �nd that

⟨ j + ∣n̂∣ j⟩ =


√

(
EJ

Ec
)


 √

j +  , (7.72)

and ⟨ j∣n̂∣ j + ⟩ = ⟨ j + ∣n̂∣ j⟩ are the only non-zero matrix elements of this type. Of course, we
have made many approximations in deriving the form of n̂ used to evaluate the matrix elements
above, so the other matrix elements will in reality be very small but non-zero. See Koch et al.

[3] for a discussion of how these matrix elements behave. In the rotating-wave approximation

the coupling takes on the form

h̷∑
j
j (∣ j + ⟩ ⟨ j∣ â + h.c.) , (7.73)

where j ≡ j+, j. We now know that

j ∼ 
√

j +  , (7.74)

where  is some reference coupling strength. �is is in line with what we already know from
(7.69), given that b̂ = ∑ j

√
j +  ∣ j⟩ ⟨ j + ∣.

7.4 Master equa�on for the circuit QED system

To model a driven transmon-resonator system, we add a driving term to the Hamiltonian

(7.69),

H = h̷ωa â† â + h̷ωb b̂†b̂ −



h̷ωc b̂†b̂†b̂b̂ + h̷ (âb̂† + â†b̂)

+ h̷E (âeiωL t + â†e−iωL t) . (7.75)

Transforming the above into a frame rotating at the driving �eld frequency, to remove the

time-dependence, we obtain

H = h̷∆ωa â† â + h̷∆ωb b̂†b̂ −



h̷ωc b̂†b̂†b̂b̂ + h̷ (âb̂† + â†b̂) + h̷E (â + â†) , (7.76)

where ∆ωa ≡ ωa − ωL and ∆ωb ≡ ωb − ωL.

Interactions with the environment are modelled by way of the Lindblad master equation
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Figure 7.7: Coherent spectra T = ∣⟨â⟩∣ of the light transmitted by a transmission line resonator
coupled to a transmon. Obtained numerically by solving for the steady state of the master
equation, with parameters /κa = , ωc/κa = , and κb/κa = . Following Bishop et al.
[2], the Hilbert space for these calculations is truncated to a subspace with maximum number
of excitations N = , using the projector PN = ∑≤n+ j≤N ∣n, j⟩ ⟨n, j∣.

for the density operator ρ,

ρ̇ = Lρ =


ih̷
[H, ρ] + κaD [â] ρ + κbD[b̂] ρ . (7.77)

�ere are two decay channels, taking into account loss of cavity photons and relaxation of

transmon excitations respectively. �e rate of loss of photons from the cavity is given by κa,

while the relaxation rate of the transmon excitations is given by κb. Following Bishop et al.
[2], we have assumed that the relaxation of higher transmon levels arises due to a coupling

of environmental degrees of freedom to the charge on the superconducting island. �us, the

relative strengths of the relaxation of the levels ∣ j⟩ are taken to go as j/. �is yields the
expected dissipation term,

κbD
⎡
⎢
⎢
⎢
⎢
⎣
∑
j

j


∣ j⟩ ⟨ j + ∣
⎤
⎥
⎥
⎥
⎥
⎦

= κbD
⎡
⎢
⎢
⎢
⎢
⎣
∑
j

√
j +  ∣ j⟩ ⟨ j + ∣

⎤
⎥
⎥
⎥
⎥
⎦

= κbD[b̂] . (7.78)

It is noted by Bishop et al. that another damping term, taking into account pure dephasing of

transmon state superpositions, ought to be present. However, transmon manufacturing has
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advanced to the point that the dephasing rate can be set to zero [2].

As an example calculation using the model we have developed, several plots of the coherent

spectrum of the light transmitted by the resonator, in the case where the transmon’s lowest

excited state is resonant with the transmission line, ∆ω ≡ ∆ωa = ∆ωb, are shown in Fig. 7.7.

Note that for weak driving (E/κa = .) the transmission spectrum of the transmon-cavity

system is essentially the vacuum Rabi spectrum; at higher driving �eld strengths, additional

peaks arise due to multi-photon transitions. Also visible is the supersplitting of each vacuum

Rabi peak into a doublet, predicted by Tian and Carmichael [14].
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8

Circuit QED III: dispersive op�cal bistability

A system is said to display optical bistability if for a single intensity of the light input to the
system, there exist two stable output intensities, one large and one small [1]. Optical bistability

due to the presence of a single atom (or arti�cial atom) in a cavity is mentioned by Schoelkopf

and Girvin [2] as being a phenomenon which may appear in the new regimes of quantum

optics opened up by circuit QED technology. In this chapter, we investigate optical bistability

in the circuit QED system comprising a transmon coupled to a transmission line resonator.

Drummond andWalls [3] (and, following them, Walls andMilburn [4]) give a treatment of

optical bistability in a system comprising a nonlinear dispersive medium inside a single-mode

optical cavity. �ey consider a cubic nonlinearity in the polarisation (or Kerr nonlinearity),
which leads to a quartic term of the form â† â in the electric �eld in theHamiltonian. Referring
back to the Hamiltonian for the transmon qubit (7.45), we see that the transmon also has a

term of this quartic form which describes the nonlinearity of its energy levels, so we suspect

that the physics might be similar. Bistability due to the presence of a purely dispersive medium

(with no absorption or gain) is referred to as dispersive optical bistability.
�e master equation for the driven transmon-resonator circuit QED system is given by

ρ̇ = Lρ =


ih̷
[H, ρ] + κaD[â]ρ + κbD[b̂]ρ , (8.1)

where the HamiltonianH is given by (7.75); in the interaction picture, the Hamiltonian becomes
that given in (7.76). In order to obtain a dimensionless master equation we divide (8.1) through

by κa, obtaining

d

d(κa t)
ρ = −i [

H
h̷κa
, ρ] + D[â]ρ + ξD[b̂]ρ , (8.2)

with

H
h̷κa

=
∆ω
κa

â† â +
∆ω − ∆ωab

κa
b̂†b̂ −





ωc

κa
b̂†b̂†b̂b̂ +


κa

(âb̂† + â†b̂) +
E

κa
(â + â†) , (8.3)

where we have de�ned the ratio ξ ≡ κb/κa, and the detunings ∆ω ≡ ∆ωa and ∆ωab ≡ ∆ωa −

∆ωb.

97
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8.1 Semiclassical analysis

From (8.2) and (8.3), and using

∂
∂t

⟨Â⟩ = tr (Âρ̇) , (8.4)

we have

∂
∂t

⟨â⟩ = −iE − i∆ω⟨â⟩ − i⟨b̂⟩ −



⟨â⟩ , (8.5a)

∂
∂t

⟨â†⟩ = iE + i∆ω⟨â†⟩ + i⟨b̂†⟩ −



⟨â†⟩ , (8.5b)

∂
∂t

⟨b̂⟩ = −i(∆ω − ∆ωab)⟨b̂⟩ +
i


ωc⟨b̂†b̂b̂⟩ − i⟨â⟩ −




ξ⟨b̂⟩ , (8.5c)

∂
∂t

⟨b̂†⟩ = i(∆ω − ∆ωab)⟨b̂†⟩ −
i


ωc⟨b̂†b̂†b̂⟩ + i⟨â†⟩ −




ξ⟨b̂†⟩ , (8.5d)

where we have written the parameters ∆ω, ∆ωab, , and ωc in units of κa, and t in units of
κa

− (we do this simply to avoid the notation becoming too unwieldy).

Following Drummond and Walls [3], we de�ne the mean-�eld amplitudes,

α = ⟨â⟩ , α∗ = ⟨â†⟩ , β = ⟨b̂⟩ , β∗ = ⟨b̂†⟩ . (8.6)

In the semiclassical approximation, the correlation functions factorise, and we obtain the

equations of motion,

∂
∂t

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
α∗

β
β∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−iE − i∆ωα − iβ − α
iE + i∆ωα∗ + iβ∗ − α∗

−i(∆ω − ∆ωab)β + iωcβ∗ββ − iα −  ξβ
i(∆ω − ∆ωab)β∗ − iωcβ∗β∗β + iα∗ −  ξβ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.7)

�e steady state mean-�eld amplitudes can be obtained by setting the derivatives on the le�-

hand side of (8.7) equal to zero. In the case of zero relative detuning between the transmon

and cavity, that is when ∆ωab = , computing these steady states yields

 ∣α∣ = ∣β∣ [



ξ + (




ωc ∣β∣ − ∆ω)


] , (8.8)

and

E = ∣β∣
⎡
⎢
⎢
⎢
⎢
⎣

(
∆ω


+
ξ∆ω


−
ωc


∣β∣)



+ (
∆ω


−

ωc∆ω


∣β∣ −
ξ


− )
⎤⎥
⎥
⎥
⎥
⎦

. (8.9)

Using the above relations we can solve for, and plot examples of, the mean-�eld amplitudes ∣α∣
and ∣β∣, as seen in Fig. 8.1. �e “s-shaped” curves suggest dispersive optical bistability [3], but a
linearised stability analysis around the steady state will be necessary to con�rm this.
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Figure 8.1: Steady state mean-�eld amplitudes as a function of E , with parameters /κa = ,
ωc/κa = , ∆ω = −/, ∆ωab = , and ξ = . �e full curves show steady states with stable
eigenvalues, while the dotted curves show steady states with unstable eigenvalues.

Suppose we have an equation of the form

∂x
∂t

= F(x, t) , (8.10)

which has a stationary point at x, such that

F(x, t) =  . (8.11)

�e best linear approximation to the equation (8.10) at the point x is given by

∂x
∂t

= JF(x, t)(x − x) , (8.12)

where JF is the Jacobian of F evaluated at x. Here, we consider the stationary points given by
the steady-state solutions of the equations of motion (8.7),

x = (α, α∗, β, β∗)ss
T
. (8.13)

�e equations of motion for the mean-�eld amplitudes (8.7) lead to the Jacobian

JF =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i∆ω −   −i 

 i∆ω −   i
−i  −i∆ω + iωcβ∗β −  ξ iωcβ

 i −iωcβ∗ i∆ω − iωcβ∗β −  ξ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8.14)

For the steady state solutions to be stable, all eigenvalues of JF must be negative [5]. We know
that the determinant and trace of a matrix A can be written in terms of its eigenvalues λi as

tr(A) = ∑
i

λi , and det(A) =∏
i

λi , (8.15)
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respectively. �erefore to have stable eigenvalues we must have

tr(JF) <  , (8.16a)

det(JF) >  . (8.16b)

�e relation for the trace is always satis�ed, as ξ > . It turns out that the determinant of the
Jacobian is a function of ∣β∣, so we can calculate it numerically without too much trouble.
Figure 8.1 indicates which solutions for ∣α∣ and ∣β∣ are stable or unstable according to this
eigenvalue analysis.

8.1.1 Scaled equa�ons of mo�on

In order to reduce the size of the parameter space we have to consider, wemake a transformation

of the equations of motion (8.7). We de�ne the scaling parameter

ns ≡

χ
, (8.17)

where χ ≡ ωc/, and the scaled variables:

Ẽ ≡ ns−

 E , α̃ ≡ ns−


 α , β̃ ≡ ns−


 β . (8.18)

Carmichael [6, 7] refers to this type of transformation as a “system size transformation”, but

here we make no attempt to prove that the parameter ns represents the size of the system. In
similar fashion to (8.7), we obtain the equations of motion for the scaled variables

∂
∂t

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α̃
α̃∗

β̃
β̃∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−iẼ − i∆ωα̃ − iβ̃ − κα̃
iẼ + i∆ωα̃∗ + iβ̃∗ − κα̃∗

−i(∆ω − ∆ωab)β̃ − iα̃ + iβ̃∗β̃β̃ − ξκβ̃
i(∆ω − ∆ωab)β̃∗ + iα̃∗ − iβ̃∗β̃∗β̃ − ξκβ̃∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.19)

where κ ≡ κa/ and ξ ≡ κb/κa, and where we have written Ẽ , ∆ω, ∆ωab and κ in units of ,
and t in units of −. Setting the time-derivatives in (8.19) equal to zero, we obtain the steady
state results

∣α̃∣ = ∣β̃∣

[ξκ + ((∆ω − ∆ωab) − ∣β̃∣


)

] , (8.20)

and

∣Ẽ ∣

= ∣β̃∣


[(∆ω(∆ω − ∆ωab) − ∆ω ∣β̃∣


− ξκ − )



+ (κ(∆ω − ∆ωab) + ξκ∆ω − κ ∣β̃∣

)

] . (8.21)
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Figure 8.2: (a) Steady state mean-�eld amplitudes as a function of ∣Ẽ ∣, with parameters, ∆ω/ =
−/, ∆ωab = , κ/ = /, and ξ = . �e full curves show steady states with stable eigenvalues,
while the dotted curves show steady states with unstable eigenvalues. (b) Within the shaded
region, our linearised stability analysis yields unstable eigenvalues: this is the “bistable” region.
Outside the shaded region, the mean-�eld amplitudes as functions of ∣Ẽ ∣ and ∆ω are single-
valued. Parameters are κ = /, and ξ = . In both �gures, all parameters are written in units
of .

�e equations of motion (8.19) furthermore lead to the Jacobian

JF =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−i∆ω − κ  −i 

 i∆ω − κ  i

−i  −i(∆ω − ∆ωab) + iβ̃∗β̃ − ξκ iβ̃

 i −iβ̃∗


i(∆ω − ∆ωab) − iβ̃∗β̃ − ξκ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(8.22)

which we use to performed a linearised stability analysis for the scaled system. As κ >  and

ξ > , (8.16a) is satis�ed, so we can search for stable solutions satisfying (8.16b) numerically.
Example calculations are shown in Fig. 8.2a. We also use our linearised stability analysis to

plot a region in parameter space in which bistability occurs; this is shown in Fig. 8.2b.
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Parameter Value

/κa 
∆ω/κa −/
∆ωab 
ωc/κa 

ξ 

Table 8.1: Parameters used in various quantum-mechanical calculations relating to the circuit
QED system.

8.2 Quantum treatment

In the semiclassical approximation, the circuit QED system displays dispersive optical bistability.

�e question now is whether or not the quantum �uctuations in the system will be large enough

to destroy the bimodality by causing transitions between the two stable branches. To answer

this question, we must investigate the full quantum dynamics of the system.

�e parameters ∆ω/ = −/, ∆ωab = , κ/ = /, and ξ =  used in Fig. 8.2a, along with
the choice of scaling parameter ns = /χ = , correspond to the parameters in table 8.1. �ese
parameters will be used for several quantum-mechanical calculations relating to bistability in

the circuit QED system.

�e steady state solution of the master equation (8.2) can be found in a straightforward

manner using the technique we have employed for many calculations throughout this thesis:

�nding the kernel of the Liouvillian super-operator. �is allows us to compute steady-state

properties of the system, such as the �eld amplitudes shown in Fig. 8.3. �e stable branches

yielded by the semiclassical analysis do not carry over into the quantum treatment: they are

now onlymetastable due to quantum �uctuations. Solving for the steady state of the master
equation yields the true steady state in the presence of quantum �uctuations, which is why

there is no suggestion in Fig. 8.3 of the two stable branches seen in Figs. 8.1 and 8.2a.

�e Q-function [8] is de�ned as

Q(α) =


π
⟨α∣ρ∣α⟩ , (8.23)

where ∣α⟩ is a coherent state; the Q-function is thus the diagonal matrix elements of the density
operator in a pure coherent state. �e Q-function is a quasi-probability distribution which can
be used to visualise a quantum state. It is well-behaved: because the density operator ρ is a
positive operator, the Q-function is always positive; it is also bounded, Q(α) < /π.

�e Q-function is used, in Fig. 8.4, to visualise the steady state solutions of the master
equation (8.2), for four di�erent values of the driving �eld strength. �e Q-functions at E/κa =

. and E/κa = . possess a single peak, corresponding to a single stable state. However

at intermediate driving strengths, E/κa = . and E/κa = ., a bimodality arises in the

quasi-probability distribution, indicating two metastable states as we would expect from our

semiclassical analysis.
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Figure 8.3: Steady state �eld amplitudes as a function of E , with dimensionless parameters
listed in table 8.1. �e cavity mode Fock space is truncated at the -photon level, while the
transmon is truncated at the -excitation level; the overall Hilbert space is -dimensional.
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Figure 8.4: Q-functions, computed from steady state solutions of the master equation (8.2),
using the parameters in table 8.1. Contour lines are plotted at Q(α) = , ., ., . . . , ..
�e cavity mode is truncated at the -photon level, while the transmon is truncated at the
-excitation level.
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8.2.1 Jump trajectories

Due to the quantum �uctuations present in the master equation treatment, the system state

is able to “tunnel” between the two metastable states. Suppose we were to select one of the

parameter regimes depicted in Fig. 8.4 where the bimodality is present, and perform an

experiment wherein we continuously monitor the light output from the transmission line

resonator. In this case, we should be able to observe the system switching between a low-output

and a high-output state, corresponding to the “tunnelling” between the two metastable states of

the system. We cannot observe this process using the master equation: if we were to calculate

some quantity such as ⟨â† â(t)⟩ using the master equation, we would simply obtain a mean
somewhere between the two metastable states, as we did in Fig. 8.3. �is is because the master

equation constitutes a statistical average over all the possible trajectories of the quantum state.

In order to observe the system switching between its two metastable states, we must appeal to

quantum trajectory theory (section 2.4).

�e master equation (8.2) has dissipators D[â]ρ and ξD[b̂]ρ, for the damping of the
resonator mode and the relaxation of the transmon excitations respectively. �ese dissipators

lead to two jump operators

ȷ̂a = â , ȷ̂b =
√

ξb̂ , (8.24)

corresponding to direct detection of photons from the resonator and the transmon.1 �e non-

Hermitian e�ective Hamiltonian, which generates the coherent evolution of the unnormalised

conditioned wavefunction ∣Ψ̄c(t)⟩ between jumps, is therefore given by

He� = H − ih̷



( ȷ̂†a ȷ̂a + ȷ̂†b ȷ̂b) , (8.25)

where the system Hamiltonian H is given by (8.3). By applying the Monte Carlo algorithm
outlined in section 2.4.4, and using RK4 integration between the jumps, we obtain the quantum

trajectory simulations of the mean photon number ⟨â† â⟩ shown in Fig. 8.5. Note the visible
switching, at driving strengths E/κa = . and E/κa = ., between the states with low and

high mean photon numbers. �e noise in the high mean photon number state is simply shot

noise.

8.2.2 Heterodyne current records

We seek an unravelling of the master equation (8.2) which models the type of measurement

made in optical heterodyne detection. Consider the schematic “experiment” depicted in Fig.

8.6, in which the light output from the transmission line resonator interferes with a coherent

1If the photons are not actually detected, in the case of the transmon for example, the jump operators remain
the same. �e Lindblad master equation is Markovian, so photons emitted into the environment by relaxation of
the transmon levels will not a�ect the evolution of the system a�er their emission; they can thus, in principle, be
detected at any time without changing the state of the system.
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Figure 8.5: Monte Carlo simulations of quantum trajectories with photoelectron counting,
computed using the parameters in table 8.1. �e mean photon number in the transmission
line resonator is shown for four driving �eld strengths. �e cavity mode is truncated at the
-photon level, while the transmon is truncated at the -excitation level.

local oscillator �eld. �e local oscillator �eld has complex amplitude

Elo = ∣Elo∣ e
iθ
. (8.26)

In this situation, the transmon levels relax as usual; this is taken into account by way of the

jump operator

ȷ̂b =
√

ξb̂ , (8.27)

just as in the case of the jump trajectory. If the photons from the resonator were to be directly

detected, we would have the jump operator

ȷ̂a = â , (8.28)

however in this case the cavity output is not observed directly, but is rather measured using

heterodyne detection. In place of the single jump operator ȷ̂a we now have – taking into account
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resonator

local oscillator

detector 1

detector 2

Figure 8.6: Schematic depiction of optical heterodyne detection. A strong local oscillator �eld
is superposed on the output from the transmission line resonator at a / beam splitter.

the two detectors and the / beam splitter shown in Fig. 8.6 – two jump operators [9],

ȷ̂+ =


√

(Elo + ȷ̂a) =


√

(∣Elo∣ e

iθ + ȷ̂a) , (8.29a)

ȷ̂− =


√

(Elo − ȷ̂a) =


√

(∣Elo∣ e

iθ − ȷ̂a) . (8.29b)

�e non-Hermitian Hamiltonian which generates the coherent evolution of ∣Ψ̄c(t)⟩ between
jumps is therefore given by

He� = H − ih̷



( ȷ̂†+ ȷ̂+ + ȷ̂†− ȷ̂− + ȷ̂†b ȷ̂b)

= H − ih̷



( ȷ̂†a ȷ̂a + ȷ̂†b ȷ̂b + ∣Elo∣

) . (8.30)

We may neglect the term −ih̷ ∣Elo∣

, as it has no e�ect on the normalised conditioned state [9].

In the case of homodyne detection, which we do not consider in detail here, the phase θ
of the local oscillator is constant. Under heterodyne detection, the local oscillator phase is

time-dependent, θ(t), and varies rapidly at a rate Ω ≫  (not to be confused with the Rabi

frequency). �us, we have

ȷ̂+ =


√

(∣Elo∣ e

−iΩt + ȷ̂a) , (8.31a)

ȷ̂− =


√

(∣Elo∣ e

−iΩt − ȷ̂a) , (8.31b)

with θ() = .
We have the jump operators ȷ̂± from (8.31), as well as ȷ̂b; the corresponding probabilities

for a jump to occur in the interval [t, t + ∆t) are given by

pc,i = ⟨Ψc(t)∣ ȷ̂†i ȷ̂i ∣Ψc(t)⟩∆t , (8.32)

for i = ±, b. We have, broadly, two di�erent types of “jump”: those due to relaxation of the
transmon levels ȷ̂b, and heterodyne-type detections ȷ̂±. From the integration kernel (2.77) of
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the quantum trajectory we see that we can divide up the time-evolution of the conditioned

state into intervals delineated by jumps in the transmon state, ȷ̂b . In between the jumps due to
ȷ̂b, we have evolution generated by He� as well as heterodyne detections.
A derivation of the stochastic Schrödinger equation (SSE) for heterodyne detection2 has

been given by Carmichael [9]. We will not repeat the derivation here, as it is lengthy; instead

we refer the reader to the literature. In our notation, the SSE for heterodyne detection is given

by

d ∣Ψ̄c(t)⟩ = [


ih̷
He� dt + (Ge ∣Elo∣)−eiΩt ȷ̂a dq] ∣Ψ̄c(t)⟩ , (8.33a)

with the charge dq deposited in the detector circuit in the interval t to t + dt given by

dq = Ge ∣Elo∣ [⟨e−iΩt ȷ̂†a + e
iΩt ȷ̂a⟩(t) dt + dW(t)] , (8.33b)

where G is the detector gain and e is the electronic charge; dW(t) is an in�nitesimal Wiener
increment [14] satisfying

E[dW(t)] =  , dW(t) = dt . (8.34)

All we really know about the rate Ω is that it is large. Assuming that it is very large

compared with the bandwidth of the source-�eld �uctuations, we de�ne the slowly-varying

charge increment

dq̃ ≡ eiΩtdq , (8.35)

and neglect the rapidly-oscillating term eiΩt ⟨ ȷ̂a⟩ that appears on the right-hand side of (8.33b).
We also make the substitution

e
iΩt
dW(t) → dZ(t) , (8.36)

where

dZ(t) =


√

[dWx(t) + i dWy(t)] (8.37)

is a complex-valued Wiener increment with covariances

dZ(t)dZ(t) = dZ∗(t)dZ∗(t) =  , dZ∗(t)dZ(t) = dt , (8.38)

and dWx(t) and dWy(t) are statistically independent real-valued Wiener increments with

2For related work on homodyne trajectories, see Wiseman andMilburn [10, 11] and Carmichael [12]. Wiseman
[13] also considers homodyne and heterodyne detection in the context of quantum trajectory theory.
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Figure 8.7: (a) Monte Carlo simulation of a quantum trajectory with photoelectron counting
for the transmon, and heterodyne current records for the transmission line resonator, computed
using the parameters in table 8.1, with E/κa = .. �e cavity mode is truncated at the -
photon level, while the transmon is truncated at the -excitation level. �e trajectory shown
was integrated for a total time κa

−. (b)�e �ltered heterodyne current record obtained from
the same simulation, performed with parameters G ∣Elo∣ /κa =  and τd−/κa = ..

covariances

dWx(t)dWx(t) = dWy(t)dWy(t) = dt , dWx(t)dWy(t) =  . (8.39)

Substituting in dq̃ and dZ, we obtain the new SSE for heterodyne detection,

d ∣Ψ̄c(t)⟩ = [


ih̷
He� dt + (Ge ∣Elo∣)− ȷ̂a dq̃] ∣Ψ̄c(t)⟩ , (8.40)

with

dq̃ = Ge ∣Elo∣ [⟨ ȷ̂†a⟩(t)dt + dZ(t)] . (8.41)
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{ĩ
}/
G
e
∣E

lo
∣









κa t

I
m
{ĩ
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Figure 8.8: (a) Monte Carlo simulation of a quantum trajectory with photoelectron counting
for the transmon, and heterodyne current records for the transmission line resonator. (b) �e
�ltered heterodyne current record obtained from the same simulation. All parameters are the
same as those used in Fig. 8.8.

�e stochastic Schrödinger equation (8.40) de�nes the evolution between quantum jumps due

to relaxation of the transmon levels, ȷ̂b. We also de�ne the �ltered heterodyne current ĩ(t),
which satis�es the stochastic di�erential equation

dĩ = −τd−(ĩdt − dq̃) , (8.42)

where τd− is the detection bandwidth. Heterodyne detection provides us, by way of the
complex-valued heterodyne current ĩ(t), with a measurement of the complex amplitude of the
resonator �eld. In the presence of shot noise dZ, the detection bandwidth τd− has a substantial
e�ect on the measurement [15].

We perform quantum trajectory simulations, using the stochastic Schrödinger equation

(8.40) to generate the evolution between jumps due to ȷ̂b . �e SSE is integrated using the Euler
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method, and we use pseudorandom numbers to generate dZ. Of course, t is replaced with κa t
throughout due to our use of the dimensionless master equation (8.2). An example trajectory

is shown in Fig. 8.7a, and the corresponding time series of the �ltered heterodyne current

is shown in Fig. 8.7b; a second example is shown in Fig. 8.8. Due to the time-consuming

Euler numerical integration we have used in these simulations, the time-scale on which we are

able to examine the dynamics of the system is much shorter than that required to clearly see

the bimodality in the cavity �eld. As such, this avenue of investigation remains inconclusive.

A clear direction for future investigation is to perform further Monte Carlo simulations of

heterodyne current records, or alternatively to implement a higher-order integration method

to make simulations on longer time scales numerically tractable.

8.3 Summary

Our semiclassical treatment of the driven transmon-resonator circuit QED system established

that, in the semiclassical approximation, the system displays dispersive optical bistability.

Inclusion of the quantum �uctuations bears out this conclusion: the Q-functions displayed
in Fig. 8.4 demonstrate the bimodality of the cavity �eld, as do our Monte Carlo simulations

of quantum trajectories with photoelectron counting. Figure 8.5, which was obtained from

these simulations, shows the mean photon number in the resonator alternating between two

metastable states. Our Monte Carlo simulations of quantum trajectories with heterodyne

current records, the results of which are shown in Figs. 8.7 and 8.8, remain inconclusive due to

numerical constraints.
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Conclusion

In this thesis we have investigated two new directions in cavity quantum electrodynamics:

two-mode cavity QED, and circuit QED. We shall summarise our work in each area separately.

Two-mode cavity QED

We have investigated the dynamics of a cavity QED system in which two optical cavity modes

with orthogonal linear polarisations interact with a single atom, via an F =  ↔ F′ = 
transition. We took into account the full atomic level structure for this transition, including

the Zeeman energy shi�.

We found that in a certain parameter regime, a semiclassical treatment of the driven mode

of the cavity was a good approximation. Treating the drivenmode as a complex number reduces

the dimensionality of the system Hilbert space, making numerical analysis more tractable. We

used numerical integration of the master equation derived from this semiclassical model, along

with a standard quantum regression formula, to compute second-order photon correlation

functions for the non-driven mode of the cavity. We found that the system displayed quantum

beats: interference fringes in the second-order photon correlation function caused by the

Larmor precession of the atom in an applied magnetic �eld. We also extended our treatment of

the two-mode cavity QED system to allow for motion of a single atom through the cavity, and

performed calculations showing the e�ect of this motion on the quantum beats.

We simulated the strong driving behaviour of this system, and found that the mean photon

number in the non-driven mode of the cavity began to decrease beyond a certain threshold

driving �eld strength. We explained this behaviour qualitatively by way of an analogy to a

simple model derived from the Jaynes-Cummings Hamiltonian, involving a two-level atom in

a single-mode cavity.

Currently, our work on two-mode cavity QED considers only a single atom interacting

with the modes of a cavity. Future work might include an extension of our model to simulate

the behaviour of an atomic beam, including multi-atom e�ects.

Circuit QED

We investigated the emerging �eld of circuit quantum electrodynamics: an implementation

of cavity QED in a superconducting circuit. We considered a speci�c circuit QED system

consisting of a transmission line cavity coupled to a superconducting charge qubit, and starting
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from the basic principles of quantum mechanics and electrical circuit theory, we developed the

background physics of this circuit QED system.

In the circuit QED system we investigated, the cavity consists of a superconducting wire

placed between two ground plates; gaps in the wire are the “mirrors” that de�ne a microwave

cavity. �e electric �elds of the transmission line are coupled to a Josephson charge qubit

known as a transmon, which behaves in many ways more similarly to an anharmonic oscillator

than a pure qubit. We derived a Hamiltonian for the transmon and considered the nature of

its coupling to the transmission line resonator, making connections to the Jaynes-Cummings

model of cavity QED. Damping of the circuit QED system was introduced by way of the

Lindblad master equation.

As an application of the theory we developed, we investigated dispersive optical bistability

in our model of the circuit QED system. A semiclassical treatment, along with a linearised

stability analysis, was the �rst step: this analysis was indicative of optical bistability. We went

on to carry out a full quantum treatment, plotting Q-functions to visualise the bimodality of
the resonator �eld. We performed Monte Carlo simulations based on a quantum trajectory

unravelling of the master equation. �ese simulations demonstrated the expected “tunnelling”

between metastable states due to quantum �uctuations, con�rming optical bistability in the

circuit QED system.

As our work on heterodyne measurement of the circuit QED system remains inconclusive,

an obvious avenue of future investigation would be to perform furtherMonte Carlo simulations

of heterodyne current records. Based on our other investigations of dispersive optical bistability

in the circuit QED system, we would expect to see further evidence of bimodality in the

resonator �eld.



Appendix A

Quan�sa�on of the LC oscillator

An LC circuit, consisting of an inductor L and a capactior C, forms an electrical harmonic
oscillator, which can be described quantum-mechanically. We will now outline the quantisation

of the LC oscillator, which is analogous to the usual harmonic oscillator quantisation procedure:

see, for example, Sakurai [1].

For a lossless parallel LC circuit, such as that depicted in Fig. A.1, the potential di�erences

V across the capacitor and inductor are equal, giving

V =
Q
C
= L
dJ
dt
, (A.1)

where J is the current passing through the inductor. �e current passing through the capacitor
is Q̇ = −J. �e sign conventions for the voltage and current are as displayed in Fig. A.1.
�e energy stored in the capacitor is HC = CV, while the energy stored in the inductor is
HL = LJ. Hence, the Hamiltonian for the LC oscillator is given by

H =



CV +




LJ . (A.2)

�e charge stored in the capacitor is given by Q = CV , and the �ux stored in the inductor is
Φ = LJ. �us, the Hamiltonian can be written

H =
Q

C
+
Φ

L
. (A.3)

Di�erentiating (A.3), we �nd

∂H
∂Q

=
Q
C
= L
dJ
dt

= Φ̇ (A.4a)

∂H
∂Φ

=
Φ

L
= J = −Q̇ . (A.4b)

Equations (A.4) are Hamilton’s equations with generalised coordinate Φ and canonical con-

jugate momentum Q. Because these variables are canonical conjugates, when we replace the
classical variables with their corresponding operators, we obtain the commutator

[Φ̂, Q̂] = ih̷ . (A.5)
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CLV

J

Figure A.1: A parallel LC circuit.

�eHamiltonian for a particle moving in a harmonic potential is given by

H =
p

m
+
mωx


. (A.6)

Comparison with (A.3) gives us the analogous quantities for the LC oscillator system: m↔ C
and ω↔ /

√
LC. We de�ne photon annihilation and creation operators

â =


√
h̷Z

(Φ̂ + iZQ̂) , (A.7a)

â† =


√
h̷Z

(Φ̂ − iZQ̂) , (A.7b)

where Z =
√
L/C is the on-resonance impedance of the oscillator. It is easily veri�ed that

these operators have the required commutation relation

[â, â†] =  . (A.8)

It is also simple to show that the LC oscillator Hamiltonian (A.3) can be written

H = h̷ω (â† â +



) , (A.9)

where ω = /
√
LC.

�ere is of course a symmetry between the canonical coordinates: we can arrange the sign

conventions in the circuit such that the commutator comes out as [Φ̂, Q̂] = −ih̷, giving x ↔ Q
and p↔ Φ, but the results are all the same. For further information see, for example, Devoret
[2].
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Appendix B

Theory of superconduc�vity & the Josephson e�ect

�is chapter contains a brief review of the basic theory of superconductivity necessary to under-

stand the content of chapters 6–8. We review the microscopic BCS theory of superconductivity

[1–3], as well as the Ginzburg-Landau theory [4]. For further reading on superconductivity,

see Tinkham [5], Fossheim and Sudbø [6], Atland and Simons [7].

B.1 BCS theory

Here we brie�y describe the microscopic theory of superconductivity, without going into any

great mathematical detail. �is theory, originally developed by Bardeen, Cooper and Schrie�er

[1–3], describes superconductivity as a consequence of the formation of Cooper pairs. A Cooper
pair is a pair of electrons bound together in a particular manner �rst described by Cooper

[1], who showed that a weak attractive interaction between the electrons can cause pairs of

electrons to form bound states. To see how this binding comes about, one may refer to, for

example, Tinkham [8].

To see how the phenomenon of superconductivity arises as a result of such pairing, we

follow the treatments of Tinkham [9] and Atland and Simons [10]. We adopt a model based on

the so-called pairing Hamiltonian,

H = ∑
kσ

єk n̂kσ +∑
kl
Vkl ĉ†k↑ ĉ

†
−k↓ ĉ−l↓ ĉl↑ , (B.1)

which should be interpreted as describing the physics of a thin shell of states centred around

the Fermi surface, comprising electrons paired as (k ↑,−k ↓). �e creation operator ĉ†k↑ creates
an electron of momentum k and spin up. �e number operator is given by n̂kσ = ĉ†kσ ĉkσ , where

σ labels the spin index.
�e Fermi sea is unstable against the formation of a bound Cooper pair. As more Cooper

pairs condense, the state of the system will eventually become so greatly changed that the

binding energy for an additional pair will go to zero, and the system will reach an equilibrium.

We assume therefore that the so-called BCS ground state ∣ψG⟩, which describes the state of

the system at this equilibrium point, contains a macroscopic number of Cooper pairs. �us,

operators such as ĉ−k↓ ĉk↑ have nonzero expectation values in ∣ψG⟩, and we de�ne

bk = ⟨ψG ∣ĉ−k↓ ĉk↑∣ψG⟩ , b∗k = ⟨ψG ∣ĉ†k↑ ĉ
†
−k↓∣ψG⟩ . (B.2)
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We substitute

ĉ−k↓ ĉk↑ = bk + ĉ−k↓ ĉk↑ − bk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

small

(B.3)

and its Hermitian conjugate into the pairing Hamiltonian (B.1), neglecting quantities bilinear in

the small �uctuation term. Adding in a chemical potential term, which is equivalent to taking

the zero of kinetic energy to be at the level of the Fermi surface, gives themodel Hamiltonian

HM = H − µN̂ ≈ ∑
kσ

ξk n̂kσ +∑
kl
Vkl (ĉ†k↑ ĉ

†
−k↓bl + b∗k ĉ−l↓ ĉl↑ − b∗kbl) , (B.4)

where ξk ≡ єk − єF and N̂ is the total particle-number operator. Furthermore, we can de�ne

∆k = −∑
l
Vklbl , (B.5)

and substitute (B.5) into (B.4) to obtain

HM = ∑
k

[ξk∑
σ
ĉ†kσ ĉkσ − (∆k ĉ†k↑ ĉ

†
−k↓ + ∆

∗
k ĉ−k↓ ĉk↑ − ∆kb

∗
k)] . (B.6)

�eHamiltonian (B.6) may be diagonalised by a suitable unitary transformation,1 which in-

volves the de�nition of new Fermi operators α̂kσ . �e creation operators α̂†kσ create elementary

excitations known as Bogoliubov quasi-particles; the corresponding quasi-particle annihilation
operators annihilate the BCS ground state. �is diagonalisation yields the transformed model

Hamiltonian

HM = ∑
kσ

λk α̂†kσ α̂kσ +∑
k

(ξk − λk + ∆kb∗k) , (B.7)

where

λk ≡ (∣∆k∣
 + ξk)

/
. (B.8)

�e second term in (B.7) is a constant, while the �rst gives the increase in energy above the

ground state in terms of the number operators α̂†kσ α̂kσ for the Bogoliubov quasi-particles. �e

energy of an elementary excitation of momentum h̷k is λk, given by (B.8). As such, ∆k plays
the role of an energy gap – a minimum excitation energy – since even at the surface of the Fermi
sphere, where ξk = , the excitation energy λk = ∣∆k∣ > . It is easy enough to determine the

temperature-dependence of the energy gap ∆(T), but in the interest of brevity we shall not do

so here. If the energy gap is larger than the thermal energy of the lattice, the Cooper pair �uid

is not scattered by the lattice and can �ow without dissipation, resulting in superconductivity.

�e critical temperature Tc is the temperature at which the energy gap ∆(T) → . In this

case, λk → ∣ξk∣ and the excitation spectrum is the same as in the normal, non-superconducting

1See Bogoliubov [11, 12], Valatin [13], or Tinkham [14] and references therein.
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state. Values for the critical temperature derived using the BCS theory of superconductivity

have been closely veri�ed by experiment [15].

Not all superconductors are thought to be described by the microscopic BCS theory. BCS

theory places an upper limit on the critical temperature Tc of about  K, but in 1986 the �rst
high-Tc superconductor was discovered [16]. High-Tc superconductors possess critical tem-
peratures far exceeding  K. �e mechanism underlying high-temperature superconductivity

remains unknown.

B.2 Ginzburg-Landau theory

�emicroscopic BCS theory treated in section B.1 is a highly successful theory in those cases

where it is applicable, that is, those in which the energy gap ∆ is constant in space. �eGinzburg-

Landau (GL) theory is a more macroscopic theory of superconductivity which is useful in

situations where the BCS theory becomes cumbersome [4]. �e theory was originally proposed

as having a phenomenological foundation: a pseudowavefunction ψ(r) was introduced as
a complex order parameter, with ∣ψ(r)∣ originally thought to represent the local density of
superconducting electrons, ρs(r).
Gor’kov subsequently showed that the GL theory was derivable as a limiting case of the

microscopic theory, generalised to the spatially inhomogeneous regime [17]. It turns out that

ψ(r) is directly proportional to the gap parameter ∆(r).2

B.2.1 The phenomenological approach

�e basic postulate of the phenomenological GL theory is that near the superconducting

transition (that is, near Tc), and for small ψ that varies slowly in space, the free energy F of the
superconductor has the form (in SI units)

F = Fn + α ∣ψ∣ +
β

∣ψ∣ +



m′
∣(−ih̷∇− e′A)ψ∣


+

∣B∣

µ
, (B.9)

where Fn is the free energy in the normal phase (absent any magnetic �elds), A is the electro-
magnetic vector potential, and B = ∇ ×A [19, 20]. �e term ∣B∣ /µ represents the magnetic
�eld energy in the vacuum. �e values of the mass m′ and charge e′ were not initially known.
In the absence of any external �elds or gradients in ψ, from (B.9) we have

F − Fn = α ∣ψ∣ +
β

∣ψ∣ , (B.10)

from which we can tell that in order for the free energy to have a minimum for �nite ψ, β
must always be positive. On the other hand, α can be either positive or negative. If α > , the

minimum free energy occurs at ∣ψ∣ = , corresponding to the normal, non-superconducting

state. If α < , corresponding to the superconducting state, the minimum occurs when

2For an accessible microscopic derivation of the Ginzburg-Landau di�erential equations, using Green’s func-
tions, see Fetter and Walecka [18].
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∣ψ∣ = ∣ψ∞∣ = −α/β. Here ψ∞ represents the order parameter in�nitely deep within the
superconductor, where it is screened from any surface �elds or currents. �us, α(T) must

change from positive to negative at the critical temperature Tc .
�e parameters e′ andm′ respectively represent the charge andmass of the superconducting

charge carriers. From the microscopic pairing theory of superconductivity, we now know that

the charge carriers are Cooper pairs, with charge e′ = e. �e e�ective mass can be taken to be
m′ = m.
We would also like to de�ne the density of superconducting charge carriers ρ′s = ρs = ∣ψ∣

where ρs as before is the density of superconducting electrons, but in real metals, the situation
can be substantially more complicated, and �xing m′ = m sometimes means that ρ′s can no
longer be interpreted as a particle density. It is conventional, however, to simply take m′ = m
without worrying about the details of real metals and dirty superconductors; see Tinkham [21]

for details.

B.2.2 The Ginzburg-Landau di�eren�al equa�ons

When external �elds or currents are imposed on the superconductor, ψ(r) = ∣ψ(r)∣ eiφ(r) and
the vector potential A(r) adjust themselves to minimise the overall free energy. As such, we
must minimise the total free energy with respect to both of the parameters mentioned above.

Using the free energy F from (B.9), we set

F = ∫ F dr , (B.11)

where the integration runs over the volume of the superconductor, and vary ψ(r) by δψ(r)
and A(r) by δA(r). �e variation in the free energy is thus given by

δF = ∫ dr{δψ∗ [αψ + β ∣ψ∣ ψ +


m′
(−ih̷∇− e′A)

 ψ] + c.c.}

+ ∫ dr δA ⋅ {


µ
∇× B −

e′

m′
[ψ∗ (−ih̷∇− e′A)ψ + c.c.]} , (B.12)

where it has been assumed that no current passes through the boundary, giving the boundary

condition

(−ih̷∇− e′A)ψ∣n̂ =  , (B.13)

and where surface contributions have been neglected, and integration by parts has been per-

formed. Setting δF = , and using Maxwell’s equation ∇× B = µJ (with negligible displace-
ment current, for example when E = ) we obtain from (B.12) the Ginzburg-Landau di�erential
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equations:

αψ + β ∣ψ∣ ψ +


m′
(−ih̷∇− e′A)

 ψ =  , (B.14)

J = −ih̷
e′

m′
(ψ∗∇ψ − ψ∇ψ∗) −

e′

m′
∣ψ∣A . (B.15)

For more details of the above calculation, see Fossheim and Sudbø [6], de Gennes [22], or

Landau et al. [23].

�e �rst Ginzburg-Landau equation (B.14) has a form similar to the time-independent

Schrödinger equation for a particle of mass m′ and charge e′ in an electromagnetic �eld,
aside from the nonlinear term; the second equation (B.15) is the usual quantum-mechanical

expression for a current of such particles [24].

Consider the �rst Ginzburg-Landau equation (B.14). In the simpli�ed case where no �elds

are present and as such A = , the GL equation (B.14) becomes

−
h̷

m′
∇ψ + αψ + β ∣ψ∣ ψ =  , (B.16)

We now write ψ(r) = ∣ψ(r)∣ eiφ(r), and introduce the normalised wavefunction

f (r) = ∣ψ(r)∣ / ∣ψ∞∣ , (B.17)

where ∣ψ∞∣ = −α/β >  in the superconducting state, and thus ∣ψ∞∣ = (∣α∣ /β)/. A�er a few
manipulations, (B.16) becomes

ξ(T)∇ f (r) + f (r) − f (r) =  , (B.18)

where

ξ(T) =
h̷

m′ ∣α(T)∣
, (B.19)

ξ(T) being a characteristic length known as the Ginzburg-Landau coherence length.

B.3 Flux quan�sa�on

Suppose that some region of a superconductor is in the normal, non-superconducting state.

In order for the order parameter ψ = ∣ψ∣ eiφ to be single-valued, the phase φmust change by
integral multiples of π in making a complete circuit of the normal region. More speci�cally,
the line integral of the gradient ∇φ around a closed contour C enclosing the normal domain
must be equal to an integral multiple of π, that is

∫∮C ∇φ ⋅ ds = πN , N ∈ Z . (B.20)
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In the presence of a magnetic �eld, this is slightly modi�ed. �e magnetic �eld couples to

the superconducting order parameter via the vector potential A, so as to modify the phase
of the order parameter according to the usual minimal coupling scheme [24]. �e resulting

gauge-invariant phase of the order parameter has gradient given by

∇φ → ∇φ −
e′

h̷
A . (B.21)

�e condition for the order parameter to be single-valued now becomes

∫∮C (∇φ −
e′

h̷
A) ⋅ ds = πN . (B.22)

In the case where the region of the superconductor in question would otherwise be in the

superconducting state, and the normal state results entirely from the magnetic �ux passing

through the superconductor, we obtain the relation

π
Φ

∫∮C A ⋅ ds = πN , (B.23)

where we have de�ned the �ux quantum, Φ = h/e, and used e′ = e. �e �ux through the
surface S enclosed by the contour C is known as the �uxoid, denoted Φ, and is given by

Φ = ∫S B ⋅ da = ∫S (∇ ×A) ⋅ da . (B.24)

Using Stokes’ theorem, we obtain

Φ = ∫∮C A ⋅ ds = NΦ , (B.25)

demonstrating the quantisation of �ux. It is clear that Φ =  for any path which encloses no hole

but only superconducting material. For further reading see Fossheim and Sudbø [25], Tinkham

[26].

B.4 The Josephson e�ect

�e maximum dissipationless supercurrent that a superconductor can support is known as

the critical current Jc . Whenever two strongly superconducting electrodes are brought into
contact in such a way that the critical current in the contact region is much lower than that of

the individual constituents, the contact is called a weak link [27, 28].
Josephson [29, 30, 31] predicted in 1962 that such a junction should be able to sustain a

supercurrent without the application of a voltage, and furthermore that if a voltage di�erence

were to be maintained across the junction, high frequency electromagnetic waves would be

radiated.

�e Josephson e�ect can be described starting from the microscopic pairing theory of

superconductivity. However, we will not do so here. A good description of the microscopic
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theory of the Josephson e�ect is available in Ketterson and Song [32], and of course in the

original papers [29, 33–35].

B.4.1 DC Josephson e�ect

As the Josephson e�ect is a general property of weak links, it can be derived from the Ginzburg-

Landau theory by considering a simple special case. We consider two superconducting elec-

trodes separated by a short, one-dimensional link of length L ≪ ξ, all of the same supercon-
ductor. From (B.18) we know that the one-dimensional GL equation describing the link can be

written as

ξ
d

dz
f (z) + f (z) − f (z) =  . (B.26)

We can assume without loss of generality that the massive electrodes are in equilibrium, and

that ∣ f ∣ =  in both of them (from the de�nition of ψ∞); however the phases of the order
parameters may di�er by a phase γ. As such, the solution of (B.26) should match the boundary
conditions f =  at z =  and f = eiγ at x = L. As noted by Aslamazov and Larkin [36], so
long as L ≪ ξ, the �rst term in (B.26) dominates due to the fact that it is larger than the other
two terms by a factor which scales with (ξ/L) for any nonzero γ. In this limit, the problem
reduces to Laplace’s equation in one dimension d f (z)/dz = , which has general solution
f (z) = A+ Bz. Applying the boundary conditions at both ends of the bridge, we obtain the
solution for the order paramter in the bridge,

f (z) =  +
eiγ − 

L
z . (B.27)

Substitution of (B.27) into the one-dimensional version of the Ginzburg-Landau current equa-

tion (B.15), again in the case where no �elds are present, gives

J = Jc sin γ , (B.28)

with the critical current Jc given by

Jc =
e′h̷ ∣ψ∞∣

m′

A

L
, (B.29)

whereA is the cross-sectional area of the superconducting link. �e relation (B.28) is known

as the DC Josephson current-phase relation; it tells us that a supercurrent is driven across the
weak link separating the two superconductors simply by the di�erence in the phase of the

superconducting order parameter across the barrier.

B.4.2 AC Josephson e�ect

Consider a Josephson junction in a magnetic �eld B = ∇ ×A. To derive the form of the AC
Josephson current which arises in the presence of a potential di�erence across the barrier,
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x

z

By

Figure B.1: Schematic depiction of a tunnel junction – a type of weak link – in the presence of
a magnetic �eld.

we need to take into account the role of the vector potential A. �erefore, we need to use a
gauge-invariant form of the phase di�erence across the junction, which – as we noted in section

B.3 – is given by

∇φ −
e
h̷
A = ∇φ −

π
Φ

A . (B.30)

To obtain the gauge-invariant phase di�erence between the two sides (“right” and “le�”) of the

junction, we integrate from le� to right and get

γl→r = ∫
r

l
(∇φ −

π
Φ

A) ⋅ ds . (B.31)

Adopting the geometry depicted in Fig. B.1, we consider the case where A = Az(x)ẑ, which
corresponds to placing the magnetic �eld B parallel to the contact plane, and pointing along
the y-axis, with B = By(x)ŷ and By(x) = ∂Az/∂x.
On integration of (B.31) we obtain

γ ≡ γl→r = (φr − φl) −
π
Φ

∫
r

l
Az dz , (B.32)

where φr and φl are �xed phases which exist in the absence of any AC current or applied
voltage.3 For later convenience, we de�ne γ = φr − φl.
Note that in the Coulomb gauge the transverse component of the electric �eld is given by

ET = −∂A/∂t [37]. Taking the time derivative of (B.32), we �nd, using Ez = −∂Az/∂t,

∂
∂t

γ = −
π
Φ

∫
r

l

∂
∂t

Az dz =
π
Φ

∫
r

l
Ez dz

=
π
Φ

V ≡ ωJ , (B.33)

where ωJ is known as the Josephson frequency. �e relation (B.33) demonstrates that the
Josephson junction emits electromagnetic radiation at the Josephson frequency; integrating

3Even though the phases in the two electrodes comprising the junction, and within the junction itself, are not
well de�ned, we can write the integral of the gradient as the di�erence between the phases of the endpoints (by the
second fundamental theorem of calculus), and neglect any πN contribution, which will of course not a�ect the
order parameter itself.
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RJCJ Jc

Figure B.2: Equivalent circuit of the RCSJ model. �e ideal Josephson junction, depicted as a
cross, is described by (B.35).

this relation gives

γ = γ + ωJ t . (B.34)

Substitution of (B.34) into the previously obtained Josephson current relation (B.28) gives

J = Jc sin (γ + ωJ t) . (B.35)

It is this oscillatory supercurrent which generates the electromagnetic radiation.

B.4.3 The RCSJ model

A physical Josephson junction can be modelled by an idealised description known as the

RCSJ (resistively and capacitively shunted junction) model. In the RCSJ model, the physical

junction is modelled by an ideal junction described by (B.35), shunted by a resistance RJ and

a capacitance CJ (the term “shunted” refers to components placed in parallel), as depicted in

Fig. B.2. �e resistance RJ builds in dissipation4 in the �nite voltage regime (that is, when a

voltage V is applied across the junction) without a�ecting the lossless DC regime (zero voltage)
described in (B.28) – see section B.4.1. �e capacitance CJ takes into account the geometric

capacitance between the electrodes, rather than the capacitance of the electrodes to ground.

In the RCSJ model, the time dependence of the phase γ in the presence of an external bias
current J is given by the current through each of the three parallel channels seen in Fig. B.2,
giving

J = Jc sin γ +
V
RJ

+ CJ
dV
dt
. (B.36)

We already know from (B.33) that in the presence of a potential di�erenceV across the junction,
γ evolves in time according to γ̇ = πV/Φ; substitution for V in (B.36) yields a second-order
di�erential equation for γ. We obtain

dγ
dτ

+Q−
dγ
dτ

+ sin γ =
J
Jc
, (B.37)

4See Tinkham [38] and references therein for a discussion of why this is the only dissipation term present in
the model.
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Figure B.3: �e tilted-washboard potential, with J/Jc = ..

where we have de�ned τ = ωpt, with ωp – the plasma frequency of the junction – given by

ωp = (
πJc
ΦCJ

)




; (B.38)

the quality factor of the junctionQ is given by

Q = ωpRJCJ . (B.39)

In the case where the junction is dissipationless (or approximately so), we can neglect the

resistor channel in the RCSJ equivalent circuit (Fig. B.2) (which is equivalent to letting RJ →∞)

causing the terms in (B.36) and (B.37) involving R− andQ− respectively to drop out. We refer
to this set-up as the capacitively shunted junction, or CSJ model.

B.4.4 The �lted-washboard model

�e equation of motion (B.37) can be written

CJ (
Φ

π
)

dγ
dt

= −


RJ
(
Φ

π
)

dγ
dt

−
∂
∂γ

U (γ) , (B.40)

where

U (γ) = −EJ (cos γ +
J
Jc

γ) , (B.41)

and EJ ≡ Jc(Φ/π) is the Josephson coupling energy.
�e form (B.40) is the same as the equation of motion of a particle of e�ective mass

CJ(Φ/π) moving along the γ axis in an e�ective potential U(γ), and subject to a viscous
drag force −R−J (Φ/π)γ̇. �e potential U(γ) has the form of a “tilted washboard”, as we see
in Fig. B.3.

�e signi�cance of Jc is that when J < Jc , the potential has local minima in which the
motion of γ can be localised, and bound states exist. When J = Jc , the local minima become
points of in�ection, so that for J ≳ Jc , no stable equilibrium points and thus no bound states
exist.
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Figure B.4: �ree di�erent ways of depicting the CSJ (capacitively shunted junction) model of
a physical Josephson junction.

B.4.5 The Josephson junc�on as a nonlinear inductor

Taking the time derivative of (B.28) yields

dJ
dt

= Jc cos γ
∂γ
∂t
, (B.42)

and combining the above result with (B.33) gives

dJ
dt

= V
πJc
Φ

cos γ . (B.43)

�e time-varying voltage across an inductor with inductance L is given by [39]

V = −L
dJ
dt
, (B.44)

which then leads to the inductance of the Josephson junction

∣LJ ∣ =
Φ

π


Jc cos γ
=
Φ

π
(Jc − J)−/ . (B.45)

As we can see, the Josephson junction behaves as a nonlinear inductor. A capacitively shunted

junction (CSJ) will have a resonant frequency

ω(J) =


√
LJCJ

= (
πJc
ΦCJ

)

/

( −
J

Jc
)

/

. (B.46)

Compare the above with the plasma frequency of the junction ωp, from (B.38).

B.5 SQUID devices

B.5.1 The DC SQUID

A DC SQUID (superconducting quantum interference device) employs a geometry with two

Josephson junctions in parallel, forming a loop structure – such a circuit is depicted schemati-

cally in Fig. B.5a. We consider this geometry in the following section.
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In the case where themagnitude of the superconducting order parameter ψ(r) does not
vary with position, we can write ψ(r) = ∣ψ∣ eiφ(r). As such, the Ginzburg-Landau current

relation (B.15) becomes

J =
e
m

∣ψ∣ (h̷∇φ − eA) . (B.47)

We consider a contour inside the two-junction DC SQUID loop, deep enough within the

superconducting material that the supercurrent can be taken to be zero.5 �us, we obtain

∇φ − πΦ− A =  . (B.48)

Integrating around the contour described above, we obtain

γ − γ = πΦ− ∫∮ A ⋅ ds = π
Φ

Φ
(mod π) , (B.49)

where γ and γ are the respective phase di�erences across the two junctions, and Φ is the �ux
in the DC SQUID loop.

�e total current J in the lumped DC SQUID can be written as a sum of the currents across
the junctions  and , which are taken to have identical critical currents, giving

J = Jc sin γ + Jc sin γ

= Jc cos(π
Φ

Φ
) sin(γ + π

Φ

Φ
) . (B.50)

�e relation (B.49) implies that the phases γ and γ cannot both have the value π/, which
would give the total current in the lumped circuit element a maximum value of Jc . In reality,
the relation (B.50) means that the maximum value of J is given by

Jmax = Jc ∣cos (πΦ/Φ)∣ . (B.51)

From (B.37), we �nd that for a resistively shunted junction for which the geometric ca-

pacitance CJ is small so that the quality factor Q ≪ , the equation of motion of the phase

di�erence across the junction reduces to the �rst-order di�erential equation

dγ
dt

=
e
h̷
RJ Jc (

J
Jc
− sin γ) . (B.52)

Integrating the above equation yields the analytic solution6

J tan
γ

= Jc +

V
RJ
tan

ωJt

, (B.53)

5�is is a reasonable assumption providing the superconducting material forming the junction is thicker than
the penetration depth of the �ux into the junction. See Tinkham [40], Fossheim and Sudbø [41].

6For more information, see Waldram [42, 43].
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

(a) (b)

Figure B.5: Schematic diagram of (a) a DC SQUID, and (b) a RF SQUID.

where ωJ ≡ πV/Φ, and

V = RJ
√
J − Jc (B.54)

is the time-averaged voltage across the lumped DC SQUID circuit element. �us, from (B.51)

and (B.54) we obtain an approximate relation for the average DC voltage across the DC SQUID,

V =
R


√
J − [Jc cos (πΦ/Φ)]


, (B.55)

where R/ is the resistance of the two resistively shunted junctions in parallel. �is relation
tells us that the DC SQUID is a �ux-to-voltage transducer.

For more information about the DC SQUID, see Fossheim and Sudbø [44], Tinkham [45],

and references therein.

B.5.2 The RF SQUID

An RF SQUID, depicted schematically in Fig. B.5b, consists of a loop interrupted by a single

Josephson junction. �e Josephson element is shorted by the loop when DC current is passed

through the device, so the single-junction SQUID must be monitored using an RF current

coupled into the SQUID loop. For more information about the RF SQUID, and its practical

operation, see Tinkham [46].
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Appendix C

Cooper pair box: analy�c solu�on

�e Hamiltonian for the Cooper pair box in the phase basis (section 7.1.1) leads to a time-

independent Schrödinger equation which can be solved analytically. Here we present a brief

derivation of the solutions to this equation, based on the work of Cottet [1] and Koch et al. [2].

From (7.13), the Cooper pair box Hamiltonian in the phase basis is given by

H = Ec (−i
∂
∂γ

− ng)



− EJ cos γ̂ . (C.1)

�us, the phase-space energy eigenfunction ψk(γ) ≡ ⟨γ∣Ek⟩ and its associated energy Ek satisfy

the time-independent Schrödinger equation,

⎡
⎢
⎢
⎢
⎢
⎣

Ec (−i
∂
∂γ

− ng)



− EJ cos γ
⎤
⎥
⎥
⎥
⎥
⎦

ψk(γ) = Ekψk(γ) , (C.2)

with the periodic boundary condition

ψk(γ) = ψk(γ + π) . (C.3)

Using the commutation relation [γ̂, n̂] = i, and proceeding in a manner analogous to the

standard examination of translation in quantum mechanics,1 one obtains the equation

exp (iγ̂ ⋅ dn) ∣n⟩ = ∣n + dn⟩ . (C.4)

Because of this relation, we have

exp (−ing γ̂)H(ng) exp (ing γ̂) = H(n′g = ) . (C.5)

Following Koch et al. [2] and Cottet [4], we therefore introduce the function

ψ′k(γ) = e−ingγψk(γ) , (C.6)

which satis�es the Schrödinger equation

−Ec
∂

∂γ
ψ′k(γ) − EJ cos(γ)ψ′k(γ) = Ekψ′k(γ) . (C.7)

1See, for example, Sakurai [3].
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If we de�ne

x ≡



γ , (C.8a)

u(x) ≡ ψ′k(x) , (C.8b)

q ≡ −
EJ

Ec
, (C.8c)

a ≡
Ek

Ec
, (C.8d)

we can recast the equation (C.7) in the form

du
dx

+ [a − q cos (x)]u =  , (C.9)

which is the canonical form of Mathieu’s di�erential equation [5]. �e function u(x) is π-
periodic on x. Mathieu’s di�erential equation possesses well-known analytic solutions.

�e following is adapted from Cottet [4] and Abramowitz and Stegun [6]. For a given

q, there exists a set of special values of a, called characteristic values, which yield the desired
periodic solutions of (C.9). �e characteristic values which yield even solutions of Mathieu’s

equation are denoted a(ν, q), while those that yield odd solutions are denoted b(ν, q).
Floquet’s theorem2 tells us that there exist solutions to (C.9) of the form

Fν(x) = eiνxP(x) , (C.10)

where ν(a, q) is a real parameter (known as the characteristic exponent) and P(x) is a π-periodic
function. Similarly,

Fν(−x) = e−iνxP(−x) (C.11)

satis�es (C.9) whenever (C.10) does. A further property is

u(x +mπ) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

eiνmπu(x) when u(x) = Fν(x)

e−iνmπu(x) when u(x) = Fν(−x) ;
(C.12)

solutions having this property are known as Floquet solutions. Choosing the former Floquet-
type solution above, and back-substituting for ψk(γ), we obtain

ψk(x) =


√

exp(ingγ)Fν (a, q,

γ

)

=


√

exp [i(ng +

ν

) γ] P (

Ek

Ec
,−
EJ

Ec
,

γ

) . (C.13)

2See Abramowitz and Stegun [6] and references therein.
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�e corresponding energy eigenvalues Ek are given by

Ek =
Ec


a (ν, q)

=
Ec


a (ν,−

EJ

Ec
) . (C.14)

Expressions for the Floquet solutions Fz and the corresponding eigenvalues a are available in
Abramowitz and Stegun [6].

From (C.13), applying the periodic boundary condition (C.3) gives

ng +
ν

∈ Z . (C.15)

As such, for each value of ng , only a set of certain discrete values of ν, which we will call νk
with k ∈ N, are possible. Each value νk can be associated to an eigenfunction ψk ; this can be

done in such a way that Ek increases with k. See Koch et al. [2] and Cottet [4] for appropriate
expressions for νk in terms of k and ng .
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