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Chapter 1 

Introduction 

 

 

1.1 Quantum optics and teleportation: a brief history  
‘Quantum optics’ is a phrase that is used broadly to describe theories that give a quantum description of light and 
light-matter interactions. We give a brief historical overview of this large and diverse field. See for example, [10] 
and [13]. 
The realisation that ‘something’ in light-matter interactions was quantised began with work by M. Planck in 1901 
with the spectrum of blackbody radiation. The hypothesis was formulated that blackbody radiation is emitted in 
discrete energy packets, although at the time it wasn’t immediately obvious that this was due to the quantum 
nature of light itself. This hypothesis arose once more in 1905, with the description of the photoelectric effect by 
A. Einstein. An early experiment performed by G.I. Taylor in 1909 attempted to detect quantum effects in light by 
using very low intensity light sources in a Young’s double-slit experiment, but the resulting interference pattern 
was ultimately unchanged by the low source intensity. 
Quantisation of light emerged as a formal theory in the 1920’s, with the word ‘photon’ coined by American 
chemist G.N. Lewis in 1926, to describe the energy quanta associated with light fields. Perhaps the first 
experiments done in quantum optics were the now famous ones performed in 1956 by R. Hanbury-Brown and R. 
Q. Twiss. These experiments arose in the course of their work in developing a light intensity interferometer for 
stellar observation purposes. From a quantum point of view, Hanbury-Brown and Twiss observed a phenomenon 
known as photon bunching in a thermal light source. Although their results were explainable in classical theory, 
these experiments were surely among the first to measure light intensity fluctuations on short time scales. 
Four years later followed the invention of the laser. Though an excellent source of coherent light (one with little 
variation in phase and amplitude), the properties of laser light (in particular, its photon statistics) were not 
drastically different from conventional light sources of the time. Laser light didn’t have any uniquely quantum 
properties. It would not be until 1963, with theoretical work done by R.J. Glauber, that states of light having a true 
quantum signature were uncovered. In 1977, H.J. Kimble, M. Dagenais and L. Mandel demonstrated 
experimentally the concept of photon antibunching, sources of light where detection of a photon corresponds to a 
reduced probability for detecting a subsequent photon. This is a unique property of certain states of light and is 
only explainable in a quantum picture. Later, in 1985, R. E. Slusher experimentally demonstrated squeezed light. 
As we shall see further on, squeezed light sources are among the necessary quantum-optical tools needed in 
modern quantum teleportation protocols. 
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The focus of this dissertation is quantum teleportation. Quantum teleportation is a notion of recent vintage, and it 
wasn’t born in the quantum optics realm. It was first proposed by C.H. Bennett et al. [1] in 1993, with the authors 
using a spin-1/2 quantum system to demonstrate the fundamental ideas. The connection to quantum optics was 
never far off, however, for the two level spin-1/2 system has plenty of analogies with the two level system formed 
by considering orthogonal polarisations of photons. Quantum teleportation was extended not long after this in 
1994 by Lev Vaidman [6] to include teleportation of continuous variables (such as position and momentum). 
Only three years would pass before quantum teleportation was experimentally demonstrated, in 1997, by D. 
Bouwmeester et al. Their demonstration essentially followed the Bennett protocol, but used polarisation-
entangled photon pairs. Sources of such photon pairs were already well established, and had proved useful in the 
pioneering work of A. Aspect et al., commencing around 1981, demonstrating violations of Bell’s Inequality. 
In 1998, S.L. Braunstein and H.J. Kimble proposed a new quantum teleportation protocol [3] that made use of 
squeezed states of light. This differed from the 1997 experimental work of D. Bouwmeester in that the proposal 
was capable of teleporting continuous variables. That same year, their proposal was experimentally realised by A. 
Furusawa et al. [2]. This protocol, with some modifications, is the one that shall be considered for calculative 
purposes in this report. 
 
 

1.2 What is Quantum Teleportation? 
At this point it is worth reviewing what we mean by the phrase quantum teleportation. 
Firstly, without the ‘quantum’ prefix, the perception one has of the word ‘teleportation’ is probably best summed 
up by its dictionary definition. We follow the lead of Vaidman [4] and quote from the Oxford English Dictionary: 
 
Teleportation. Psychics and Science Fiction. The conveyance of persons (esp. of oneself) or things by psychic 
power; also in futuristic description, apparently instantaneous transportation of persons, etc., across space by 
advanced technological means. 
 
In prefixing ‘quantum’ to the above however, the situation is quite different. What quantum teleportation refers to 
is the teleportation of quantum states. By this, we in fact do not refer to the instantaneous teleportation of 
‘persons, etc.’ – i.e. matter – through a quantum teleporter. 
At first, this doesn’t quite appear to fit into an everyday perception of teleportation. A quantum teleporter is 
capable of transporting the quantum state of a given system over some distance, but the ‘matter’ comprising the 
system originally possessing this quantum state is effectively left behind at the teleporter input. Have we really 
teleported anything at all then? 
It turns out that leaving the constituents of the original system behind is not a difficulty in a quantum mechanical 
framework. This is because in the quantum realm, elementary particles comprising the given system are 
completely indistinguishable from the same particles elsewhere in the universe. Lev Vaidman, whose continuous 
variable teleportation protocol we mentioned earlier (of which we shall have more to say later) discusses [4]: 
 
“According to quantum theory, all elementary particles of the same kind are identical. There is no difference 
between the electrons in my body and the electrons in a rock on the moon.” 
 
Hence, the distinguishing characteristic of a particular system is its quantum state, not the elementary particles 
comprising it. In light of this, we see that teleporting quantum states only is perfectly sufficient; all we need to do 
is ‘imprint’ this quantum state on the same elementary particles at the teleporter output. Movement of matter 
between the teleporter input and output is not needed – teleportation of the state is enough to consider a given 
system to be ‘teleported’. To quote Lev Vaidman again on the matter [4]: 
 
“If I want to move to the moon, I need not move my electrons, protons, etc. to the moon. It is enough to 
reconstruct the quantum state of the same particles there.” 
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The section “What is actually teleported?” of [4] provides an in-depth discussion on the above points. 
All the teleportation protocols discussed in this report are of the quantum variety, and so are in the business of 
teleporting quantum states. Two points are in order here: 
 

• Although matter comprising the original system input into a quantum teleporter is left behind, its original 
quantum state is not. We shall see that the measurement processes required to do quantum teleportation 
are destructive and do not preserve the original state at the teleporter input. 

• We shall also see that teleportation is possible for unknown quantum states, where determination of the 
state by measurement alone would be impossible. This is a distinguishing mark of quantum teleportation, 
as opposed to ‘classical’ teleportation, where a system state is first fully determined by measurement and 
then reconstructed at the teleporter output. 

 
 

1.3 Outline of dissertation 
In [2], Furusawa et al. discuss an optical quantum teleportation protocol using squeezed light which was 
subsequently implemented by the authors, with experimental results also discussed. Part of a recent doctoral thesis 
at the University of Auckland [7] looked at modifying this quantum teleportation protocol to include additional 
noise filtering at the output, with the aim of increasing the fidelity (quality) of the teleportation. Some results of 
this consideration are outlined by Noh et al. in [5]. For this noise filtering, Lorentzian shaped filters were 
considered. 
In [5] however, it is also noted that Lorentzian filters are “far from ideal for suppressing background noise”, 
where background noise arises from the squeezed light used in this particular teleportation protocol. The aim of 
this dissertation is to look at possibility of using filters of other shapes at the output. Specifically, filters utilising a 
Gaussian shape are explored, and compared with Lorentzian filtering to gauge success. 
We investigate the effect that these types of filtering have on the squeezed vacuum, as well as their effect on the 
teleported field of resonance fluorescence, through the use of correlation functions and relevant spectra. 
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This report is structured as follows. 
 
Section 1 
Introduction, outline and preliminaries. 
 
Section 2 
Here we introduce and discuss the original BBCJPW protocol [1], a discrete teleportation protocol. The 
aforementioned continuous variable protocol of Lev Vaidman [6] is also discussed. These early protocols 
highlight many of the fundamental ideas behind quantum teleportation. Additionally, we select the topic of 
quantum entanglement and formally define this as well, for it is of great significance in quantum teleportation. 
 
Section 3 
This section begins our venture into the quantum optics arena. Relevant theory and background needed to 
understand the protocol of Furusawa et al. [2] and its modifications, which form the basis of the calculative work 
in this report, is presented. 
 
Section 4 
As mentioned earlier, the effectiveness of filtering procedures introduced into the teleportation protocol are to be 
tested by consideration of input/output correlation functions and spectra. This section presents the necessary 
correlation functions for squeezed vacuum states and for the resonance fluorescence field. 
 
Section 5 
In this section the Furusawa protocol [2] is set forth, and correlation functions for the teleporter output (which 
involve filtering) are derived from those in Section 4. Various plots are produced for comparative purposes, and 
analytical expressions for these correlation functions and spectra are given. Aside from numerical work, these 
analytical expressions give us insights as to what happens when certain limits are taken for the parameters 
controlling the teleportation. 
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Chapter 2 

Early Teleportation Protocols 

 

 

2.1 Discrete Teleportation Protocols 
One of the first quantum teleportation protocols described in the literature is that of Bennett et al. [1], also known 
as the BBCJPW protocol (to give the letters of all the authors). We present this now. 
We begin by considering a particle (labelled Particle 1) which is in some spin state 
 

 |𝜙𝜙1〉 = 𝑎𝑎|+1〉 + 𝑏𝑏|−1〉 (2.01) 
 

Here |+〉 is the state of spin-up, and |−〉 that of spin down, as usual. However, generally speaking, what we are 
about to describe does apply equally well to two-state systems other than spin. The polarisation states of photons 
was an example given earlier. 
To perform teleportation, we have also at hand two further particles 2 and 3 in the spin-singlet state1

 
 

 |Ψ23
− 〉 =

1
√2

(|+2〉|−3〉 − |−2〉|+3〉) (2.02) 
 

which involves two correlated spins. 
Alice receives particles 1 and 2. To describe their collective state, it is convenient to introduce the Bell operator 
basis, given by 
 

�Ψ12
(±)〉 =

1
√2

(|+1〉|−2〉± |−1〉|+2〉) (2.03) 
 

 
�Φ12

(±)〉 =
1
√2

(|+1〉|+2〉 ± |−1〉|−2〉) (2.04) 
 

Equivalently, 
 

 |±1〉|∓2〉 =
1
√2

��Ψ12
+ 〉± |Ψ12

− 〉� (2.05) 
 

 |±1〉|±2〉 =
1
√2

��Φ12
+ 〉± |Φ12

− 〉� (2.06) 
 

                                                           
1 The spin-singlet state is also referred to as the EPR-Bohm State due to its use by Bohm in discussions relating to the famous 
EPR Paradox. It is also known as the completely anticorrelated state due to the anticorrelated nature of its entanglement. 
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The Bell operator basis is complete and orthonormal; this will be made clearer in Section 2.2. 
Then, prior to any measurement, the total system consisting of Particles 1,2 and 3 is in a pure product state 
 

|Ψ123〉 = |𝜙𝜙1〉|Ψ23
− 〉 

=
𝑎𝑎
√2

|+1〉|+2〉|−3〉 −
𝑎𝑎
√2

|+1〉|−2〉|+3〉+
𝑏𝑏
√2

|−1〉|+2〉|−3〉 −
𝑏𝑏
√2

|−1〉|−2〉|+〉 

(2.07) 
 

We now expand this state in the Bell operator basis using the equations above: 
 

|Ψ123〉 =
1
2 �
Ψ12

+ 〉(−𝑎𝑎|+3〉+ 𝑏𝑏|−3〉) +
1
2

|Ψ12
− 〉(−𝑎𝑎|+3〉 − 𝑏𝑏|−3〉) 

= +
1
2 �
Φ12

+ 〉(𝑎𝑎|−3〉 − 𝑏𝑏|+3〉) +
1
2

|Φ12
− 〉(𝑎𝑎|−3〉 + 𝑏𝑏|+3〉) 

(2.08) 
 
At this point, the particle in state |𝜙𝜙1〉 and the EPR pair are not entangled in any way. In order to couple the two, 
Alice makes a measurement in the Bell basis. 
 
We don’t specify precisely the nature of Alice’s measurement; all that we require of such a measurement is that it 
projects the state |Ψ123〉 onto exactly one of the states �Ψ12

+ 〉, |Ψ12
− 〉, �Φ12

+ 〉, or |Φ12
− 〉, and further, that Alice is able 

to tell as a result of her measurement which one of these states is projected onto. In practice, there may exist an 
observable and operator pair whose eigenfunctions are precisely these 4 states, having a 1-1 correspondence 
between eigenvalues and eigenfunctions, which happens to be experimentally realisable, but we don’t consider 
such difficulties or the exact nature of this operator here. 
 
The state describing Particles 1 and 2 (which are with Alice) then collapse into one of the 4 states |Ψ12

(±)〉 or |Φ12
(±)〉 

with equal probabilities each. Bob’s particle 3 is then put into the corresponding ‘coefficient state’ from |Ψ123〉 in 
Eq. (2.08). 
It remains only for Bob to apply a unitary operator to his particle 3 to recover the original state |𝜙𝜙1〉 at his 
measuring station. Which unitary operator he needs to apply depends on Alice’s measurement result (which she 
sends to Bob), as seen in the following table. 
 
Alice’s measurement 
result 

State of Particle 3 as a 2-
component spinor 

Unitary operator that Bob 
applies 

Final State of Particle 3 

|Ψ12
+ 〉 �−𝑎𝑎𝑏𝑏 � �−1 0

0 1� �𝑎𝑎𝑏𝑏� 

|Ψ12
− 〉 �−𝑎𝑎−𝑏𝑏� �1 0

0 1� �−𝑎𝑎−𝑏𝑏� 

|Φ12
+ 〉 �−𝑏𝑏𝑎𝑎 � �0 −1

1 0 � �−𝑎𝑎−𝑏𝑏� 

|Φ12
− 〉 �𝑏𝑏𝑎𝑎� �0 1

1 0� �𝑎𝑎𝑏𝑏� 

 
In all cases, the final state of Particle 3 is identical to that of the input Particle 1, up to a phase factor (exp(𝑖𝑖𝑖𝑖) =
−1 in the middle two cases). Other unitary operators having different phases could be used, though we have 
adhered to the convention set out in [1]. 
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As an aside, the 2x2 matrix representation of rotation is given by Eq. 3.2.45 of [15]: 
 

 

𝐷𝐷(𝒏𝒏�,𝜙𝜙) = �
cos �

𝜙𝜙
2
� − 𝑖𝑖𝑛𝑛𝑧𝑧 sin �

𝜙𝜙
2
� �−𝑖𝑖𝑛𝑛𝑥𝑥 − 𝑛𝑛𝑦𝑦� sin �

𝜙𝜙
2
�

�−𝑖𝑖𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑦𝑦� sin�
𝜙𝜙
2
� cos�

𝜙𝜙
2
� + 𝑖𝑖𝑛𝑛𝑧𝑧 sin�

𝜙𝜙
2
�
� (2.09) 

 

Here, we speak of a rotation by angle 𝜙𝜙 about an axis specified by the normal vector 𝒏𝒏� = [𝑛𝑛𝑥𝑥 𝑛𝑛𝑦𝑦 𝑛𝑛𝑧𝑧]𝑇𝑇 , where 
for positive 𝜙𝜙 the rotation is counter-clockwise about that axis. Rotations of 𝑖𝑖 radians about the 𝑧𝑧, 𝑦𝑦, and 𝑥𝑥 axes 
thus involve the matrices 
 

 �−𝑖𝑖 0
0 𝑖𝑖 � , �0 −1

1 0 � ,     and       � 0 −𝑖𝑖
−𝑖𝑖 0 � (2.10) 

 

respectively. Up to a phase, these are precisely the unitary operators that Bob applies in the case of measurement 
results |Ψ12

+ 〉, |Φ12
+ 〉 and |Φ12

− 〉, so that Bob’s unitary operators have a physical interpretation as rotations of the 2-
level system of Particle 3. With the measurement result |Ψ12

− 〉, no unitary operator needs to be applied as indicated 
in the above table.  
 
As for the fate of Particles 1 and 2 at Alice’s measurement station, they end up in precisely the state given under 
‘Alice’s measurement result’ in the table above. As we mentioned in the Introduction, the original state is not 
preserved at the teleporter input. In fact, this is a consequence of a quite general result in quantum physics, which 
we state now. We quote Theorem 20.1 of [12]: 
 
 
The Quantum No-Cloning Theorem 
There is no quantum operation that can perfectly duplicate an unknown quantum state. This holds under the 
assumption that every physically permitted operation is described by a unitary transformation. 
 
 
So we see that our teleporter must necessarily destroy its input state, in order to not violate this No-Cloning 
Theorem. 
 
Now, the BBCJPW protocol is not restricted to states of the form seen in Eq. (2.01). An interesting phenomenon 
is found if we input a Particle 1 that is itself entangled with an external Particle 0. Let the state be a singlet one: 
 

 |Ψ01
− 〉 =

1
√2

(|+0〉|−1〉 − |−0〉|+1〉) (2.11) 
 

As before, prior to any measurement, the system (now consisting of 4 particles) is in a product state 
 

|Ψ0123 〉 = |Ψ01
− 〉|Ψ23

− 〉 

=
1
2

|+0〉|−1〉|+2〉|−3〉+
1
2

|−0〉|+1〉|−2〉|+3〉 −
1
2

|−0〉|+1〉|+2〉|−3〉 −
1
2

|+0〉|−1〉|−2〉|+3〉 
(2.12) 

 

In the Bell Basis, this is: 

|Ψ0123 〉 =
1
2 �
Ψ12

+ 〉 �
1
√2

|+0〉|−3〉 +
1
√2

|−0〉|+3〉� +
1
2

|Ψ12
− 〉 �

−1
√2

|+0〉|−3〉+
1
√2

|−0〉|+3〉� 

= +
1
2 �
Φ12

+ 〉 �
−1
√2

|+0〉|+3〉 −
1
√2

|−0〉|−3〉�+
1
2

|Φ12
− 〉 �

1
√2

|+0〉|+3〉 −
1
√2

|−0〉|−3〉� 

(2.13) 
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Alice makes her measurements in the Bell basis as before; the ‘coefficients’ above show the measurement results. 
Bob’s application of the unitary operators listed in the above table (which act only on Particle 3, note) give the 
final collective state of Particles 0 and 3 as |Ψ03

− 〉, i.e. the teleportation scheme ‘swaps’ the original entanglement 
of Particles 0 and 1 to Particles 0 and 3, a phenomenon known as entanglement swapping. 
 
 

2.2 Entanglement 

2.2.1 Introduction 
An important feature of the BBCJPW protocol was the sharing between two observers of a state that is non-
locally correlated. In the case of the aforementioned protocol, this was the spin-singlet state of two spin-1/2 
particles. This non-local resource is an essential feature of quantum teleportation protocols. In this section, we 
give a systematic discussion of entangled states, which possess precisely the sort of non-local correlations desired 
in teleportation. The origin of the phrase ‘entangled states’, and their description, is attributed to Erwin 
Schrodinger, who in 1935 brought them to light in discussing the infamous EPR paradox. Chapter 6 of Garrison 
and Chiao [12] gives a sizable discussion on many aspects of entanglement and provided much of the background 
for what follows. 
 

2.2.2 Formal description of two-particle states 
We begin with the mathematical description of two-particle states. In fact, we have already used these in our 
description of the BBCJPW protocol, so here we backtrack a little to define things formally. A two-particle 
system of distinguishable particles is described by treating each particle as living in a Hilbert space of appropriate 
dimension – call these 𝐻𝐻𝐴𝐴 and 𝐻𝐻𝐵𝐵. Our designation of the overall two-particle system then, is as a state in the 
tensor product space denoted by 𝐻𝐻𝐶𝐶 = 𝐻𝐻𝐴𝐴⨂𝐻𝐻𝐵𝐵. 
 
A product state of 𝐻𝐻𝐶𝐶  is a state of the form |Λ〉 = |𝜓𝜓〉|𝜃𝜃〉, where |𝜓𝜓〉 is a state in 𝐻𝐻𝐴𝐴, and |𝜃𝜃〉 one in 𝐻𝐻𝐵𝐵. The 
overall space 𝐻𝐻𝐶𝐶  then refers to all linear combinations of all such possible product states. In 𝐻𝐻𝐶𝐶 , the inner product 
of two of these product states is defined by 
 

 〈Λ′|Λ〉 = 〈𝜓𝜓′|𝜓𝜓〉〈𝜃𝜃′|𝜃𝜃〉 (2.14) 
 
where |Λ′〉 = |𝜓𝜓′〉|𝜃𝜃′〉. 
Let the sets {|𝜙𝜙𝐴𝐴〉} and �|𝜂𝜂𝛽𝛽〉� be orthonormal basis sets for 𝐻𝐻𝐴𝐴 and 𝐻𝐻𝐵𝐵 respectively. The set of product states 
given by 
 

 �|𝜙𝜙𝐴𝐴〉�𝜂𝜂𝛽𝛽 〉: |𝜙𝜙𝐴𝐴〉 ∈ 𝐻𝐻𝐴𝐴 , |𝜂𝜂𝛽𝛽〉 ∈ 𝐻𝐻𝐵𝐵� (2.15) 
 

is capable of providing a basis of the product space 𝐻𝐻𝐶𝐶 . This basis is also orthonormal. To see this, write �𝜒𝜒𝛼𝛼 ,𝛽𝛽 〉 =
|𝜙𝜙𝛼𝛼〉�𝜂𝜂𝛽𝛽 〉, then observe that 
 

 〈𝜒𝜒𝛼𝛼 ′,𝛽𝛽 ′�𝜒𝜒𝛼𝛼 ,𝛽𝛽 〉 = 〈𝜙𝜙𝛼𝛼 ′|𝜙𝜙𝛼𝛼〉〈𝜂𝜂𝛽𝛽 ′�𝜂𝜂𝛽𝛽 〉 = 𝛿𝛿𝛼𝛼 ′𝛼𝛼𝛿𝛿𝛽𝛽 ′𝛽𝛽  (2.16) 
 

using Eq. (2.14) to perform the inner product. A general state |Ψ〉 in 𝐻𝐻𝐶𝐶  can then be expanded over this basis as 
 

 |Ψ〉 = �Ψ𝛼𝛼𝛽𝛽 |𝜒𝜒𝛼𝛼𝛽𝛽 〉
𝛼𝛼 ,𝛽𝛽

 (2.17) 
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where Ψ𝛼𝛼𝛽𝛽 = 〈𝜒𝜒𝛼𝛼𝛽𝛽 |Ψ〉. An operator 𝑋𝑋 acting on 𝐻𝐻𝐶𝐶  may likewise be expanded in terms of its matrix elements in 
this basis: 
 

 𝑋𝑋 = ��〈𝜒𝜒𝛼𝛼 ′𝛽𝛽 ′|𝑋𝑋|𝜒𝜒𝛼𝛼𝛽𝛽 〉�𝜒𝜒𝛼𝛼 ′𝛽𝛽′〉〈𝜒𝜒𝛼𝛼𝛽𝛽 |
𝛽𝛽 ,𝛽𝛽 ′𝛼𝛼 ,𝛼𝛼 ′

 (2.18) 

 

We allow operators that act on all of 𝐻𝐻𝐶𝐶 , or on just one of its subsystems 𝐻𝐻𝐴𝐴 or 𝐻𝐻𝐵𝐵. An operator 𝐴𝐴 acting solely on 
𝐻𝐻𝐴𝐴 may be written explicitly as 𝐴𝐴⨂𝐼𝐼 to signify its effect on 𝐻𝐻𝐴𝐴⨂𝐻𝐻𝐵𝐵 = 𝐻𝐻𝐶𝐶 - i.e., such an operator has the effect of 
the identity 𝐼𝐼 when applied to states in 𝐻𝐻𝐵𝐵. 
 
A important notion that shall be used later on is that of the partial trace of an operator. The partial trace refers to a 
trace carried out only over one of the subsystems 𝐻𝐻𝐴𝐴 or 𝐻𝐻𝐵𝐵 of the global system 𝐻𝐻𝐶𝐶 . For an operator 𝑋𝑋 acting on 
the system 𝐻𝐻𝐶𝐶 , the partial trace over 𝐻𝐻𝐵𝐵 is the operator acting on 𝐻𝐻𝐴𝐴 given by: 
 

 TrB(𝑋𝑋) = �〈𝜂𝜂𝛽𝛽 |𝑋𝑋|𝜂𝜂𝛽𝛽〉
𝛽𝛽

 (2.19) 
 

where the sum is over all states in the basis set �|𝜂𝜂𝛽𝛽〉�. By substituting in the expansion for 𝑋𝑋 over the states |𝜒𝜒𝛼𝛼𝛽𝛽 〉 
in Eq. (2.18), we get an expansion in states: 
 

 TrB(𝑋𝑋) = ��〈𝜒𝜒𝛼𝛼 ′𝛽𝛽 |𝑋𝑋|𝜒𝜒𝛼𝛼𝛽𝛽 〉�𝜙𝜙𝛼𝛼 ′〉〈𝜙𝜙𝛼𝛼 |
𝛽𝛽𝛼𝛼 ,𝛼𝛼 ′

 (2.20) 

 
which shows explicitly how the resulting operator can only act on 𝐻𝐻𝐴𝐴. Note that �𝜒𝜒𝛼𝛼 ,𝛽𝛽 〉 = |𝜙𝜙𝛼𝛼〉�𝜂𝜂𝛽𝛽 〉. 
 
When 𝑋𝑋 happens to be the density operator 𝜌𝜌 of the total system 𝐻𝐻𝐶𝐶 , the resulting operator is known as a reduced 
density operator. Its role becomes clear when we consider the expectation value of an operator 𝑂𝑂𝐴𝐴 that acts only 
on 𝐻𝐻𝐴𝐴 – it is: 
 

 
〈𝑂𝑂𝐴𝐴〉 = Tr(𝜌𝜌𝑂𝑂𝐴𝐴) = �〈𝜒𝜒𝛼𝛼 ,𝛽𝛽 |𝜌𝜌𝑂𝑂𝐴𝐴|𝜒𝜒𝛼𝛼 ,𝛽𝛽 〉 = �〈𝜙𝜙𝛼𝛼 |��〈𝜂𝜂𝛽𝛽 |𝜌𝜌|𝜂𝜂𝛽𝛽〉

𝛽𝛽

�𝑂𝑂𝐴𝐴|𝜙𝜙𝛼𝛼〉
𝛼𝛼𝛼𝛼 ,𝛽𝛽

= TrA(𝜌𝜌𝐴𝐴𝑂𝑂𝐴𝐴) (2.21) 

 

where 𝜌𝜌𝐴𝐴 = TrB(𝜌𝜌) is the reduced density operator found by tracing only over 𝐻𝐻𝐵𝐵. So we see that 𝜌𝜌𝐴𝐴 acts as an 
effective density operator for 𝑂𝑂𝐴𝐴 - we can calculate its operator expectation using the operator 𝜌𝜌𝐴𝐴 and only a trace 
over the states 𝐻𝐻𝐴𝐴. We chose, for concreteness, to evaluate the trace using the basis |𝜒𝜒𝛼𝛼 ,𝛽𝛽 〉. 
 
All is precisely analogous in 𝐻𝐻𝐵𝐵 - for an operator 𝑂𝑂𝐵𝐵  acting only on 𝐻𝐻𝐵𝐵, we have 
 

 〈𝑂𝑂𝐵𝐵〉 = TrB(𝜌𝜌𝐵𝐵𝑂𝑂𝐵𝐵) (2.22) 
 

where now 𝜌𝜌𝐵𝐵 = TrA(𝜌𝜌). 
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2.2.3 The Schmidt Decomposition and entanglement defined 
Use of the basis states |𝜒𝜒𝛼𝛼𝛽𝛽 〉 (which we arrived at by using bases for 𝐻𝐻𝐴𝐴 and 𝐻𝐻𝐵𝐵) provides an expansion of an 
arbitrary state |Ψ〉 in 𝐻𝐻𝐶𝐶  over orthonormal states, as in Eq. (2.17). This uses up to Dim(𝐻𝐻𝐴𝐴) × Dim(𝐻𝐻𝐵𝐵) (‘Dim’ = 
dimension) states in is expansion. Here, we assume that we are working in Hilbert spaces of finite dimension. In 
[12], it is shown that an alternative expansion 
 

 
|Ψ〉 = �𝑌𝑌𝑛𝑛 |𝛼𝛼𝑛𝑛〉|𝛽𝛽𝑛𝑛〉

𝑟𝑟

𝑛𝑛=1

 (2.23) 

 

is possible, where 𝑟𝑟 ≤ Min {Dim(𝐻𝐻𝐴𝐴),Dim(𝐻𝐻𝐵𝐵)} , and the product states |𝛼𝛼𝑛𝑛〉|𝛽𝛽𝑛𝑛〉 are still orthonormal. This uses 
fewer states in its expansion. 
The smallest value of 𝑟𝑟 for which this expansion is possible is called the Schmidt rank of the state |Ψ〉 of 𝐻𝐻𝐶𝐶 , with 
the corresponding expansion being the Schmidt decomposition. This particular decomposition is useful for a 
number of reasons. One such reason is that the density and reduced density operators for the state |Ψ〉 have 
particularly simple forms – these are: 
 

 𝜌𝜌 = �𝑌𝑌𝑚𝑚𝑌𝑌𝑛𝑛∗|𝛼𝛼𝑚𝑚〉〈𝛼𝛼𝑛𝑛 |⨂|𝛽𝛽𝑚𝑚〉〈𝛽𝛽𝑛𝑛 |
𝑚𝑚 ,𝑛𝑛

 (2.24) 
 

 𝜌𝜌𝐴𝐴 = TrB(𝜌𝜌) = �|𝑌𝑌𝑛𝑛 |2

𝑛𝑛

|𝛼𝛼𝑚𝑚〉〈𝛼𝛼𝑛𝑛 | (2.25) 
 

 𝜌𝜌𝐵𝐵 = TrA(𝜌𝜌) = �|𝑌𝑌𝑛𝑛 |2

𝑛𝑛

|𝛽𝛽𝑚𝑚〉〈𝛽𝛽𝑛𝑛 | (2.26) 
 

See that the two reduced density operators share the same coefficients. 
 
Now, a product state in 𝐻𝐻𝐶𝐶  evidently has Schmidt rank 1. We also know that, reverting now to the wavefunction 
form of a product state, we have: 
 

 𝜙𝜙(𝑥𝑥1, 𝑥𝑥2) = 𝜓𝜓(𝑥𝑥1)𝜓𝜓′(𝑥𝑥2) ⟹ 𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) = |𝜓𝜓(𝑎𝑎)|2�𝜓𝜓′(𝑏𝑏)�𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2 (2.27) 
 

where 𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) is the probability that the particle described by 𝜓𝜓(𝑥𝑥1) is localised in an interval 𝑑𝑑𝑥𝑥1 about 𝑥𝑥1 = 𝑎𝑎 
and the particle described by 𝜓𝜓′(𝑥𝑥2) is in an interval 𝑑𝑑𝑥𝑥2 about 𝑥𝑥2 = 𝑏𝑏. Because of the way that single particle 
probabilities multiply in the above equation, knowledge of 𝑥𝑥1 tells us nothing of 𝑥𝑥2 - these two variables are 
completely uncorrelated. 
On the other hand, correlated states such as the singlet state used in the BBCJPW protocol of Section 2.1 are not 
able to be written as a single product state – we say that such states are not separable. Hand in hand with this fact, 
we note that such states also have a Schmidt rank larger than 1. This motivates the definition of entanglement. 
 
Definition: Entanglement 
A pure state |Ψ〉 of 𝐻𝐻𝐶𝐶  is called entangled if it has a Schmidt rank 𝑟𝑟 > 1. 
 
This definition may seem a little abstract in terms of what physical consequences exist for an entangled state. We 
therefore state a theorem (Theorem 6.4 of [12]) which relates entanglement to fluctuations in system operators. 
Given an operator 𝐴𝐴 that acts on 𝐻𝐻𝐴𝐴 only, we define the operator Δ𝐴𝐴 = 𝐴𝐴 − 〈𝐴𝐴〉 to describe fluctuations of 𝐴𝐴  
about its mean. Similarly, Δ𝐵𝐵 is defined for an operator 𝐵𝐵 acting on 𝐻𝐻𝐵𝐵 alone. We then have the following. 
 
Theorem 
For a state |Ψ〉 of 𝐻𝐻𝐶𝐶 , fluctuations Δ𝐴𝐴 and Δ𝐵𝐵 are correlated if 〈Ψ|Δ𝐴𝐴Δ𝐵𝐵|Ψ〉 ≠ 0. The state |Ψ〉 is entangled if, 
and only if, there are at least one pair of observables 𝐴𝐴,𝐵𝐵 having correlated quantum fluctuations. 
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So we see correlations in a quantum state goes hand-in-hand with it formally being entangled. 
 

2.2.4 Maximal entanglement 
We now briefly consider a system that does not partition into two subsystems 𝐻𝐻𝐴𝐴 and 𝐻𝐻𝐵𝐵. Suppose we write the 
system density matrix 𝜌𝜌 in the basis in which it is diagonal. Its eigenvalues then appear along its main diagonal. 
Let the dimension of the system Hilbert space be 𝑛𝑛, and suppose that 𝜌𝜌 has ℜ non-zero eigenvalues. If these ℜ 
eigenvalues are all equal (to 1

ℜ
 in order that the density operator may still have unit trace), then the state described 

by the density matrix is called a maximally mixed state. 
 
Back in the two particle system 𝐻𝐻𝐶𝐶 , we say that a pure state of 𝐻𝐻𝐶𝐶  is maximally entangled if the reduced density 
operators 𝜌𝜌𝐴𝐴 and 𝜌𝜌𝐵𝐵  are each maximally mixed, as defined above, with the number of non-zero eigenvalues ℜ in 
each being equal to the states’ Schmidt rank 𝑟𝑟. 
 
It is worth considering a small example to illustrate the physics thus far described. 
 
Example 
We reconsider the spin-singlet state Eq. (2.02) 
 

 |Ψ23
− 〉 =

1
√2

(|+2〉|−3〉 − |−2〉|+3〉) (2.28) 
  
at the heart of the BBCJPW protocol. Here 𝐻𝐻𝐴𝐴 will be the 2-dimensional Hilbert space corresponding to the spin 
of Particle 2; in a similar manner 𝐻𝐻𝐵𝐵 describes Particle 3. The full density operator is: 

 
𝜌𝜌 = |Ψ23

− 〉〈Ψ23
− | 

=
1
2

(|+2〉〈+2|⨂|−3〉〈−3| − |+2〉〈−2|⨂|−3〉〈+3|− |−2〉〈+2|⨂|+3〉〈−3| + |−2〉〈−2|⨂|+3〉〈+3|) 
(2.29) 

 

This gives the reduced density operators (by performing partial traces): 
 

 𝜌𝜌𝐴𝐴 =
1
2

(|+2〉〈+2| + |−2〉〈−2|), 𝜌𝜌𝐵𝐵 =
1
2

(|+3〉〈+3| + |−3〉〈−3|) (2.30) 
 

Both of these have the matrix form 
 

 �1 2⁄ 0
0 1 2⁄ � (2.31) 

 

when written in their respective bases (namely {|+2〉, |−2〉} and {|+3〉, |−3〉}). Addtionally, the state |Ψ23
− 〉 has 

Schmidt rank 2 (in fact it is already Schmidt decomposed in the form written above). So we see that |Ψ23
− 〉 is an 

example of a maximally entangled state. 
 
 
As we have already mentioned, entangled states are central to quantum teleportation. However, maximally 
entangled states have a special role – for example, it is noted in [1] that teleportation can only be perfectly 
achieved in the BBCJPW protocol if Alice and Bob share a maximally entangled spin state. This is both a 
necessary and sufficient condition for perfect teleportation in that protocol. The description given of the BBCJPW 
protocol in Section 2.1 used a spin-singlet state shared between Alice and Bob, which of course is maximally 
entangled as we have just seen. It is possible to use states other than the singlet state (which are also maximally 
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entangled) in that protocol as well. Use of a less-than-maximally entangled state will not result in perfect 
teleportation, a concept that, with a little adaptation depending on the teleportation protocol at hand, is quite 
generally true. 
 
Our presentation of entanglement has been brief, and defined with a view towards quantum teleportation, where 
entanglement between two subsystems is needed. For example, we have not looked at entangled mixed states. 
Additionally, the Schmidt decomposition definition given turns out not to extend to entanglement between more 
than 2 subsystems so easily. We don’t go into this here, however. 
 
 

2.3 Continuous-variable Teleportation Protocols 
Shortly after the BBCJPW protocol was established, an extension of this was proposed by Vaidman [6] involving 
the use of continuous variables. In this section we outline his protocol. 
 
The extension proposed by Vaidman involves starting with Particles 2 and 3 in the EPR state described by 
 

 |Ψ23〉 = |𝑄𝑄2 + 𝑄𝑄3 = 0,𝑃𝑃2 − 𝑃𝑃3 = 0〉 (2.32) 
 

where 𝑄𝑄 and 𝑃𝑃 are a pair of canonically conjugate variables, which we define below. The use of this state 
highlights the departure from the BBCJPW protocol, for it involves 2 particles having correlations in continuous 
variables rather than just discrete spins. 
 
 
Canonically Conjugate Variables 
Let 𝑃𝑃 and 𝑄𝑄 be Hermitian operators. We call 𝑃𝑃 and 𝑄𝑄 ‘canonically conjugate’ if they satisfy the canonical 
commutation relation [𝑄𝑄,𝑃𝑃] = 𝑖𝑖ℏ. 
 
 
See Appendix C4 of [12]. Position and momentum are obvious examples – in this case, the state |Ψ23〉 would 
correpond to two particles having the same momenta at ‘opposite’ positions ±𝑥𝑥. 
 
We have an input Particle 1, and Alice receives Particles 1 and 2 as in the BBCJPW protocol. The state of Particle 
1 is what is being teleported, and we write it as Ψ(𝑄𝑄1). Alice now measures the variables 𝑄𝑄1 + 𝑄𝑄2 and 𝑃𝑃1 − 𝑃𝑃2, 
obtaining results which we write as: 
 

 𝑄𝑄1 + 𝑄𝑄2 = 𝑎𝑎, 𝑃𝑃1 − 𝑃𝑃2 = 𝑏𝑏 (2.33) 
 

We note that simultaneous measurement of these variables is possible because they commute as operators: 
 

 �𝑄𝑄�1 + 𝑄𝑄�2,𝑃𝑃�1 − 𝑃𝑃�2� = �𝑄𝑄�1,𝑃𝑃�1� − �𝑄𝑄�2,𝑃𝑃�2� = 0 (2.34) 
 

under the assumption that operators for Particle 1 and Particle 2 commute as well. Because 𝑄𝑄 and 𝑃𝑃 are 
continuous variables, 𝑎𝑎 and 𝑏𝑏 can take on any values. 
 
Alice’s measurement results, along with the correlations between Particles 2 and 3, allow us to eliminate 𝑄𝑄2 and 
𝑃𝑃2 in Eqs. (2.32) and (2.33) to see that 
 

 𝑄𝑄1 − 𝑄𝑄3 = 𝑎𝑎,     𝑃𝑃1 − 𝑃𝑃3 = 𝑏𝑏 (2.35) 
 

The distributions of 𝑄𝑄 and 𝑃𝑃 for Particle 3 are now determined, and related to those of Particle 1 by the above 
equations. The state of Particle 3 after Alice’s measurements is then precisely that of Particle 1, shifted in 𝑄𝑄3 by 
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an amount 𝑎𝑎, and also shifted in 𝑃𝑃3 by an amount 𝑏𝑏. We note that (as operators), 𝑄𝑄�3 generates shifts in 𝑃𝑃�3-space, 
by virtue of them being canonically conjugate – to shift by an amount 𝑧𝑧 in 𝑃𝑃�3-space, one applies the operator 
 

 
exp�

𝑖𝑖𝑄𝑄�3𝑧𝑧
ℏ � (2.36) 

 

So the state of Particle 3 is now 
 

exp�
𝑖𝑖𝑄𝑄�3𝑏𝑏
ℏ �Ψ(𝑄𝑄3 + 𝑎𝑎) (2.37) 

 

where Ψ is the same function as it was for Particle 1. Bob’s action is to now apply appropriate ‘back-shifts’ of this 
state in 𝑃𝑃3 and 𝑄𝑄3 upon receiving the results 𝑎𝑎 and 𝑏𝑏 of Alice’s measurements, to recover the input state of 
Particle 1. 
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Chapter 3 

Quantum Optics Aspects 

 

 
 
 
We now move on to look at teleportation protocols that are based 0n quantum optics. Such protocols make use of 
the unique properties of light only describable in a quantum treatment. We aim to cover much of the quantum-
optical background needed in the following sections. 
 

3.1 Introduction: Quantisation of the electromagnetic field 
Our first task is to look at the quantised electromagnetic field. What is presented here is covered in Sections 4.1 
and 4.2 of Loudon [13], and Section 2.1 of Walls [14]. 
Our starting point for the quantisation of the electromagnetic field is the classical Maxwell equations 
 

 ∇.𝐵𝐵 = 0 (3.01) 
 

 
∇ × 𝐸𝐸 =

−𝜕𝜕𝐵𝐵
𝜕𝜕𝜕𝜕

 (3.02) 
 

 ∇.𝐸𝐸 =
𝜌𝜌
𝜖𝜖0

 (3.03) 
 

 
∇ × 𝐵𝐵 = 𝜇𝜇0𝐽𝐽 + 𝜇𝜇0𝜖𝜖0

𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕

 (3.04) 
 

in SI units; for a region having certain current densities 𝐽𝐽 and charge densities 𝜌𝜌, but without dielectrics. Use of 
the electrostatic potential 𝜙𝜙 and vector potential 𝐴𝐴 satisfying 
 

 
𝐸𝐸 = −∇𝜙𝜙 −

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

 and 𝐵𝐵 = ∇ × 𝐴𝐴 (3.05) 
 

mean that the first two of Maxwell’s equations, Eqs. (3.01) and (3.02), are automatically satisfied. 
Helmholtz’s Theorem tells us that an arbitrary vector field 𝐹𝐹 (vanishing sufficiently quickly at infinity) can be 
decomposed into transverse and longitudinal components 𝐹𝐹𝑇𝑇  and 𝐹𝐹𝐿𝐿 as: 
 

 𝐹𝐹 = 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐿𝐿 , where ∇.𝐹𝐹𝑇𝑇 = 0 and ∇ × 𝐹𝐹𝐿𝐿 = 0 (3.06) 
 

We decompose the fields 𝐴𝐴, 𝐵𝐵, 𝐸𝐸 and 𝐽𝐽 in this manner. Additionally, we work in the Coulomb Gauge, specifying 
∇.𝐴𝐴 = 0. The vector potential 𝐴𝐴 is then entirely transverse (in the above Helmholtz decomposition sense). 
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Substitution of the potentials and use of the Coulomb gauge in Maxwell’s equations above show that 
 

 ∇2𝜙𝜙 =
−𝜌𝜌
𝜖𝜖0

 (3.07) 
 

from the third Maxwell equation, Eq. (3.03) (this is Poisson’s equation); additionally we have 
 

 
�

1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝜕𝜕2 − ∇2�𝐴𝐴 = 𝜇𝜇0𝐽𝐽𝑇𝑇  (3.08) 
 

 
�

1
𝑐𝑐2

𝜕𝜕
𝜕𝜕𝜕𝜕
�∇𝜙𝜙 = 𝜇𝜇0𝐽𝐽𝐿𝐿 (3.09) 

 

by taking transverse and longitudinal components of Eq. (3.04). Note that ∇𝜙𝜙 is entirely longitudinal because 
∇ × (∇𝜙𝜙) = 0. We also have: 
 

 
𝐸𝐸𝑇𝑇 = −

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

 (3.10) 
 

 𝐸𝐸𝐿𝐿 = −∇𝜙𝜙 (3.11) 
 

The free field 
We now consider a free electromagnetic field, which is one in a region having 𝜌𝜌 = 0 and 𝐽𝐽𝑇𝑇 = 0. Fields 𝐴𝐴,𝐵𝐵 and 
𝐸𝐸 are then transverse only, though we don’t bother to write a subscript T for this. The vector potential 𝐴𝐴 satisfies a 
wave equation 
 

 
�

1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝜕𝜕2 − ∇2�𝐴𝐴 = 0 (3.12) 
 

and we can determine 𝐸𝐸 and 𝐵𝐵 from 
 

 
𝐸𝐸 = −

𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

, 𝐵𝐵 = ∇ × 𝐴𝐴. (3.13) 
 

The above manipulations of Maxwell’s equations are still within the classical framework of electromagnetism. It 
is now that we turn our attention to quantisation. 
 
Our first step is to expand the vector potential 𝐴𝐴 over a series of mode functions. Conceptually, we are restricting 
ourselves to consideration of a free electromagnetic field in some finite volume 𝑉𝑉. We write 
 

 𝐴𝐴(𝑟𝑟, 𝜕𝜕) = 𝐴𝐴+(𝑟𝑟, 𝜕𝜕) + 𝐴𝐴−(𝑟𝑟, 𝜕𝜕) (3.14) 
 

where 𝐴𝐴+(𝑟𝑟, 𝜕𝜕) and 𝐴𝐴−(𝑟𝑟, 𝜕𝜕) are complex conjugates, respectively known as the positive and negative frequency 
parts of 𝐴𝐴(𝑟𝑟, 𝜕𝜕). Such an expansion is applicable to fields in general. We have: 
 

 𝐴𝐴+(𝑟𝑟, 𝜕𝜕) = �𝑐𝑐𝑘𝑘𝑢𝑢𝑘𝑘(𝑟𝑟)𝑒𝑒−𝑖𝑖𝜔𝜔𝑘𝑘𝜕𝜕

𝑘𝑘

 (3.15) 
 

The mode functions here are 𝑢𝑢𝑘𝑘(𝑟𝑟), with the 𝑐𝑐𝑘𝑘  being complex expansion coefficients. The form of the mode 
functions can be found by substitution of Eq. (3.14) with Eq. (3.15) into Eq. (3.12). 
 
Quantisation is now within our reach, and is achieved as follows: first, rewrite the coefficients 𝑐𝑐𝑘𝑘  in terms of new 
coefficients 𝑎𝑎𝑘𝑘 : 
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𝑐𝑐𝑘𝑘 = 𝑎𝑎𝑘𝑘�

ℏ
2𝜔𝜔𝑘𝑘𝜖𝜖0

 (3.16) 

 

This is just a rescaling that makes the 𝑎𝑎𝑘𝑘  dimensionless. We then consider 𝑎𝑎𝑘𝑘  and 𝑎𝑎𝑘𝑘∗  not as complex expansion 
coefficients, but as operators 𝑎𝑎𝑘𝑘  and 𝑎𝑎𝑘𝑘

†  satisfying the usual boson commutation relations. The vector potential is 
now: 
 

 
𝐴𝐴(𝑟𝑟, 𝜕𝜕) = ��

ℏ
2𝜔𝜔𝑘𝑘𝜖𝜖0

�𝑎𝑎𝑘𝑘𝑢𝑢𝑘𝑘(𝑟𝑟)𝑒𝑒−𝑖𝑖𝜔𝜔𝑘𝑘𝜕𝜕 + 𝑎𝑎𝑘𝑘
†𝑢𝑢𝑘𝑘∗ (𝑟𝑟)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝜕𝜕�

𝑘𝑘

 (3.17) 

 

These operators 𝑎𝑎𝑘𝑘  and 𝑎𝑎𝑘𝑘
†  are annihilation and creation operators (respectively) for the mode described by the 

index 𝑘𝑘. The operator 𝑎𝑎𝑘𝑘
†  creates (adds) one photon in the mode 𝑘𝑘; 𝑎𝑎𝑘𝑘  removes one photon from that mode. The 

situation is completely analogous to that of the quantum harmonic oscillator. 
 
From this 𝐴𝐴(𝑟𝑟, 𝜕𝜕), we can determine 𝐵𝐵(𝑟𝑟, 𝜕𝜕) and 𝐸𝐸(𝑟𝑟, 𝜕𝜕) using Eq. (3.13). If these are substituted into the classical 
Hamiltonian 
 𝐻𝐻 =

1
2
�𝑑𝑑3𝑟𝑟 �𝜖𝜖0𝐸𝐸(𝑟𝑟, 𝜕𝜕)2 +

1
𝜇𝜇0
𝐵𝐵(𝑟𝑟, 𝜕𝜕)2� (3.18) 

 

we get 
 𝐻𝐻 = �ℏ𝜔𝜔𝑘𝑘

𝑘𝑘

�𝑎𝑎𝑘𝑘
†𝑎𝑎𝑘𝑘 +

1
2
� (3.19) 

 

which is again identical in form to the Hamiltonian for the quantum harmonic oscillator. 
 
Form of the mode functions 
The precise form of the 𝑢𝑢𝑘𝑘(𝑟𝑟) depends on what boundary conditions we give to our volume 𝑉𝑉. For example, in a 
cubic box of sidelength 𝐿𝐿 having periodic boundary conditions, we have [14]: 
 

 
𝑢𝑢𝑘𝑘(𝑟𝑟) =

1
√𝑉𝑉

�̂�𝑒𝜆𝜆exp(𝑖𝑖𝒌𝒌.𝒓𝒓),   𝒌𝒌 =
2𝑖𝑖𝑛𝑛𝑥𝑥
𝐿𝐿

𝒙𝒙� +
2𝑖𝑖𝑛𝑛𝑦𝑦
𝐿𝐿

𝒚𝒚� +
2𝑖𝑖𝑛𝑛𝑧𝑧
𝐿𝐿

𝒛𝒛� (3.20) 
 

where �̂�𝑒𝜆𝜆  (𝜆𝜆 = 1,2) are unit polarisation vectors. As usual 𝑛𝑛𝑥𝑥 , 𝑛𝑛𝑦𝑦  and 𝑛𝑛𝑧𝑧  are integers. Here we are using 𝑘𝑘 as a 
collective index to describe a particular value of 𝜆𝜆 and a particular wavevector 𝒌𝒌. 
 

3.2 Squeezed Light 
Explicitly, the free electric field in the Coulomb gauge is: 
 

 
𝐸𝐸(𝑟𝑟, 𝜕𝜕) = �𝑖𝑖�

ℏ𝜔𝜔𝑘𝑘

2𝜖𝜖0
�𝑎𝑎𝑘𝑘𝑢𝑢𝑘𝑘(𝑟𝑟)𝑒𝑒−𝑖𝑖𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑎𝑎𝑘𝑘

†𝑢𝑢𝑘𝑘∗ (𝑟𝑟)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝜕𝜕�
𝑘𝑘

= 𝐸𝐸+(𝑟𝑟, 𝜕𝜕) + 𝐸𝐸−(𝑟𝑟, 𝜕𝜕) (3.21) 

 

We now take a single mode of the electric field, and use the cubic box mode functions of Eq. (3.20). Then, 
 

 
𝐸𝐸(𝑟𝑟, 𝜕𝜕) = 𝑖𝑖�

ℏ𝜔𝜔𝑘𝑘

2𝜖𝜖0𝑉𝑉
�̂�𝑒𝜆𝜆�𝑎𝑎𝑘𝑘𝑒𝑒−𝑖𝑖(𝜔𝜔𝑘𝑘𝜕𝜕−𝑘𝑘 .𝑟𝑟) − 𝑎𝑎𝑘𝑘

†𝑒𝑒𝑖𝑖(𝜔𝜔𝑘𝑘𝜕𝜕−𝑘𝑘.𝑟𝑟)� (3.22) 
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We define new operators – the quadrature phase operators – as follows: 
 

 𝑋𝑋 = 𝑎𝑎𝑘𝑘 + 𝑎𝑎𝑘𝑘
†  (3.23) 

 

 𝑌𝑌 = −𝑖𝑖�𝑎𝑎𝑘𝑘 − 𝑎𝑎𝑘𝑘
†� (3.24) 

 

This is the convention used in Walls [14], although it is possible to define these operators with slightly differing 
factors. We then have: 
 

 
𝐸𝐸(𝑟𝑟, 𝜕𝜕) = �

ℏ𝜔𝜔𝑘𝑘

2𝜖𝜖0𝑉𝑉
�̂�𝑒𝜆𝜆�𝑋𝑋sin(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟) − 𝑌𝑌cos(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟)� (3.25) 

 

Because the 𝑎𝑎𝑘𝑘  and 𝑎𝑎𝑘𝑘
†  obey boson commutation relations, we arrive at the following commutator for the 

quadrature phase operators: 
 [𝑋𝑋,𝑌𝑌] = 2𝑖𝑖 (3.26) 
 

So we see that 𝑋𝑋 and 𝑌𝑌 are canonically conjugate observables (up to scaling) as defined in Section 2.3, analogous 
to position and momentum. We also have the uncertainty relation 
 

 Δ𝑋𝑋Δ𝑌𝑌 ≥ 1 (3.27) 
 

where Δ𝑋𝑋 = �〈(Δ𝑋𝑋)2〉 as usual. We now make the following definitions. 
 
 
Definition. 
A minimum uncertainty state of the electric field is one for which Δ𝑋𝑋Δ𝑌𝑌 = 1. 
Among minimum uncertainty states, we may further distinguish between: 

o States having Δ𝑋𝑋 = 1 and Δ𝑌𝑌 = 1 
o Squeezed states, with either: 

• Δ𝑋𝑋 < 1, and hence Δ𝑌𝑌 > 1 
• Δ𝑋𝑋 > 1, and hence Δ𝑌𝑌 < 1 

 
 
The above definition contains the essence of what it means for a state to be squeezed – we have a state that 
saturates the quadrature uncertainty relation Eq. (3.27), and has reduced uncertainty in one quadrature at the 
expense of increased uncertainty in the other quadrature. 
 
A well-known class of minimum uncertainty states are the so-called coherent states, denoted by |𝛼𝛼〉 . These can 
be defined in a few ways – for example [14], as the states that result when the operator 
 

 𝐷𝐷(𝛼𝛼) = exp�𝛼𝛼𝑎𝑎† − 𝛼𝛼∗𝑎𝑎� (3.28) 
 

for an arbitrary complex number 𝛼𝛼, acts on the vacuum state: 
 

 |𝛼𝛼〉 ≡ 𝐷𝐷(𝛼𝛼)|0〉 (3.29) 
 

This definition also implies that the coherent states |𝛼𝛼〉 satisfy 𝑎𝑎|𝛼𝛼〉 = 𝛼𝛼|𝛼𝛼〉, which itself can be considered an 
alternative definition for the these states. Not only are these minimum uncertainty states, but they also have equal 
uncertainty in each quadrature. The operator 𝐷𝐷(𝛼𝛼) known as the displacement operator, for one can think of it as 
‘displacing’ the vacuum state to produce a coherent state. 
 
The field quadratures 𝑋𝑋 and 𝑌𝑌 provide us with a form of phase space to view states of light in. Evidently, states 
cannot be represented as points in such a phase space, because it is impossible to have a simultaneous exact 
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measurement of both quadratures, in light of Eq. (3.26). However, states can be represented as areas in such a 
phase space, where the area represents states allowable under fluctuations (or uncertainties) in the quadratures. 
Coherent states are then circles in this phase space, because they have equal uncertainty in each quadrature. The 
circle center is at the point (〈𝑋𝑋〉, 〈𝑌𝑌〉), which for a coherent state is: 
 

 〈𝑋𝑋〉 = 2Re(𝛼𝛼),   〈𝑌𝑌〉 = 2Im(𝛼𝛼) (3.30) 
 

In phase space, squeezed states are not represented by circular areas, for they have unequal uncertainties in each 
quadrature. They are narrower in one quadrature and correspondingly broader in the other. They can, in fact, be 
represented by ellipses. The precise reason why they are elliptically shaped is due to the fact that these phase 
space areas are actually contours of the Wigner function representing the states [14]. 
 
Squeezed states, like coherent states, can also be generated from the vacuum state by applying an appropriate 
operator. In particular, we may generate the squeezed state |𝛼𝛼, 𝜖𝜖〉, consisting of an ellipse of minor axis 𝑒𝑒−𝑟𝑟  , and 
major axis 𝑒𝑒𝑟𝑟 , centered on the spot defined by Eq. (3.30) with principle axes rotated by an angle 𝜙𝜙 relative to the 
usual quadrature phase-space axes. This is done in the following manner: 
 

 |𝛼𝛼, 𝜖𝜖〉 = 𝐷𝐷(𝛼𝛼)𝑆𝑆(𝜖𝜖)|0〉 (3.31) 
 

The operator 𝐷𝐷(𝛼𝛼) is as it was before. The new operator here is the unitary squeeze operator, given by: 
 

 𝑆𝑆(𝜖𝜖) = exp �
1
2
𝜖𝜖∗𝑎𝑎2 +

1
2
𝜖𝜖𝑎𝑎† 2� (3.32) 

 

where the complex number 𝜖𝜖 sets the degree of squeezing 𝑟𝑟 and the rotation angle 𝜙𝜙: 
 

 𝜖𝜖 = 𝑟𝑟exp(2𝑖𝑖𝜙𝜙) (3.33) 
 

The quadrature uncertainties give rise to tangible uncertainties in the quantised electric field. We find the electric 
field variance 〈(Δ𝐸𝐸(𝑟𝑟, 𝜕𝜕))2〉 is: 
 

ℏ𝜔𝜔𝑘𝑘

2𝜖𝜖0𝑉𝑉
�〈〈(Δ𝑋𝑋)2〉sin2(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟) + 〈(Δ𝑌𝑌)2〉cos2(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟) − �

〈𝑋𝑋𝑌𝑌 + 𝑌𝑌𝑋𝑋〉
2

− 〈𝑋𝑋〉〈𝑌𝑌〉� sin(2𝜔𝜔𝑘𝑘𝜕𝜕 − 2𝑘𝑘. 𝑟𝑟)� 

(3.34) 
 

Note that if the electric field is in a minimum uncertainty state, the third term above vanishes. 
 
It is worth looking at some diagrams to get a picture of all these concepts that we have introduced – squeezed 
states, quadrature phase space, and uncertainties in the electric field. 
 
We consider the coherent state |𝛼𝛼 = 2 + 0𝑖𝑖〉 to be in force at 𝜕𝜕 = 0, and we ignore the any phase –𝑘𝑘. 𝑟𝑟 in the 
field. In this state, we have from Eq. (3.30) that 〈𝑋𝑋〉 = 4 and 〈𝑌𝑌〉 = 0. We set the mode frequency 𝜔𝜔𝑘𝑘 = 2, and 
plot the initial state in quadrature phase space, and a portion of its electric field over some time period, with the 
field uncertainty Δ𝐸𝐸 = �〈(Δ𝐸𝐸)2 distributed evenly either side of the mean value for the electric field. The mean 
value of the electric field is of course 
 

 
〈𝐸𝐸(𝑟𝑟, 𝜕𝜕)〉 = �

ℏ𝜔𝜔𝑘𝑘

2𝜖𝜖0𝑉𝑉
�̂�𝑒𝜆𝜆�〈𝑋𝑋〉sin(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟) − 〈𝑌𝑌〉cos(𝜔𝜔𝑘𝑘𝜕𝜕 − 𝑘𝑘. 𝑟𝑟)� (3.35) 

 

We also consider some cases where we squeeze this initial coherent state. 
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So far, we have introduced the quadrature operators 𝑋𝑋 and 𝑌𝑌 effectively in the Schrodinger picture; in the 
Heisenberg picture, their time dependence means that the state in quadrature phase space orbits the origin at the 
mode frequency 𝜔𝜔𝑘𝑘 . 
 
In the plots below, the left-hand picture shows the initial state described, in quadrature phase space. The right-
hand plot shows a portion of the electric field (with its uncertainty as explained above), for some time interval. 
 
 
The state |𝜶𝜶 = 𝟐𝟐 + 𝟎𝟎𝟎𝟎〉 

 
 
The state |𝜶𝜶 = 𝟐𝟐 + 𝟎𝟎𝟎𝟎〉, squeezed with 𝒓𝒓 = 𝟏𝟏 

 
Notice that, compared to the unsqueezed state, the electric field amplitude is better defined here. This is an 
example of an amplitude-squeezed state. 
 
 
The state |𝜶𝜶 = 𝟐𝟐 + 𝟎𝟎𝟎𝟎〉, squeezed with 𝒓𝒓 = −𝟎𝟎.𝟓𝟓 
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In this last case, note that the electric field’s phase is better defined than in the unsqueezed case – this is an 
example of a phase-squeezed state. 
 
A rather interesting type of squeezed state is that of the squeezed vacuum. The vacuum itself is exactly the same 
as the coherent state|𝛼𝛼 = 0 + 0𝑖𝑖〉. Hence, in quadrature phase space, it appears as a circle centered on the origin. 
As with the coherent state used in the above plots, it is possible to squeeze this vacuum state. We show an 
example below. 

Squeezed vacuum with 𝒓𝒓 = 𝟏𝟏 

 
 
Squeezed vacuum states will be of particular interest to us in optical teleportation protocols, as we shall see. 
 
We note in closing that for the above plots, we have just set ℏ𝑐𝑐

2𝜖𝜖0𝑉𝑉
= 1 for convenience. This is quite generally the 

case, and most of the time we will just write an electric field in terms of its quadrature-phase operators as 
ℰ = ℰ𝑋𝑋 + 𝑖𝑖ℰ𝑌𝑌 (where the quadrature operators can now carry the time dependence) without regard to an overall 
constant. 
 
 

3.3 Quantum optics description of a beamsplitter 
As shall be seen below, beamsplitters also play an important role in optical teleportation protocols. The key 
property of these devices is they allow us to easily produce linear superpositions of input states. It is in this way 
that they are able to create the correlated states necessary for quantum teleportation to work. See, for example, 
Sections 3.2 and 5.7 of Loudon [13]. 
 

 
Figure 1. A beamsplitter. 
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Classically, we relate the output electric fields to the input fields via a matrix equation 
 

 �𝐸𝐸3
𝐸𝐸4
� = �𝑅𝑅31 𝑇𝑇32

𝑇𝑇41 𝑅𝑅42
��𝐸𝐸1
𝐸𝐸2
� (3.36) 

 

showing that the output fields are linearly related to the input fields, with weights given by the constants 𝑅𝑅31/𝑅𝑅42 
and 𝑇𝑇32/𝑇𝑇41 – these are the reflection and transmission coefficients respectively, which may be complex. 
 
We next assume the beamsplitter to be lossless – i.e., energy is conserved between the input and output fields: 
 

 |𝐸𝐸1|2 + |𝐸𝐸2|2 = |𝐸𝐸3|2 + |𝐸𝐸4|2 (3.37) 
 

From these last two equations, we can derive: 
 

 |𝑅𝑅31|2 + |𝑇𝑇41|2 = 1 (3.38) 
 

 |𝑅𝑅42|2 + |𝑇𝑇32|2 = 1 (3.39) 
 

 𝑅𝑅31𝑇𝑇32
∗ + 𝑇𝑇41𝑅𝑅42

∗ = 0 (3.40) 
 

We also get the result 
 |𝑅𝑅31| = |𝑅𝑅42|, |𝑇𝑇32| = |𝑇𝑇41| (3.41) 
 

i.e. that the complex numbers 𝑅𝑅31/𝑅𝑅42 and 𝑇𝑇32/𝑇𝑇41 have equal amplitudes. 
 
The above results are quite general. We simplify by taking the matrix elements of the above to be symmetric [13]; 
that is, 𝑅𝑅31 and 𝑅𝑅42 are assumed to have equal (complex) phases, the value of which is 𝜙𝜙𝑅𝑅  
(they already have equal amplitudes due to Eq. (3.41)), and likewise for  𝑇𝑇32 and 𝑇𝑇41 (with equal phases 𝜙𝜙𝑇𝑇). We 
then have, using Eqs. (3.38), (3.39) and (3.40): 
 

 |𝑅𝑅|2 + |𝑇𝑇|2 = 1 (3.42) 
 

 𝑅𝑅𝑇𝑇∗ + 𝑇𝑇𝑅𝑅∗ = 0 (3.43) 
 

where 𝑅𝑅 = |𝑅𝑅31| = |𝑅𝑅42| and 𝑇𝑇 = |𝑇𝑇32| = |𝑇𝑇41|. 
A final simplification occurs when the above is used to describe a 50/50 beamsplitter – this is one for which 𝑅𝑅 
and 𝑇𝑇 have equal magnitudes: 
 |𝑅𝑅| =

1
√2

, |𝑇𝑇| =
1
√2

 (3.44) 
 

whilst the phases 𝜙𝜙𝑅𝑅 and 𝜙𝜙𝑇𝑇  differ by 𝑖𝑖/2:  𝜙𝜙𝑅𝑅 − 𝜙𝜙𝑇𝑇 = 𝑖𝑖
2
. 

In fact, we will only be considering beamsplitters of this type in this report. 
 
 
From a quantum optics perspective, the input fields have corresponding annihilation operators 𝑎𝑎�1 and 𝑎𝑎�2, and 
output operators 𝑎𝑎�3 and 𝑎𝑎�4, as seen in the diagram. These take the place of the electric fields in Eq. (3.36): 
 

 �𝑎𝑎�3
𝑎𝑎�4
� = �𝑅𝑅31 𝑇𝑇32

𝑇𝑇41 𝑅𝑅42
��𝑎𝑎�1
𝑎𝑎�2
� (3.45) 

 

In the symmetric case described above, we have 𝑎𝑎�3 = 𝑅𝑅𝑎𝑎�1 + 𝑇𝑇𝑎𝑎�2 and 𝑎𝑎�4 = 𝑇𝑇𝑎𝑎�1 + 𝑅𝑅𝑎𝑎�2. The usual boson 
commutation relations hold for the input field operators: 
 

 �𝑎𝑎�1,𝑎𝑎�1
†� = 1, �𝑎𝑎�2,𝑎𝑎�2

†� = 1 (3.46) 
 

Additionally, operators 1 and 2 are taken to be commuting. For the output field operators, we have 
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 �𝑎𝑎�3,𝑎𝑎�3
†� = � 𝑅𝑅𝑎𝑎�1 + 𝑇𝑇𝑎𝑎�2,𝑅𝑅∗𝑎𝑎�1

† + 𝑇𝑇∗𝑎𝑎�2
†� = 𝑅𝑅𝑅𝑅∗�𝑎𝑎�1,𝑎𝑎�1

†�+ 𝑇𝑇𝑇𝑇∗�𝑎𝑎�2,𝑎𝑎�2
†� = |𝑅𝑅|2 + |𝑇𝑇|2 (3.47) 

 

Likewise 
 

 �𝑎𝑎�4,𝑎𝑎�4
†� = �𝑇𝑇𝑎𝑎�1 + 𝑅𝑅𝑎𝑎�2,𝑇𝑇∗𝑎𝑎�1

† + 𝑅𝑅∗𝑎𝑎�2
†� = |𝑅𝑅|2 + |𝑇𝑇|2 (3.48) 

 

And hence, in order to have the boson commutation relations hold for the output field operators as well, and by 
requiring operators 3 and 4 to commute (in the same manner that the input operators do), we find that 
 
 |𝑅𝑅|2 + |𝑇𝑇|2 = 1 (3.49) 
 

 𝑅𝑅𝑇𝑇∗ + 𝑇𝑇𝑅𝑅∗ = 0 (3.50) 
 

which are identical to Eqs. (3.42) and (3.43) describing the classical case. 
 
In the classical case described above, energy was conserved at a lossless beamsplitter. In the quantum description, 
it might be reasonable on physical grounds for one to expect total photon numbers to be conserved at a lossless 
beamsplitter; this is indeed the case. To see, we write the number operators for the output fields in terms of 
operators for the input fields: 
 

 𝑛𝑛�3 = 𝑎𝑎�3
†𝑎𝑎�3 = �𝑅𝑅∗𝑎𝑎�1

† + 𝑇𝑇∗𝑎𝑎�2
†�(𝑅𝑅𝑎𝑎�1 + 𝑇𝑇𝑎𝑎�2) = |𝑅𝑅|2𝑎𝑎�1

†𝑎𝑎�1 + |𝑇𝑇|2𝑎𝑎�2
†𝑎𝑎�2 + 𝑅𝑅∗𝑇𝑇𝑎𝑎�1

†𝑎𝑎�2 + 𝑇𝑇∗𝑅𝑅𝑎𝑎�2
†𝑎𝑎�1 (3.51) 

 

and likewise for 𝑛𝑛�4. We then have: 
 

 𝑛𝑛�3 + 𝑛𝑛�4 = [|𝑅𝑅|2 + |𝑇𝑇|2]�𝑎𝑎�1
†𝑎𝑎�1 + 𝑎𝑎�2

†𝑎𝑎�2� + [𝑅𝑅∗𝑇𝑇 + 𝑇𝑇∗𝑅𝑅]�𝑎𝑎�1
†𝑎𝑎�2 + 𝑎𝑎�2

†𝑎𝑎�1� = 𝑛𝑛�1 + 𝑛𝑛�2 (3.52) 
 

where we have used Eqs. (3.49) and (3.50). 
 
 

3.4 Balanced Homodyne Detection 
Balanced homodyne detection is yet another essential ingredient in optical teleportation protocols. We look into 
this now. What follows is taken from Section 6.11 of Loudon [13]. 
Consider the setup below. 
 

 
Figure 2. Setup for homodyne detection. The ‘D’s are detectors. 

 

𝑎𝑎� - Signal 

𝑎𝑎�𝐿𝐿  - Local Oscillator 

 

𝑎𝑎�3 

 

𝑎𝑎�4 

 

D 

D 
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A 50/50 beamsplitter (as seen in the previous section) has two sources of light incident on it. One is a signal 
source, whose properties we wish to investigate. We associate with its field an annihilation operator 𝑎𝑎�(𝜕𝜕). The 
other is a local oscillator source, having annihilation operator 𝑎𝑎�𝐿𝐿(𝜕𝜕). We ensure that the frequency 𝜔𝜔𝐿𝐿 of the local 
oscillator matches up with that of the signal source. 
What we want to consider is the signal corresponding to the difference in intensities of the two detectors, which in 
a quantum description amounts to differences in photon numbers detected over some observation period 𝑇𝑇. The 
annihilation operators for the two output branches of the beamsplitter are as defined in the diagram. This photon 
number difference is represented by the operator 
 

 
𝑀𝑀(𝜕𝜕, 𝜏𝜏) = � �𝑎𝑎�3

†(𝜕𝜕′)𝑎𝑎�3(𝜕𝜕′)− 𝑎𝑎�4
†(𝜕𝜕′)𝑎𝑎�4(𝜕𝜕′)� 𝑑𝑑𝜕𝜕′

𝜕𝜕+𝑇𝑇

𝜕𝜕
= 𝑖𝑖 � �𝑎𝑎�†(𝜕𝜕′)𝑎𝑎�𝐿𝐿(𝜕𝜕′)− 𝑎𝑎�𝐿𝐿

†(𝜕𝜕′)𝑎𝑎�(𝜕𝜕′)� 𝑑𝑑𝜕𝜕′
𝜕𝜕+𝑇𝑇

𝜕𝜕
 (3.53) 

 

The second equality comes from using the beamsplitter relations Eq. (3.45) for the symmetric beamsplitter to 
express the output operators in terms of the input ones. The balanced homodyne photocount is just the expectation 
value of this: 〈𝑀𝑀(𝜕𝜕, 𝜏𝜏)〉. We assume for simplicity that the detection process has unit efficiency. 
 
Our general picture of the local oscillator is that it is a strong, coherent signal. We thus model it with a coherent 
state |𝛼𝛼(𝜕𝜕)〉. Let the state be initially |𝛼𝛼(0)〉 = ||𝛼𝛼|𝑒𝑒𝑖𝑖𝜃𝜃 〉, where in this last we wrote the complex number 𝛼𝛼 in 
terms of its magnitude and phase. Then, at a later time, we have |𝛼𝛼(𝜕𝜕)〉 = ||𝛼𝛼|𝑒𝑒𝑖𝑖(−𝜔𝜔𝐿𝐿𝜕𝜕+𝜃𝜃)〉. Now being a coherent 
state, this is an eigenstate of 𝑎𝑎�𝐿𝐿(𝜕𝜕′). We hence find that 
 

 
〈𝑀𝑀(𝜕𝜕, 𝜏𝜏)〉 = 𝑖𝑖|𝛼𝛼|� 〈𝑎𝑎�†(𝜕𝜕′)𝑒𝑒𝑖𝑖(−𝜔𝜔𝐿𝐿𝜕𝜕′+𝜃𝜃) − 𝑎𝑎�(𝜕𝜕′)𝑒𝑒𝑖𝑖(𝜔𝜔𝐿𝐿𝜕𝜕′−𝜃𝜃)〉𝑑𝑑𝜕𝜕′

𝜕𝜕+𝑇𝑇

𝜕𝜕
 (3.54) 

 

But now since we have chosen the local oscillator frequency to match that of the signal frequency, this last is: 
 

 
〈𝑀𝑀(𝜕𝜕, 𝜏𝜏)〉 = 𝑖𝑖|𝛼𝛼|� 〈𝑎𝑎�†𝑒𝑒𝑖𝑖(𝜃𝜃) − 𝑎𝑎�𝑒𝑒𝑖𝑖(−𝜃𝜃)〉𝑑𝑑𝜕𝜕′

𝜕𝜕+𝑇𝑇

𝜕𝜕
= 𝑖𝑖|𝛼𝛼|� 〈𝑎𝑎�† − 𝑎𝑎�〉 cos𝜃𝜃 + 𝑖𝑖〈𝑎𝑎�† + 𝑎𝑎�〉 sin𝜃𝜃 𝑑𝑑𝜕𝜕′

𝜕𝜕+𝑇𝑇

𝜕𝜕
 (3.55) 

 

once we input the time dependence of the signal creation and annihilation operators. 
Hence we see that by altering the local oscillator phase 𝜃𝜃, we are able to measure values proportional to the 
quadrature expectation values -  see Eqs. (3.23) and (3.24) defining the field quadratures. 
It may be unclear why the local oscillator needs to be a strong signal. The reason is that allowing the local 
oscillator amplitude |𝛼𝛼| to be large generally results in a large signal-to-noise ratio for the homodyne signal (i.e., 
the difference in signal between the two detectors), which is desirable. See Loudon Section 6.11 [13]. 
 
This is interesting situation. We have already seen in Section 3.2 that the field quadratures are canonically 
conjugate variables, like position and momentum. We also know that a pair of canonically conjugate variables, 
when measured appropriately, can achieve continuous variable quantum teleportation, as in the Vaidman protocol 
of Section 2.3. The balanced homodyne detector shows us that measurement of these variables can be physically 
realised in a quantum optics setup with relative ease. It is exactly this type of detection that is used to perform the 
measurements necessary in optical teleportation protocols. 
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3.5 Correlation Functions and Classification of Light 
The quantum view of light is essentially one which realises that light consists of energy quanta – photons. We’ll 
skirt over any difficulties in defining what photons actually are at present, although an excellent discussion on this 
point can be found in the Introduction of Loudon [13]. It is enough to think of them as energy quanta. This view 
isn’t at odds with the classical view of course, which is that states of light are superpositions of perfectly coherent 
waves (i.e., waves of well defined phase and amplitude). The link is made by associating photon numbers with 
light intensity. The classical coherent waves, or their superpositions, can be viewed as the average behaviour over 
many photons. However, we shall see that the converse is not true. There exist states of light, describable in terms 
of photons, that cannot be described classically (i.e., as a superposition of coherent waves). 
 
With this is mind, we now turn to look at photon statistics. Photon statistics provide us with one possible means of 
‘classifying’ light. Our benchmark for perfectly stable light will be the usual classical one of a coherent  
electromagnetic wave of unchanging and well-defined phase and amplitude. By considering a length 𝐿𝐿 of a beam 
of such light, and asking what the probability 𝑃𝑃(𝑛𝑛) of finding 𝑛𝑛 photons in it is, we find that 𝑃𝑃(𝑛𝑛) obeys a 
Poisson distribution – that is, one having standard deviation Δ𝑛𝑛 = √𝑛𝑛�, where 𝑛𝑛� is the mean number of photons in 
the length 𝐿𝐿 [10]. 
 
So a Poisson distribution pertains to light of perfectly constant intensity. One can see then, that if there are any 
intensity fluctuations in the light, we expect to obtain correspondingly larger fluctuations in photon numbers than 
√𝑛𝑛�. Accordingly, we may classify light by its photon statistics in the following manner. Light is: 
 

• Sub-poissonian if Δ𝑛𝑛 < √𝑛𝑛� 
• Poissonian if Δ𝑛𝑛 = √𝑛𝑛� 
• Super-poissonian if Δ𝑛𝑛 > √𝑛𝑛� 

 

See, for example, Chapter 5 of [10]. 
Photon statistics are useful because of the connection between photon numbers and intensity. The photon statistics 
of a state of light give us a means of comparing intensity fluctuations to those found in perfectly coherent light. 
There are many examples of super-poissonian light. One such example is blackbody radiation. A single mode of 
the radiation field of blackbody radiation has 
 

 Δ𝑛𝑛 = �𝑛𝑛� + 𝑛𝑛�2 (3.56) 
 

which is evidently super-poissonian [10]. Here we are considering photon numbers in each mode of the field, 
rather than in a beam of length 𝐿𝐿. This result was mentioned in the Introduction of this report, with respect to the 
experiment of Hanbury-Brown and Twiss. Another interesting example is that of the squeezed vacuum. For such 
a state, we find [14]: 
 

Δ𝑛𝑛 = �𝑛𝑛��1 + cosh(2𝑟𝑟)� (3.57) 
 

which is again super-poissonian when 𝑟𝑟 ≠ 0. Here 𝑟𝑟 is the squeeze parameter introduced earlier, in Section 3.2. 
Sub-poissonian photon statistics have no classical analogue, for it isn’t possible to consider electromagnetic 
waves that are more stable than the single coherent one having Poissonian statistics. 
 
 
We now move on to look at the field correlation functions. There are two that are of chief significance for light; 
these are correlations in the electric fields, and correlations in the intensity. We begin with the former. 
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Classically, the degree of first-order temporal coherence is given by [13]: 
 

 
𝑔𝑔(1)(𝜏𝜏) =

〈𝐸𝐸∗(𝜕𝜕)𝐸𝐸(𝜕𝜕 + 𝜏𝜏)〉
〈𝐸𝐸∗(𝜕𝜕)𝐸𝐸(𝜕𝜕)〉

 (3.58) 
 

The denominator is solely a normalisation convention, and all physical significance is in the numerator – we are 
considering the correlation between the electric field at time 𝜕𝜕, and at a later time 𝜕𝜕 + 𝜏𝜏. Implicitly, we are talking 
about stationary states here, where the value of 𝑔𝑔(1) depends on the time difference 𝜏𝜏 only, not on the 
measurement time 𝜕𝜕. The average value 〈… 〉 is then taken to be an integral over a long time interval 𝑇𝑇, normalised 
by the length of that interval.  
 
What physical meaning are we to derive from the value of 𝑔𝑔(1)(𝜏𝜏)? Well, evidently 𝑔𝑔(1)(0) = 1 in all cases. The 
classical picture of a monochromatic, perfectly coherent light source is, as mentioned, one with perfectly stable 
amplitude in phase. For such light, 𝑔𝑔(1)(𝜏𝜏) = 1 for all times 𝜏𝜏. 
This is not the case for most light sources, which are realistically coherent only over a finite period of time, 
known as the coherence time 𝜏𝜏𝑐𝑐 . For such sources, 𝑔𝑔(1)(𝜏𝜏) is close to 1 on timescales comparable to 𝜏𝜏𝑐𝑐 , however 
in the long run, it decays to 0 when 𝜏𝜏 ≫ 𝜏𝜏𝑐𝑐 , corresponding to the fields 𝐸𝐸(𝜕𝜕) and 𝐸𝐸(𝜕𝜕 + 𝜏𝜏) being uncorrelated. So 
the ‘closeness’ of 𝑔𝑔(1)(𝜏𝜏) to 1 or 0 measures the light’s coherence, or incoherence (in electric fields) respectively, 
over the time interval 𝜏𝜏. 
 
A quantity that shall be of interest to us is the Fourier transform of the first-order correlation function, in the 
variable 𝜏𝜏. It is shown in Section 3.5 of Loudon [13] that the Fourier transform of the first-order correlation 
function gives us the normalised power spectral density of the light. This connection is a form of the Wiener-
Khintchine Theorem. 
 
 
The next correlation function that is important is the degree of second-order temporal coherence, given by [13]: 
 

 
𝑔𝑔(2)(𝜏𝜏) =

〈𝐼𝐼�(𝜕𝜕)𝐼𝐼(̅𝜕𝜕 + 𝜏𝜏)〉
〈𝐼𝐼(̅𝜕𝜕)〉2 =

〈𝐸𝐸∗(𝜕𝜕)𝐸𝐸∗(𝜕𝜕 + 𝜏𝜏)𝐸𝐸(𝜕𝜕 + 𝜏𝜏)𝐸𝐸(𝜕𝜕)〉
〈𝐸𝐸∗(𝜕𝜕)𝐸𝐸(𝜕𝜕)〉2  (3.59) 

 

Once more, the denominator is a normalisation constant. To be clear, note that 𝐼𝐼 ̅refers to the long-time average 
light intensity in the manner 
 𝐼𝐼(̅𝜕𝜕) =

1
2
𝜖𝜖0𝑐𝑐|𝐸𝐸(𝜕𝜕)|2 (3.60) 

 

That is, 𝐼𝐼 ̅is formed by fixing 𝜕𝜕 and averaging over many cycles of the field having (fixed) electric field 
magnitude|𝐸𝐸(𝜕𝜕)|. In contrast, the angular brackets 〈… 〉 refer to an average over 𝜕𝜕, where this field magnitude may 
vary. 
 
Again, we ask what physical meaning can be derived from the value of 𝑔𝑔(2)(𝜏𝜏). With perfectly coherent light as 
our benchmark, we find that 𝑔𝑔(2)(𝜏𝜏) = 1 for all values of 𝜏𝜏, because such light has no variation in time of 
intensity. On the other hand, consider light that does have some variation in intensity. We write the intensity as 
 𝐼𝐼(̅𝜕𝜕) = 〈𝐼𝐼〉̅ + Δ𝐼𝐼(̅𝜕𝜕) (3.61) 
 

i.e., as a fixed mean value plus some fluctuation. It follows that 
 

 〈𝐼𝐼(̅𝜕𝜕)𝐼𝐼(̅𝜕𝜕 + 𝜏𝜏)〉 = 〈𝐼𝐼〉̅2 + 〈Δ𝐼𝐼(̅𝜕𝜕)Δ𝐼𝐼(̅𝜕𝜕 + 𝜏𝜏)〉 (3.62) 
 

where we note that the fluctuations Δ𝐼𝐼(̅𝜕𝜕) and Δ𝐼𝐼(̅𝜕𝜕 + 𝜏𝜏) have expectation value zero. Hence: 
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𝑔𝑔(2)(0) =

〈𝐼𝐼〉̅2 + 〈Δ𝐼𝐼(̅0)2〉
〈𝐼𝐼〉̅2 ≥ 1 (3.63) 

 

So light that isn’t coherent has a 𝑔𝑔(2)(0) larger than that of coherent light (i.e. 1). Note that this isn’t necessarily 
true in a quantum description of light. 
Classically, we also find that 𝑔𝑔(2)(𝜏𝜏) has the following property [13]: 
 

 0 ≤ 𝑔𝑔(2)(𝜏𝜏) ≤ 𝑔𝑔(2)(0) (3.64) 
 

for 𝜏𝜏 ≠ 0. That is, the second order correlation function never exceeds its value at 𝜏𝜏 = 0. 
 
 
Now, we find that the inital value 𝑔𝑔(2)(0) of the second order correlation function gives us another way of 
classifying light, instead of using photon statistics. We call the light: 
 

• Bunched, if 𝑔𝑔(2)(0) > 1 
• Coherent, if 𝑔𝑔(2)(0) = 1 
• Antibunched, if 𝑔𝑔(2)(0) < 1 

 

Once again, see that antibunched light is not possible in a classical description of light, where the inequality given 
above (Eq. (3.63)) must be obeyed. We note in passing that the definition above for antibunched light is not the 
only one possible, but it is the definition used in this report. We have effectively defined antibunched light as light 
violating the classical inequality Eq. (3.63). Some authors (for example Loudon [13]) consider antibunched light 
to be light violating the other classical inequality above, Eq. (3.64). These two definitions are not equivalent. 
This 3-fold classification of light is not equivalent to the 3-fold one found using photon statistics [10]. However, 
we shall shortly introduce a parallel between the second-order correlation function and photon distributions. 
 
We haven’t yet mentioned anything about a quantum description of light, in particular, the quantised nature of the 
electric field seen previously hasn’t yet been brought up. One may ask how the correlation functions Eqs. (3.58) 
and (3.59) change in the quantum picture. In fact, there is not much change in their form, and our interpretations 
of their values remain the same. We simply need to replace 𝐸𝐸 with the positive frequency part 𝐸𝐸+ of electric field 
operator (see Eq. (3.21)), which we saw when the field was quantised, and 𝐸𝐸∗ with the Hermitian conjugate of this 
operator, namely 𝐸𝐸−. 
There is one slight caveat here though. Classically, the quantities 𝐸𝐸 and 𝐸𝐸∗ can be multiplied in any order – of 
course, they commute. The operators 𝐸𝐸+ and 𝐸𝐸− don’t have this property, for they contain boson creation and 
annihilation operators, so the question arises as to what order we should write these operators down. In fact, we 
provided the correct order when we defined the correlation functions above. This particular order is known as 
normal ordering of the operators. Normal ordering of a group of operators is performed as follows: 
 

• Creation operators should be written to the left of any annihilation operators. 
• Where two creation operators are in a product, but at different times, the later time operator should appear 

to the right of the earlier time one. 
• For two annihilation operators in a product at different times, the later time operator should appear to the 

left of the earlier time one. 
 

We use the symbols : : when a normally ordered operator product is to be explicitly indicated. In writing down the 
second order correlation function, we don’t generally bother to include them, for if we take 𝜏𝜏 > 0 then the 
numerator as written in Eq. (3.59) is always normally ordered. Note that the definition of the second order 
correlation function implies the symmetry 
 

 𝑔𝑔(2)(𝜏𝜏) = 𝑔𝑔(2)(−𝜏𝜏) (3.65) 
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so we need only consider 𝜏𝜏 > 0 anyway. 
 
It is interesting to note that in spite of the similarity to the classical picture, going over to the quantum description 
means that the classical inequalities 
 

 𝑔𝑔(2)(𝜏𝜏) ≤ 𝑔𝑔(2)(0) (3.66) 
 

 𝑔𝑔(2)(0) ≥ 1 (3.67) 
 

are not necessarily true at all. It is in this way that a quantum description of light can access states not describable 
by a classical picture. 
 
A small speciality is to be made here with respect to our correlation functions. All of the correlations we will end 
up considering (for example, in the next chapter) are of the steady state type, in the sense that a long time limit is 
taken. We use a subscript 𝑠𝑠𝑠𝑠 notation to indicate this: 
 

 〈𝐴𝐴�𝜕𝜕 ′�𝐵𝐵�𝜕𝜕 ′′�〉𝑠𝑠𝑠𝑠 = lim
𝑇𝑇⟶∞

〈𝐴𝐴(𝑇𝑇 + 𝜕𝜕′)𝐵𝐵�𝑇𝑇 + 𝜕𝜕 ′′�〉 (3.68) 
 

So, for example, the first order correlation function in a quantum description in this long time limit would be 
written 
 

𝑔𝑔(1)(𝜏𝜏) =
〈𝐸𝐸−(𝜏𝜏)𝐸𝐸+(0)〉𝑠𝑠𝑠𝑠
〈𝐸𝐸−(0)𝐸𝐸+(0)〉𝑠𝑠𝑠𝑠

 (3.69) 
 

Taking such a long-time limit means that correlations 〈… 〉𝑠𝑠𝑠𝑠  are only ever dependent on time differences. 
 
 
 
Photon Antibunching 
We work only with steady-state quantities (in the sense of long-time limits and Eq. (3.68)) in what follows, as 
signified by the subscript 𝑠𝑠𝑠𝑠. 
The beauty of photon statistics is that they allow us to see what is happening with variations in the light intensity, 
due to the direct link between photon numbers and intensity. The correlation functions defined above may not 
afford such an easy physical interpretation – in particular, we are referring to the value 𝑔𝑔𝑠𝑠𝑠𝑠

(2)(0) which we stated 
was an alternative way of classifying light. As we noted before, the photon statistics and second order correlation 
function classifications of light aren’t necessarily equivalent. It is true that our antibunching condition 𝑔𝑔𝑠𝑠𝑠𝑠

(2)(0) <
1 implies sub-Poissonion photon statistics for short counting times [8]. However, these conditions are not 
equivalent in general. Here we explore then, what implications the antibunching inequality 𝑔𝑔𝑠𝑠𝑠𝑠

(2)(0) < 1 has. 
 
The meaning that 𝑔𝑔𝑠𝑠𝑠𝑠

(2)(0) < 1 can be found by looking at an associated quantity – the waiting time distribution 
𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏) as defined in [8]. The waiting time distribution gives the probability distribution governing how the time 
intervals between photon detection pulses in a detector are distributed. That is, 𝑤𝑤(𝜏𝜏) is the probability that a given 
time interval between two sequential photopulses is of length 𝜏𝜏. We introduce this because we have the important 
equivalence [8]: 
 

 𝑔𝑔𝑠𝑠𝑠𝑠
(2)(0) < 1 ⟺𝑤𝑤𝑠𝑠𝑠𝑠(0) < 𝑤𝑤𝑠𝑠𝑠𝑠(0)Coherent (3.70) 

 

That is, antibunched light has a reduced probability of having successive photon counts (i.e., ones with zero wait 
time between them) than does coherent light of the same intensity. Loosely speaking, this implies an inability of 
the photons to ‘bunch’ – i.e. become very close together – hence the name ‘antibunching’. 
The field of resonance fluorescence is an example of a state of light satisfying our antibunching condition. We 
have plotted 𝑔𝑔(2)(𝜏𝜏) for the resonance fluorescence field in Section 5.3. 
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It is shown in [8] that, for perfect collection and detection efficiencies, the waiting time distribution for resonance 
fluorescence is given by 
 

 
𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏) = 𝛾𝛾exp �−

𝛾𝛾𝜏𝜏
2
�

𝑌𝑌2

2𝑌𝑌2 − 1
�1 − cosh�𝛿𝛿 ′𝜏𝜏�� 

 
(3.71) 

 

On the other hand, coherent light of the same intensity has a waiting time distribution: 
 

 
𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏) =

𝛾𝛾
2�

𝑌𝑌2

1 + 𝑌𝑌2� exp�−
𝛾𝛾
2�

𝑌𝑌2

1 + 𝑌𝑌2�𝜏𝜏� (3.72) 
 

 
Being probability distributions, we have the usual normalisation condition in all cases: 
 

 
� 𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏)𝑑𝑑𝜏𝜏 = 1
∞

0
 (3.73) 

 

where we note that 𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏) = 0 for 𝜏𝜏 < 0. We sample from these probability distributions a series of photopulse 
interval times2

 
. These are shown below. 

 

 
Figure 3. A series of photopulses from the coherent waiting time distribution above. We have taken 𝑌𝑌2 = 1 and 𝛾𝛾 = 1. 
 
 
 

 
Figure 4. A series of photopulses from a resonance fluorescence waiting time distribution with 𝑌𝑌2 = 1 and 𝛾𝛾 = 1. 
 
 
The meaning of ‘antibunched’ in quite easily visualised here. One sees that that the spacing of photopulse 
intervals in the antibunched photopulse sequence is considerably more regular than that of the coherent source. In 
particular, it lacks photopulses that are very close together. 
 
 
 

                                                           
2 Sampling can be done with the use of the cumulative density functions 𝑊𝑊𝑠𝑠𝑠𝑠(𝜕𝜕) = ∫ 𝑤𝑤𝑠𝑠𝑠𝑠(𝜏𝜏)𝑑𝑑𝜏𝜏𝜕𝜕

−∞ ; this is the method we have 

used. These are 𝑊𝑊𝑠𝑠𝑠𝑠(𝜕𝜕) = 𝛾𝛾 𝑌𝑌2

2𝑌𝑌2−1
�2
𝛾𝛾
�1 − exp �− 𝛾𝛾𝜕𝜕

2
�� + 1

2𝛿𝛿 ′2−𝛾𝛾
2

2

�𝛾𝛾 − exp �− 𝛾𝛾𝜕𝜕
2
� �2𝛿𝛿 ′𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝛿𝛿′𝜕𝜕) + 𝛾𝛾cosh(𝛿𝛿′𝜕𝜕)��� for 

resonance fluorescence, and 𝑊𝑊𝑠𝑠𝑠𝑠(𝜕𝜕) = 1 − exp �− 𝛾𝛾
2
� 𝑌𝑌2

1+𝑌𝑌2� 𝜕𝜕� for coherent light. 
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Chapter 4 

Correlation Functions 
 
 
 
Certain correlation functions are needed in order to quantitatively implement the Furusawa protocol [2]. We 
present these now. 

4.1 For squeezed vacuum fields 
We have met squeezed vacuum states in Section 3.2. There are two types that we are interested in: 
 

• Vacuum states squeezed in their 𝑋𝑋 quadrature (i.e., with reduced fluctuations in that quadrature), the 
electric field of which we write as ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 . 

• Vacuum states squeezed in their 𝑌𝑌 quadrature, whose electric field we write as ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 . 
 

There is a slight change in notation here – the symbol ℰ in fact refers only to 𝐸𝐸+, the positive-frequency 
component of the electric field in Eq. (3.21). This should be noted in all that follows. 
 
We then have the following correlation functions [7]: 
 

 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠 =

𝛾𝛾𝑠𝑠
4
�

𝜆𝜆
1 − 𝜆𝜆

𝑒𝑒
−𝛾𝛾𝑠𝑠

2 (1−𝜆𝜆)|𝜏𝜏| −
𝜆𝜆

1 + 𝜆𝜆
𝑒𝑒
−𝛾𝛾𝑠𝑠

2 (1+𝜆𝜆)|𝜏𝜏|� (4.01) 
 

 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 (0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠  (4.02) 
 

 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (0)〉𝑠𝑠𝑠𝑠 =
−𝛾𝛾𝑠𝑠

4
�

𝜆𝜆
1 − 𝜆𝜆

𝑒𝑒
−𝛾𝛾𝑠𝑠

2 (1−𝜆𝜆)|𝜏𝜏| +
𝜆𝜆

1 + 𝜆𝜆
𝑒𝑒
−𝛾𝛾𝑠𝑠

2 (1+𝜆𝜆)|𝜏𝜏|� (4.03) 
 

 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦

† (0)〉𝑠𝑠𝑠𝑠 = −〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (0)〉𝑠𝑠𝑠𝑠  (4.04) 
 

Here 𝛾𝛾𝑠𝑠  is the squeezing bandwidth, and 0 ≤ 𝜆𝜆 < 1 is a parameter that controls the degree of squeezing – it has a 
similar role to the parameter 𝑟𝑟 we introduced for squeezed states. As 𝜆𝜆 ⟶ 1 the squeezing becomes perfect. 
These correlation functions are valid for all −∞ < 𝜏𝜏 < ∞. 
 
The correlation functions given here have in fact been derived for a specific quantum-optical device, known as an 
optical parametric oscillator. Such a device consists of a ‘pump beam’ directed onto a non-linear crystal, which is 
capable of converting this into squeezed vacuum states. We don’t provide a description of the optical parametric 
oscillator here, but note that this is one important method by which squeezed vacuum states are generated in 
physical teleportation setups. This is why the correlation functions are expressed in terms of the parameters 𝜆𝜆 and 
𝛾𝛾𝑠𝑠 , rather than parameters like 𝑟𝑟 and 𝜙𝜙 seen in Section 3.2. 
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For the optical teleportation protocol of Furusawa et al. that we will be considering closely, the following linear 
combinations of the fields ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  and ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦  will also be of importance: 
 
 ℰ𝐴𝐴 =

1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 + ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 � (4.05) 

 
 ℰ𝐵𝐵 =

1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 − ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 � (4.06) 

 
We may relate correlations between the fields ℰ𝐴𝐴 and ℰ𝐵𝐵  back to the correlations between ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  and ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 ; for 
example, we have: 
 

 〈ℰ𝐴𝐴(𝜏𝜏)ℰ𝐴𝐴
†(0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠 + 𝛿𝛿(𝜏𝜏) (4.07) 
 

 〈ℰ𝐴𝐴(𝜏𝜏)ℰ𝐵𝐵(0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (0)〉𝑠𝑠𝑠𝑠  (4.08) 
 

 〈ℰ𝐵𝐵
† (𝜏𝜏)ℰ𝐴𝐴

†(0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (0)〉𝑠𝑠𝑠𝑠 (4.09) 
 

 〈ℰ𝐵𝐵
† (𝜏𝜏)ℰ𝐵𝐵(0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠 (4.10) 
 

These are just computed directly from the definitions of ℰ𝐴𝐴 and ℰ𝐵𝐵  in Eqs. (4.05) and (4.06), and the fact that all 
steady-state correlations 〈… 〉𝑠𝑠𝑠𝑠  depend only on time differences. To illustrate, we show Eq. (4.08): 
 

〈ℰ𝐴𝐴(𝜏𝜏)ℰ𝐵𝐵(0)〉𝑠𝑠𝑠𝑠 = 〈
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏) + ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 (𝜏𝜏)�
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)− ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 (0)�〉𝑠𝑠𝑠𝑠  

=
1
2
〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠 +

1
2
〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦(𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 (0)〉𝑠𝑠𝑠𝑠  

= 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (0)〉𝑠𝑠𝑠𝑠 
= 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (0)〉𝑠𝑠𝑠𝑠 

 

The second inequality follows from the assumption that the fields ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  and ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦  are uncorrelated; hence we 
have 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 (0)〉𝑠𝑠𝑠𝑠 = 0, and so on. The third equality comes from Eq. (4.02). 
The forth equality comes from the steady state assumption and from the fact that correlation functions are even in 
𝜏𝜏; explicitly: 
 
〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 〉 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 〉∗  (because the correlation functions are real) 
〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 〉 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (𝜏𝜏)〉. 

〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 〉 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† (−𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† 〉  (by the stationary condition) 
〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 〉 = 〈ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥

† (𝜏𝜏)ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥
† 〉  (since the correlation functions are even in 𝜏𝜏) 

 
The appearance of the delta function in Eq. (4.07) is due to the antinormal ordering of the operators in that 
correlation; exchanging their order costs a delta function which can be thought of as arising due to vacuum noise 
[7]. 
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4.2 For resonance fluorescence 
Testing of the central teleportation protocol of this report will, among other means, be done by teleporting the 
scattered field of resonance fluorescence. This field is of historical importance; it was in 1975 that H.J. 
Carmichael and D.F. Walls first predicted that photon antibunching (as in Section 3.5) would be observed in such 
a system, thus providing a physically realisable means for observing this unique quantum phenomenon. This was 
in fact precisely the system used by H.J. Kimble et al. in 1977, mentioned in Section 1.1. 
We outline the quantum description of this system here. What follows is taken from [8]. 
It is possible to quote directly from [8] the correlation functions for the field of resonance fluorescence. However, 
we would also like to obtain correlation functions for the 𝑋𝑋 and 𝑌𝑌 quadratures of this field. Doing so requires a 
minor modification of the calculation giving the field correlation functions, but it is necessary to trace the 
calculation through properly in order to do this. We choose here to start essentially from the beginning. 
 
Our model of the atom is as a two-level system, having states |1〉 and |2〉 with energies 𝐸𝐸1 and 𝐸𝐸2. The atomic 
Hamiltonian is 
 

 𝐻𝐻𝐴𝐴 =
1
2
ℏ𝜔𝜔𝐴𝐴(|2〉〈2|− |1〉〈1|) ≡

1
2
ℏ𝜔𝜔𝐴𝐴𝜎𝜎𝑧𝑧 (4.11) 

 

which takes this form due to the fact that we have shifted the zero of energy to be exactly halfway between 𝐸𝐸1 and 
𝐸𝐸2. We also introduce the atomic raising and lowering operators 
 

 𝜎𝜎+ = |2〉〈1|, 𝜎𝜎− = |1〉〈2| (4.12) 
 

The use of 𝜎𝜎 to denote these operators here is not accidental; the three operators 𝜎𝜎𝑧𝑧 , 𝜎𝜎+ and 𝜎𝜎− have analogies to 
the usual three Pauli spin matrices - hence they are sometimes referred to as pseudo-spin operators. 
The expectation values of these operators relate to the elements of the system density operator 𝜌𝜌: 
 

 〈𝜎𝜎𝑧𝑧〉 = Tr(𝜌𝜌𝜎𝜎𝑧𝑧) = 〈2|𝜌𝜌|2〉 − 〈1|𝜌𝜌|1〉 = 𝜌𝜌22 − 𝜌𝜌11 (4.13) 
 

 〈𝜎𝜎+〉 = 〈1|𝜌𝜌|2〉 = 𝜌𝜌12 (4.14) 
 

 〈𝜎𝜎−〉 = 〈2|𝜌𝜌|1〉 = 𝜌𝜌21 (4.15) 
 

The resonance fluorescence system consists of a two-level atom excited by a strong incident laser mode whose 
energy matches the energy difference 𝐸𝐸2 − 𝐸𝐸1 between the two levels (i.e., is on resonance). The treatment of this 
system is as a quantum open system. This works as follows. We need to allow our system (i.e., the two level atom 
and laser) to interact with some form of external environment. This is done by considering the system 𝑆𝑆 to be 
coupled to a large environmental system 𝑅𝑅 (also called a reservoir) by some interaction. We describe the situation 
with a total Hamiltonian 
 

 𝐻𝐻 = 𝐻𝐻𝑆𝑆 + 𝐻𝐻𝑅𝑅 + 𝐻𝐻𝑆𝑆𝑅𝑅  (4.16) 
 

where 𝐻𝐻𝑆𝑆 and 𝐻𝐻𝑅𝑅 are the system and reservoir Hamiltonians, and 𝐻𝐻𝑆𝑆𝑅𝑅  describes the interaction. 
 
We are interested in the system dynamics, and not that of the reservoir. The total system has some density 
operator, which we call 𝜒𝜒, which obeys the differential equation 
 

 𝑑𝑑𝜒𝜒
𝑑𝑑𝜕𝜕

=
1
𝑖𝑖ℏ

[𝐻𝐻,𝜒𝜒] (4.17) 
 

with 𝐻𝐻 given by Eq. (4.16). From 𝜒𝜒 we can, as usual, calculate operator expectation values and the like. But for 
operators that act only in the portion 𝑆𝑆 of the total system, these quantities need only be calculated with the 
reduced density operator, which we met in Section 2.2.2: 
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 𝜌𝜌(𝜕𝜕) = Tr𝑅𝑅[𝜒𝜒(𝜕𝜕)] (4.18) 
 

By performing the trace here over the reservoir states appropriately, we can derive a differential equation 
describing the time evolution of 𝜌𝜌 only, without having to find 𝜒𝜒. This is known as the master equation for the 
system 𝑆𝑆. 
 
In the case of resonance fluorescence, we have a system Hamiltonian: 
 

 𝐻𝐻𝑠𝑠 =
1
2
ℏ𝜔𝜔𝐴𝐴𝜎𝜎𝑧𝑧 − 𝑑𝑑𝐸𝐸�𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎+ + 𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎−� (4.19) 

 

The first term here is the 2-level atomic Hamiltonian seen in Eq. (4.11). The second term is due to the laser-atom 
interaction. We have treated the laser electric field classically, with this explicitly time-dependent Hamiltonian. 
The laser field at the atom side was taken to be 𝑬𝑬 = �̂�𝑒2𝐸𝐸cos(𝜔𝜔𝐴𝐴𝜕𝜕 + 𝜙𝜙), and the interaction energy is then –𝒅𝒅.𝑬𝑬, 
written down in the electric dipole and rotating wave approximations. 
 
The reservoir with which our system interacts is simply the many modes of the electromagnetic field, whose 
Hamiltonian we write 
 

 𝐻𝐻𝑅𝑅 = �ℏ𝜔𝜔𝑘𝑘𝑟𝑟𝒌𝒌,𝜆𝜆
† 𝑟𝑟𝒌𝒌,𝜆𝜆

𝒌𝒌,𝜆𝜆

 (4.20) 
 

where the operators 𝑟𝑟 and 𝑟𝑟†  are precisely the photon annihilation and creation operators as seen before, for the 
given mode 𝒌𝒌, 𝜆𝜆. 
The system-resevoir interaction Hamiltonian is given by 
 

 𝐻𝐻𝑆𝑆𝑅𝑅 = �ℏ
𝒌𝒌,𝜆𝜆

�𝜅𝜅𝒌𝒌,𝜆𝜆
∗ 𝑟𝑟𝒌𝒌,𝜆𝜆

† 𝜎𝜎− + 𝜅𝜅𝒌𝒌,𝜆𝜆𝑟𝑟𝒌𝒌,𝜆𝜆𝜎𝜎+� (4.21) 
 

where the 𝜅𝜅 are coupling constants that dictate the strength of coupling to each mode 𝒌𝒌, 𝜆𝜆. 
 
From these Hamiltonia, it is possible to perform the reservoir trace explained above. We just quote here the result 
- the master equation for resonance fluorescence is given by: 
 

 𝑑𝑑𝜌𝜌
𝑑𝑑𝜕𝜕

= −
𝑖𝑖𝜔𝜔𝐴𝐴

2
[𝜎𝜎𝑧𝑧 ,𝜌𝜌] +

𝑖𝑖Ω
2 �𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎+ + 𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎−,𝜌𝜌� +

𝛾𝛾
2

(2𝜎𝜎−𝜌𝜌𝜎𝜎+ − 𝜎𝜎+𝜎𝜎−𝜌𝜌 − 𝜌𝜌𝜎𝜎+𝜎𝜎−) (4.22) 
 

Here 𝛾𝛾 is the Einstein A coefficient for the two-level atom, and Ω the Rabi frequency (which effectively sets the 
strength of the driving laser). 
A  full derivation of this can be found in [8]. It is quite common to abbreviate the master equation as 
 

 𝑑𝑑𝜌𝜌
𝑑𝑑𝜕𝜕

= ℒ𝜌𝜌 (4.23) 
 

where the operator ℒ is known as the Liouvillian. 
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By sandwiching the master equation between states 〈1| … |2〉, 〈2| … |1〉 and the like, and making use of Eqs. 
(4.13), (4.14) and (4.15), we can obtain time evolution equations for the operator expectation values: 
 

 𝑑𝑑
𝑑𝑑𝜕𝜕
〈𝜎𝜎+〉 = 𝑖𝑖𝜔𝜔𝐴𝐴〈𝜎𝜎+〉+ 𝑖𝑖

Ω
2
𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕〈𝜎𝜎𝑧𝑧〉 −

𝛾𝛾
2
〈𝜎𝜎+〉 (4.24) 

 

 𝑑𝑑
𝑑𝑑𝜕𝜕
〈𝜎𝜎−〉 = −𝑖𝑖𝜔𝜔𝐴𝐴〈𝜎𝜎−〉+ 𝑖𝑖

Ω
2
𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕〈𝜎𝜎𝑧𝑧〉 −

𝛾𝛾
2
〈𝜎𝜎−〉 (4.25) 

 

 𝑑𝑑
𝑑𝑑𝜕𝜕
〈𝜎𝜎𝑧𝑧〉 = 𝑖𝑖Ω𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕〈𝜎𝜎+〉 − 𝑖𝑖Ω𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕〈𝜎𝜎−〉+ 𝛾𝛾(〈𝜎𝜎𝑧𝑧〉 + 1) (4.26) 

 

For the system at hand, these are the Optical Bloch Equations. We can remove the explicit dependence on time by 
defining new operators: 
 

 〈𝜎𝜎�+〉 = 〈𝜎𝜎+〉𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕 , 〈𝜎𝜎�−〉 = 〈𝜎𝜎−〉𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕  (4.27) 
 

The operator 𝜎𝜎𝑧𝑧  is left unchanged. Then we decompose these operators into a steady-state value, plus a fluctuating 
part: 
 

 𝜎𝜎�+ = Δ𝜎𝜎�+ + 〈𝜎𝜎�+〉𝑠𝑠𝑠𝑠 , 𝜎𝜎�− = Δ𝜎𝜎�− + 〈𝜎𝜎�−〉𝑠𝑠𝑠𝑠 , 𝜎𝜎𝑧𝑧 = Δ𝜎𝜎𝑧𝑧 + 〈𝜎𝜎𝑧𝑧〉𝑠𝑠𝑠𝑠  (4.28) 
 

much in the same way that was done in Section 2.2.3. 
Now it turns out that we are interested in the operator correlation function 〈𝜎𝜎�+(0)𝜎𝜎�−(𝜏𝜏)〉𝑠𝑠𝑠𝑠 . Note that as written, 
this is an atomic correlation function (involving atomic operators) rather than one for the field. However the two 
are certainly linked, as we shall see in Chapter 5. With the decomposition of Eq. (4.28), this correlation function 
will consist of two parts: 
 

• 〈𝜎𝜎�+〉𝑠𝑠𝑠𝑠〈𝜎𝜎�−〉𝑠𝑠𝑠𝑠, independent of 𝜏𝜏 
• 〈Δ𝜎𝜎�+(0)Δ𝜎𝜎�−(𝜏𝜏)〉𝑠𝑠𝑠𝑠 , dependent on 𝜏𝜏 

 

Upon taking the Fourier Transform, this first part will give a delta function – the coherent spectrum – whilst the 
remaining term gives the incoherent spectrum. The incoherent spectrum is the part we are interested in. We now 
need equations of motion for the Δ operators; they follow immediately from the Optical Bloch Equations Eqs. 
(4.24), (4.25) and (4.26): 
 

 

𝑑𝑑
𝑑𝑑𝜕𝜕
�
〈Δ𝜎𝜎�−〉
〈Δ𝜎𝜎�+〉
〈Δ𝜎𝜎𝑧𝑧〉

� =

⎝

⎜
⎜
⎜
⎛
−
𝛾𝛾
2

0 −𝑖𝑖
𝑌𝑌𝛾𝛾

2√2

0 −
𝛾𝛾
2

𝑖𝑖
𝑌𝑌𝛾𝛾

2√2

𝑖𝑖
𝑌𝑌𝛾𝛾
√2

𝑖𝑖
𝑌𝑌𝛾𝛾
√2

−𝛾𝛾
⎠

⎟
⎟
⎟
⎞
�
〈Δ𝜎𝜎�−〉
〈Δ𝜎𝜎�+〉
〈Δ𝜎𝜎𝑧𝑧〉

� ≡ 𝑴𝑴�
〈Δ𝜎𝜎�−〉
〈Δ𝜎𝜎�+〉
〈Δ𝜎𝜎𝑧𝑧〉

� ≡ 𝑴𝑴〈Δ𝒔𝒔〉 (4.29) 

 
In dealing with the resonance fluorescence spectrum, it is convenient to define the parameter 
 

 
𝑌𝑌 =

√2Ω
𝛾𝛾

 (4.30) 
 

This has been used in writing Eq. (4.29), note. 
 
Now Eq. (4.29) shows us that, for the set of operators Δ𝜎𝜎�−, Δ𝜎𝜎�+ and Δ𝜎𝜎𝑧𝑧 , the time rate-of-change of operator 
expectation values are linear in the operator expectation values themselves. Such a situation is amenable to 
analysis under a useful theorem known as the quantum regression theorem. 
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The Quantum Regression Theorem 
We give the statement of this theorem as seen in [8]. Suppose there exists a set of system operators 𝐴𝐴𝜇𝜇 , 𝜇𝜇 =
1,2, …, which are complete. By this, we mean to say that for an arbitrary operator 𝑂𝑂, we have the following: 
 

 TrS �𝐴𝐴𝜇𝜇 (ℒ𝑂𝑂)� = �𝑀𝑀𝜇𝜇𝜆𝜆
𝜆𝜆

TrS(𝐴𝐴𝜆𝜆𝑂𝑂) (4.31) 
 

for each 𝜇𝜇, where ℒ is the master equation Liouvillian of Eq. (4.23). The 𝑀𝑀𝜇𝜇𝜆𝜆  are constants. It follows that these 
complete operators satisfy the following: 
 

 𝑑𝑑
𝑑𝑑𝜕𝜕
〈𝑨𝑨〉 = 𝑴𝑴〈𝑨𝑨〉 (4.32) 

 

where 𝑴𝑴 is the matrix having elements 𝑀𝑀𝜇𝜇𝜆𝜆 , and 𝑨𝑨 is a column vector of the operators 𝐴𝐴𝜇𝜇 . Then, the quantum 
regression theorem is the statement 
 

 𝑑𝑑
𝑑𝑑𝜏𝜏
〈𝑂𝑂1(𝜕𝜕)𝑨𝑨(𝜕𝜕 + 𝜏𝜏)〉 = 𝑴𝑴〈𝑂𝑂1(𝜕𝜕)𝑨𝑨(𝜕𝜕 + 𝜏𝜏)〉 (4.33) 

 

where 𝑂𝑂1 is an arbitrary operator acting on the system (not the reservoir) alone. This last is valid for 𝜏𝜏 > 0  only, 
note. 
 
Loosely speaking, we are allowed to ‘multiply’ Eq. (4.32) by the operator 𝑂𝑂1, take it inside the expectation value 
brackets, and consider the lot as a new differential equation in 𝜏𝜏 rather than 𝜕𝜕. The quantum regression theorem is 
significant, as a common way of finding operator correlation functions is to solve the differential equation Eq. 
(4.33) arising from the regression theorem’s application. 
‘The’ regression theorem is a little misleading, for the quantum regression theorem has many different forms. We 
have presented the form most relevant to the situation at hand. 
 
We apply it immediately. We see that three operators Δ𝜎𝜎�−, Δ𝜎𝜎�+ and Δ𝜎𝜎𝑧𝑧  satisfy Eq. (4.32); it turns out that they 
are also complete in the sense of Eq. (4.31). The quantum regression theorem then applied to Eq. (4.29) thus 
gives: 
 

 𝑑𝑑
𝑑𝑑𝜏𝜏
〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(𝜏𝜏)〉𝑠𝑠𝑠𝑠 = 𝑴𝑴〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(𝜏𝜏)〉𝑠𝑠𝑠𝑠  (4.34) 

 

which is a differential equation in 𝜏𝜏. The vector 𝒔𝒔(𝜏𝜏) is the column vector of operators [𝜎𝜎−,𝜎𝜎+,𝜎𝜎𝑧𝑧]𝑇𝑇 . This 
differential equation has solution: 
 

 〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(𝜏𝜏)〉𝑠𝑠𝑠𝑠 = 𝑺𝑺−𝟏𝟏exp(𝝀𝝀𝜏𝜏)𝑺𝑺〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(0)〉𝑠𝑠𝑠𝑠  (4.35) 
 

where 𝑺𝑺 is a matrix that diagonalises 𝑴𝑴, and 𝝀𝝀 is the resulting matrix of eigenvalues. Explicitly, 
 

𝝀𝝀 =

⎝

⎜
⎜
⎜
⎛

1
2

1
2

0

−𝑖𝑖
√2
𝑌𝑌𝛾𝛾

�
1
2

+
𝛾𝛾

8𝛿𝛿
� 𝑖𝑖

√2
𝑌𝑌𝛾𝛾

�
1
2

+
𝛾𝛾

8𝛿𝛿
� −

1
2𝛿𝛿

−𝑖𝑖
√2
𝑌𝑌𝛾𝛾

�
1
2
−

𝛾𝛾
8𝛿𝛿
� 𝑖𝑖

√2
𝑌𝑌𝛾𝛾

�
1
2
−
𝛾𝛾

8𝛿𝛿
�

1
2𝛿𝛿 ⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎛
−
𝛾𝛾
2

0 −𝑖𝑖
𝑌𝑌𝛾𝛾

2√2

0 −
𝛾𝛾
2

𝑖𝑖
𝑌𝑌𝛾𝛾

2√2

𝑖𝑖
𝑌𝑌𝛾𝛾
√2

𝑖𝑖
𝑌𝑌𝛾𝛾
√2

−𝛾𝛾
⎠

⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎛

1 𝑖𝑖
𝑌𝑌𝛾𝛾

2√2
𝑖𝑖
𝑌𝑌𝛾𝛾

2√2

1 −𝑖𝑖
𝑌𝑌𝛾𝛾

2√2
−𝑖𝑖

𝑌𝑌𝛾𝛾
2√2

0
𝛾𝛾
4
− 𝛿𝛿

𝛾𝛾
4

+ 𝛿𝛿 ⎠

⎟
⎟
⎞

 

              𝑺𝑺      𝑴𝑴     𝑺𝑺−𝟏𝟏 
(4.36) 
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This gives: 
 

𝝀𝝀 =

⎝

⎜
⎜
⎛
−
𝛾𝛾
2

0 0

0 −
3𝛾𝛾
4

+ 𝛿𝛿 0

0 0 −
3𝛾𝛾
4
− 𝛿𝛿⎠

⎟
⎟
⎞

 (4.37) 

 

The constant 𝛿𝛿 is given by: 
 𝛿𝛿 =

𝛾𝛾
4
�1 − 8𝑌𝑌2 (4.38) 

 

It remains only to find the ‘initial condition’ 〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(0)〉𝑠𝑠𝑠𝑠 . This is given by [8]: 
 

 
〈Δ𝜎𝜎�+(0)Δ𝒔𝒔(0)〉𝑠𝑠𝑠𝑠 = �

〈Δ𝜎𝜎�+(0)Δ𝜎𝜎�−(0)〉𝑠𝑠𝑠𝑠
〈Δ𝜎𝜎�+(0)Δ𝜎𝜎�+(0)〉𝑠𝑠𝑠𝑠
〈Δ𝜎𝜎�+(0)Δ𝜎𝜎𝑧𝑧(0)〉𝑠𝑠𝑠𝑠

� =
1
2

𝑌𝑌2

(1 + 𝑌𝑌2)2 �
𝑌𝑌2

1
𝑖𝑖√2𝑌𝑌

� (4.39) 

 

Eq. (4.39) is obtained by solving the Optical Bloch Equations and taking the steady state solution. 
 
We at last have our correlation functions: 
 

〈Δ𝜎𝜎�+(0)Δ𝜎𝜎�−(𝜏𝜏)〉𝑠𝑠𝑠𝑠 =
1
4

𝑌𝑌2

𝑌𝑌2 + 1
exp �−

𝛾𝛾
2
𝜏𝜏� 

= −
1
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 + (1 − 5𝑌𝑌2)
𝛾𝛾

4𝛿𝛿
� exp �−�

3𝛾𝛾
4
− 𝛿𝛿� 𝜏𝜏� 

= −
1
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 − (1 − 5𝑌𝑌2)
𝛾𝛾

4𝛿𝛿
� exp �−�

3𝛾𝛾
4

+ 𝛿𝛿� 𝜏𝜏� 

(4.40) 
 

 
We also have: 
 

〈Δ𝜎𝜎�+(0)Δ𝜎𝜎�+(𝜏𝜏)〉𝑠𝑠𝑠𝑠 =
1
4

𝑌𝑌2

𝑌𝑌2 + 1
exp �−

𝛾𝛾
2
𝜏𝜏� 

= +
1
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 + (1 − 5𝑌𝑌2)
𝛾𝛾

4𝛿𝛿
� exp �−�

3𝛾𝛾
4
− 𝛿𝛿� 𝜏𝜏� 

= +
1
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 − (1 − 5𝑌𝑌2)
𝛾𝛾

4𝛿𝛿
� exp �−�

3𝛾𝛾
4

+ 𝛿𝛿� 𝜏𝜏� 

(4.41) 
 

This is identical to the correlation function Eq. (4.40), but for the sign changes in the second and third terms. We 
shall see later that this correlation function is used to calculate the aforementioned quadrature correlation 
functions. Looking ahead, we shall find that because the sign changes between the two correlation functions Eq. 
(4.40) and Eq. (4.41), one quadrature correlation function will carry the central resonance fluorescence peak, 
whilst the other quadrature correlation function will carry the flanking sidepeaks. 
 
Both of these correlation functions are real, in spite of the fact that 𝛿𝛿 can be complex for 𝑌𝑌 sufficiently large (see 
Eq. (4.38)). To see this explicitly, note that whenever 𝛿𝛿 is complex, it is purely imaginary, and in this case the 
second and third terms in Eqs. (4.40) and (4.41) are complex conjugates, which evidently sum to a real number 
for each correlation function. 
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Now it is clear that, upon taking the Fourier Transform of the correlation function Eq. (4.40) (which corresponds 
to the field correlation function), a three-peaked spectrum will result, from the three exponentials in that equation. 
Our analysis so far has been quite formal – using the regression theorem to derive correlations in the output field 
– so one may wonder if a physical interpretation exists for the three-peaked spectrum. After all, our model for the 
atom contains only two levels, and at first glance doesn’t appear to accommodate three distinct transitions. 
In fact, such an interpretation does exist, and is known as the dressed-states model for the atom [8]. This replaces 
our three-part semiclassical Hamiltonian given by Eqs. (4.16), (4.19), (4.20) and (4.21) with the following: 
 

 𝐻𝐻 =
1
2
ℏ𝜔𝜔𝐴𝐴𝜎𝜎𝑧𝑧 + ℏ𝜔𝜔𝐴𝐴𝑎𝑎†𝑎𝑎 + ℏ�𝜅𝜅𝑎𝑎𝜎𝜎+ + 𝜅𝜅∗𝑎𝑎†𝜎𝜎−� (4.42) 

 

This is a fully quantised Hamiltonian, known as the Jaynes-Cummings Hamiltonian. See that the driving laser is 
no longer being treated as classical – its energy appears explicitly as the term ℏ𝜔𝜔𝐴𝐴𝑎𝑎†𝑎𝑎. The third term in Eq. 
(4.42) represents the atom-laser interaction. For simplicity, we have taken the atom to only interact with the laser 
mode, rather than allowing it to interact with all the modes of the electromagnetic field, which we had done 
previously. This is quite reasonable if the laser is very intense. 
The dressed states referred to are the eigenstates of this Hamiltonian when there is no interaction (i.e. when  
𝜅𝜅 = 0),  and are product states involving the atomic states |1〉 and |2〉 and photon number states for the laser field. 
There is some degeneracy among these levels; see the diagram below. When 𝜅𝜅 ≠ 0, we find that the degeneracy is 
lifted, and the resulting states split in such a way that only 3 distinct transitions (in terms of energy size) are 
possible – these are exactly the transitions responsible for the 3-peaked spectrum mentioned earlier. 
It is possible to show [8], that each energy level is split symmetrically by a total amount ℏΩ, where Ω is the Rabi 
frequency as before, provided that the laser field is strong (in particular, it has a very large mean photon number). 
It is possible to find the energy splitting exactly, without having to assume a large mean photon number, however. 
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Figure 5.  Left:  The Jaynes-Cummings ‘ladder’ of states are the eigenstates of Eq. (4.42) when 𝜅𝜅 = 0. Note the degeneracy. 

Right: The degeneracy is lifted once we consider interactions. The new ladder of states appears to have many possible 
transitions, but in fact only 3 are unique. 



37 
 

 

Chapter 5 

The optical protocol of Furusawa et al. 

 

 

5.1 Description 
The Furusawa protocol [2] begins with two generating cavities that produce squeezed light. These are optical 
parametric oscillators, which we met when presenting the vacuum correlation functions in Section 4.1. One of the 
cavities generates vacuum states that are squeezed in the 𝑥𝑥-direction, whose field we write ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  (again as we did 
in Section 4.1), whilst the other generates vacuum states squeezed in the 𝑦𝑦-direction (ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 ). Be aware of the 
convention mentioned in Section 4.1, whereby ℰ refers only to the positive-frequency part of the electric field. 
 
These two fields are mixed at a 50/50 beamsplitter, seen in Section 3.3. The symmetric superposition 
 

 ℰ𝐴𝐴 =
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 + ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 � (5.01) 
 

is distributed to Alice, whilst the antisymmetric superposition 
 

 ℰ𝐵𝐵 =
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 − ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 � (5.02) 
 

is distributed to Bob. The two fields ℰ𝐴𝐴 and ℰ𝐵𝐵  are correlated. 
 
Alice mixes her received field  ℰ𝐴𝐴 with the input field ℰ𝑖𝑖𝑛𝑛  which is to be teleported, at a different 50/50 
beamsplitter, and then makes measurements of the 𝑋𝑋 and 𝑌𝑌 quadratures of the two outputs of this beamsplitter. 
She measures the 𝑋𝑋 quadrature of one of the outputs, and the 𝑌𝑌-quadrature of the other, employing balanced 
homodyne detection (Section 3.4) to do so. Ultimately, she is measuring the quantities 
 

 1
√2

�ℰ𝑖𝑖𝑛𝑛𝑋𝑋 + ℰ𝐴𝐴𝑋𝑋�,
1
√2

�ℰ𝑖𝑖𝑛𝑛𝑌𝑌 − ℰ𝐴𝐴𝑌𝑌� (5.03) 
 

where the superscript indicates the appropriate quadrature of its associated field. 
 
Bob receives the field ℰ𝐵𝐵  as well as the results of Alice’s measurements. To perform teleportation, Bob needs to 
modify his field dependent on Alice’s measurement results. In fact, he wishes to add to his field 
 

 ℰ𝐵𝐵 = ℰ𝐵𝐵𝑋𝑋 + 𝑖𝑖ℰ𝐵𝐵𝑌𝑌 (5.04) 
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a particular type of displacement, consisting of the following: 
 

• Addition of ℰ𝑖𝑖𝑛𝑛𝑋𝑋 + ℰ𝐴𝐴𝑋𝑋 to his 𝑋𝑋-quadrature ℰ𝐵𝐵𝑋𝑋 
• Addition of ℰ𝑖𝑖𝑛𝑛𝑌𝑌 − ℰ𝐴𝐴𝑌𝑌 to his 𝑌𝑌-quadrature ℰ𝐵𝐵𝑌𝑌 

 

We will show shortly that such a displacement results in perfect teleportation in appropriate limits. In total, Bob 
adds to his field ℰ𝐵𝐵  the following quantity 
  

 
𝐹𝐹𝐴𝐴 ∗ √2�

1
√2

�ℰ𝑖𝑖𝑛𝑛𝑋𝑋 + ℰ𝐴𝐴𝑋𝑋� +
𝑖𝑖
√2

�ℰ𝑖𝑖𝑛𝑛𝑌𝑌 − ℰ𝐴𝐴𝑌𝑌�� (5.05) 

 

The function 𝐹𝐹𝐴𝐴 is the impulse response describing any filtering that is done by Alice in the process of making her 
measurements. For the case where Alice’s measurements don’t filter the fields in any way, the convolution above 
isn’t needed. In any practical setup however, we note that Alice’s measurements will always include some kind of 
cut-off (i.e. at least some indirect filtering) due to the apparatus she is using; hence, the convolution is shown for 
completeness. 
 
After Bob has implemented his displacement as described above, his field is 
 

ℰ𝑜𝑜𝑢𝑢𝜕𝜕 = 𝐹𝐹𝐵𝐵 ∗ �ℰ𝐵𝐵 + 𝐹𝐹𝐴𝐴 ∗ (ℰ𝑖𝑖𝑛𝑛 + ℰ𝐴𝐴∗)� 
= ℰ𝐵𝐵𝑏𝑏 + ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 + ℰ𝐴𝐴∗𝑎𝑎𝑏𝑏  

(5.06) 
 

Just as was the case with Alice, we have included the possibility of filtering by Bob: 𝐹𝐹𝐵𝐵  is the impulse response of 
any filter that Bob may be using, which he applies after displacing his field as in Eq. (5.05). 
We have abbreviated the convolutions (i.e., the filtering) by using a superscript 𝑎𝑎 for filtering by Alice, and a 
superscript 𝑏𝑏 for that by Bob. Note that, due to the commutativity of the convolution, it does not matter what 
order these are applied in: 
 

 ℰ𝑎𝑎𝑏𝑏 = 𝐹𝐹𝐴𝐴 ∗ 𝐹𝐹𝐵𝐵 ∗ ℰ = (𝐹𝐹𝐴𝐴 ∗ 𝐹𝐹𝐵𝐵) ∗ ℰ = (𝐹𝐹𝐵𝐵 ∗ 𝐹𝐹𝐴𝐴) ∗ ℰ = ℰ𝑏𝑏𝑎𝑎 ,   etc (5.07) 
 

In the limit of no filtering by Alice and Bob (equivalently, allowing the bandwidth of any such filtering to become 
large), we find 

ℰ𝑜𝑜𝑢𝑢𝜕𝜕 = ℰ𝑖𝑖𝑛𝑛 + (ℰ𝐵𝐵 + ℰ𝐴𝐴∗) 

= ℰ𝑖𝑖𝑛𝑛 +
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 − ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 � +
1
√2

�ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥∗ + ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦∗ � 

= ℰ𝑖𝑖𝑛𝑛 + √2ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥𝑋𝑋 − 𝑖𝑖√2ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦𝑌𝑌  
(5.08) 

 

Hence, for large squeezing of ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  in its 𝑋𝑋-quadrature and of ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦  in its 𝑌𝑌-quadrature, we have the result that 
ℰ𝑜𝑜𝑢𝑢𝜕𝜕 ⟶ ℰ𝑖𝑖𝑛𝑛 , i.e. the teleportation becomes perfect. This is the reason for the particular choice Eq. (5.05) for 
Bob’s displacement. 
 
This protocol was successfully implemented by Furusawa et al. [2]. Formally, the quality of the teleportation can 
be quantified by a number known as the fidelity, which ranges from 0 to 1. A fidelity of 1 indicates perfect 
teleportation. It is explained in [2] that for teleportation of coherent states, the fidelity 𝐹𝐹 cannot exceed 0.5 in this 
protocol without the use of entanglement. Furusawa et al. report an experimental fidelity of 𝐹𝐹 = 0.58 ± 0.02, 
which is highly indicative of the quantum nature of the teleportation. 
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5.2 First Order Correlation Functions for the output field 
We are interested in correlations in the output field ℰ𝑜𝑜𝑢𝑢𝜕𝜕 . The first order correlation function was defined already 
in Section 3.5, Eq. (3.69). 
We look now at the numerator of Eq. (3.69), and use the equation for the output field Eq. (5.06) to get: 
 

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 〉 = 〈�ℰ𝐵𝐵

†𝑏𝑏(𝜏𝜏) + ℰ𝑖𝑖𝑛𝑛
†𝑎𝑎𝑏𝑏 (𝜏𝜏) + ℰ𝐴𝐴𝑎𝑎𝑏𝑏 (𝜏𝜏)� �ℰ𝐵𝐵𝑏𝑏 + ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 + ℰ𝐴𝐴

†𝑎𝑎𝑏𝑏 �〉 

= 〈ℰ𝑖𝑖𝑛𝑛
†𝑎𝑎𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 〉 + 〈�ℰ𝐵𝐵

†𝑏𝑏(𝜏𝜏) + ℰ𝐴𝐴𝑎𝑎𝑏𝑏 (𝜏𝜏)� �ℰ𝐵𝐵𝑏𝑏 + ℰ𝐴𝐴
†𝑎𝑎𝑏𝑏 �〉 

= 〈ℰ𝑖𝑖𝑛𝑛
†𝑎𝑎𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 〉 + 〈ℰ𝐵𝐵

†𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏〉+ 〈ℰ𝐵𝐵
†𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴

†𝑎𝑎𝑏𝑏 〉 + 〈ℰ𝐴𝐴𝑎𝑎𝑏𝑏 (𝜏𝜏)ℰ𝐵𝐵𝑏𝑏〉+ 〈ℰ𝐴𝐴𝑎𝑎𝑏𝑏 (𝜏𝜏)ℰ𝐴𝐴
†𝑎𝑎𝑏𝑏 〉 

= 〈ℰ𝑖𝑖𝑛𝑛
†𝑎𝑎𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 + 4 vacuum terms 

(5.09) 
 

The second inequality above follows from the assumption that there is no correlation between the input field ℰ𝑖𝑖𝑛𝑛  
and the squeezed fields ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  and ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 . 
So, in the most general case which considers filtering by both Alice and Bob, the first-order correlation function 
for the output field consists of that for the input field (with filtering), plus 4 extra terms involving the squeezed 
vacuum fields. 
 

5.2.1 Gaussian Filtering in the absence of filtering by Alice 
We move on now to consider the following situation: 

• No filtering by Alice 
• Gaussian filtering by Bob 

 
The numerator of our first order correlation function simplifies in the absence of filtering by Alice: 
 

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 
= +〈ℰ𝐵𝐵

†𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐵𝐵
†𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴

†𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴
†𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 

= 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 + 4 vacuum terms 

(5.10) 
 

To begin with, we shall concern ourselves only with the 4 vacuum terms in Eq. (5.10). 
 
We let the Gaussian filter impulse response (in time) be 
 

 𝑔𝑔(𝜕𝜕) = 𝐶𝐶𝑒𝑒−𝑑𝑑𝜕𝜕2  (5.11) 
 

where 𝐶𝐶 and 𝑑𝑑 are related constants. We note that 𝑑𝑑 > 0 as well. 
Let also ℰ(𝜕𝜕) be an arbitrary signal in time that is ‘switched on’ at some time 𝜕𝜕 = 𝜕𝜕0, and is zero for 𝜕𝜕 < 𝜕𝜕0. 
Gaussian filtering of such a signal then involves the convolution integral 
 

 
�𝐶𝐶𝑒𝑒−𝑑𝑑𝜕𝜕2� ∗ ℰ(𝜕𝜕) = 𝐶𝐶� 𝑒𝑒−𝑑𝑑�𝜕𝜕−𝜕𝜕 ′�

2
ℰ(𝜕𝜕′)𝑑𝑑𝜕𝜕′

∞

𝜕𝜕0

 (5.12) 
 

A note is in order at this point. Unlike a Lorentzian filter, whose impulse response is causal, the Gaussian filter 
impulse response is acausal. This means that the Gaussian filtering process described is slightly artificial. 
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We now consider evaluation of the last of the vacuum terms in Eq. (5.10). Firstly, 
 

ℰ𝐴𝐴𝑏𝑏(𝜏𝜏 + 𝜕𝜕)ℰ𝐴𝐴
†𝑏𝑏(𝜕𝜕) = � 𝐶𝐶𝑒𝑒−𝑑𝑑�𝜏𝜏+𝜕𝜕−𝜕𝜕 ′�

2
ℰ𝐴𝐴(𝜕𝜕′)𝑑𝑑𝜕𝜕′

∞

𝜕𝜕0

� 𝐶𝐶𝑒𝑒−𝑑𝑑�𝜕𝜕−𝜕𝜕 ′′�
2∞

𝜕𝜕0

ℰ𝐴𝐴
†(𝜕𝜕′′)𝑑𝑑𝜕𝜕′′ 

= � � exp
∞

𝜕𝜕0

∞

𝜕𝜕0

�−𝑑𝑑�𝜏𝜏 + 𝜕𝜕 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� ℰ𝐴𝐴(𝜕𝜕′)ℰ𝐴𝐴
†(𝜕𝜕′′)𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′ 

 

And hence: 
 

 
〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏 + 𝜕𝜕)ℰ𝐴𝐴

†𝑏𝑏(𝜕𝜕)〉 = � � exp
∞

𝜕𝜕0

∞

𝜕𝜕0

�−𝑑𝑑�𝜏𝜏 + 𝜕𝜕 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� 〈ℰ𝐴𝐴(𝜕𝜕′)ℰ𝐴𝐴
†(𝜕𝜕′′)〉𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′ (5.13) 

 

Now, we wish only to work with fields in their steady-states. The LHS correlation function in Eq. (5.13) can be 
made into a steady-state one by allowing the field ‘switch-on’ time 𝜕𝜕0 to go to minus infinity – i.e., allowing the 
fields to have been ‘switched on’ for a long time period. We also take the fields appearing in the integrand of Eq. 
(5.13) to be in their steady-state as well. Overall, what we get from Eq. (5.13) is the following: 
 
 

〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴
†𝑏𝑏(0)〉𝑠𝑠𝑠𝑠  = lim

𝜕𝜕0⟶−∞
� � exp

∞

𝜕𝜕0

∞

𝜕𝜕0

�−𝑑𝑑�𝜏𝜏 + 𝜕𝜕 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� 〈ℰ𝐴𝐴(𝜕𝜕′)ℰ𝐴𝐴
†(𝜕𝜕′′)〉𝑠𝑠𝑠𝑠𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′ (5.14) 

 
In taking the limit, we expect the parameter 𝜕𝜕 to become superfluous. We are able to find the expectation value 
〈ℰ𝐴𝐴(𝜕𝜕′)ℰ𝐴𝐴(𝜕𝜕′′)〉𝑠𝑠𝑠𝑠  in terms of the correlation functions given in Section 4.1. One first notes that: 
 

 〈ℰ𝐴𝐴(𝜕𝜕′)ℰ𝐴𝐴(𝜕𝜕′′)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝐴𝐴��𝜕𝜕 ′ − 𝜕𝜕 ′′��ℰ𝐴𝐴
†(0)〉𝑠𝑠𝑠𝑠  (5.15) 

 

which is a consequence of the correlation functions being both even in time, and dependent only on time 
differences. We may then use Eq. (4.07) for the RHS of Eq. (5.15) above. 
Looking at the correlation functions presented in Section 4.1, we see that the RHS of Eq. (5.15) involves linear 
combinations of exponentials like exp(−𝜂𝜂|𝜕𝜕|) , where 𝜂𝜂 is a constant. We thus consider the integral 
 

 
𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) = lim

𝜕𝜕0⟶−∞
𝐶𝐶2 � � exp

∞

𝜕𝜕0

∞

𝜕𝜕0

�−𝑑𝑑�𝜏𝜏 + 𝜕𝜕 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� exp�−𝜂𝜂�𝜕𝜕 ′ − 𝜕𝜕′′��𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′ (5.16) 
 

and then we can use linearity to work out the correlation function Eq. (5.14). 
 
The procedure just shown can be repeated for all 4 vacuum terms appearing in Eq. (5.10). We note that some of 
the vacuum terms will require the use of delta functions 𝛿𝛿(𝜕𝜕) (see Eq. (4.07)), for which we will need an integral 
similar to Eq. (5.16), namely 
 

 
𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) = lim

𝜕𝜕0⟶−∞
𝐶𝐶2 � � exp

∞

𝜕𝜕0

∞

𝜕𝜕0

�−𝑑𝑑�𝜏𝜏 + 𝜕𝜕 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� 𝛿𝛿�𝜕𝜕 ′ − 𝜕𝜕′′�𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′ (5.17) 
 

The absolute value is not required since the delta function is even. 
 
Details regarding the evaluation of 𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) are given in Appendix B. The result is 
 

𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) = 𝐶𝐶2 𝑖𝑖
2𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
+ 𝜂𝜂𝜏𝜏� �erf �

−𝜂𝜂 − 𝑑𝑑𝜏𝜏
√2𝑑𝑑

� + 1�+ 𝐶𝐶2 𝑖𝑖
2𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
− 𝜂𝜂𝜏𝜏� �1 − erf �

𝜂𝜂 − 𝑑𝑑𝜏𝜏
√2𝑑𝑑

�� 

(5.18) 
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For consistency, we have evaluated 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) in two ways. The first is to use a particular definition of the delta 
function in terms of an appropriate limit of functions (see [7]), namely: 
 

 lim
𝜂𝜂⟶∞

𝜂𝜂
2

exp(−𝜂𝜂|𝜕𝜕|) = 𝛿𝛿(𝜕𝜕) (5.19) 
 

We hence have the result 
 

 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) = lim
𝜂𝜂⟶∞

𝜂𝜂
2
𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) (5.20) 

 

This limit can be evaluated using L’Hopital’s Rule. Alternatively, we can simply evaluate the integral defining 
𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) directly – Eq. (5.17). Both methods give 
 

 
𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) = 𝐶𝐶2�

𝑖𝑖
2𝑑𝑑

exp�
−𝑑𝑑𝜏𝜏2

2 � (5.21) 
 

Now we note that the integral  𝐼𝐼(𝐶𝐶, 𝑑𝑑, 𝜏𝜏, 𝜂𝜂) effectively ‘filters’ the function exp(−𝜂𝜂𝜕𝜕), that function being a 
generic feature in the correlation functions defined in Section 4.1. From the Gaussian impulse response also given 
above, Eq. (5.11),we see that 𝑑𝑑 controls the bandwidth of the Gaussian filtering. As 𝑑𝑑 ⟶ ∞, i.e. as the filtering 
bandwidth becomes very large, we expect the filter to have no effect – we should recover our input function. By 
making the choice 
 

 
𝐶𝐶 = �𝑑𝑑

𝑖𝑖
 (5.22) 

 

we get the expected result 
 

 lim
𝑑𝑑⟶∞

𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) = exp(−𝜂𝜂𝜏𝜏) (5.23) 
 

It is also possible to define the delta function as a limit of Gaussians as follows [17]: 
 

 
𝛿𝛿(𝑥𝑥) = lim

𝜖𝜖⟶0

1
2√𝑖𝑖𝜖𝜖

exp�−
𝑥𝑥2

4𝜖𝜖�
 (5.24) 

 

From this, we also get the result 
 

 lim
𝑑𝑑⟶∞

𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) = 𝛿𝛿(𝜏𝜏) (5.25) 
 

with the choice for 𝐶𝐶 as given in Eq. (5.22). Such a result is expected for precisely the same reasons given above 
– that is, 𝐼𝐼𝛿𝛿  effectively filters a delta function, which we expect to get back in the regime of very large filtering 
bandwidths. 
 
In what follows, we shall stick with the notation that has 𝐶𝐶 as an argument in the integrals 𝐼𝐼 and 𝐼𝐼𝛿𝛿 , mainly to 
distinguish these integrals from the corresponding ones for Lorentzian filtering to be introduced in the next 
section. However, 𝐶𝐶 is not really an extra variable since it is related to 𝑑𝑑, and in all that follows we will not be 
considering any values for 𝐶𝐶 other than 𝐶𝐶 = �𝑑𝑑 𝑖𝑖⁄ . 
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5.2.2 Lorentzian Filtering in the absence of filtering by Alice 
Relevant integrals for the following situation: 

• No filtering by Alice 
• Lorentzian filtering by Bob 

 
are derived by Noh in [7]. For completeness, we state the results here. The impulse response in time of Bob’s 
Lorentzian filter is given by 
 

 𝑙𝑙(𝜕𝜕) = 𝛾𝛾𝐵𝐵𝑢𝑢(𝜕𝜕)exp(−𝛾𝛾𝐵𝐵𝜕𝜕) (5.26) 
 

where 𝛾𝛾𝐵𝐵  is his filter bandwidth. Here 𝑢𝑢(𝜕𝜕) is the unit step: 
 

 𝑢𝑢(𝜕𝜕) = �0, 𝜕𝜕 < 0
1, 𝜕𝜕 > 0

� (5.27) 
 

The presence of this unit step means that the Lorentzian filter is causal, as we explained earlier. 
The integrals 𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) and 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) of Eqs. (5.16) and (5.17) above were evaluated for Gaussian filtering. 
Going through the same process for Lorentzian filtering gives 
 

 
𝐼𝐼(𝛾𝛾𝐵𝐵 , 𝜏𝜏, 𝜂𝜂) =

𝛾𝛾𝐵𝐵𝜂𝜂
𝜂𝜂2 − 𝛾𝛾𝐵𝐵2

exp(−𝛾𝛾𝐵𝐵𝜏𝜏) +
𝛾𝛾𝐵𝐵2

𝛾𝛾𝐵𝐵2 − 𝜂𝜂2 exp(−𝜂𝜂𝜏𝜏) (5.28) 
 

 𝐼𝐼𝛿𝛿(𝛾𝛾𝐵𝐵 , 𝜏𝜏) =
𝛾𝛾𝐵𝐵
2

exp(−𝛾𝛾𝐵𝐵𝜏𝜏) (5.29) 
 

In all above (and in the following) equations, the replacements 𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) ⟶  𝐼𝐼(𝛾𝛾𝐵𝐵 , 𝜏𝜏, 𝜂𝜂) and 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) ⟶
𝐼𝐼𝛿𝛿(𝛾𝛾𝐵𝐵 , 𝜏𝜏) take us from Gaussian filtering over to Lorentzian filtering by Bob. We’ll take 𝛾𝛾𝐵𝐵  to represent 
Lorentzian filter bandwidths, and 𝑑𝑑 to indicate Gaussian filter bandwidths, in order to make it clear which type of 
filtering is being used. 
 
These equations will be used in plots below to test the effectiveness of Gaussian filtering against Lorentzian 
filtering. 
 

5.2.3 Spectrum of the teleported vacuum 
We now consider the teleporter output when there is no input state. We then have only the four vacuum terms in 
our first-order correlation function Eq. (5.10): 
 

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) = 〈ℰ𝐵𝐵

†𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐵𝐵
†𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴

†𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏(0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝐴𝐴𝑏𝑏(𝜏𝜏)ℰ𝐴𝐴
†𝑏𝑏(0)〉𝑠𝑠𝑠𝑠  

(5.30) 
 

If we use our integrals, namely Eqs. (5.16) and (5.17) defined in the previous section, we can evaluate Eq. (5.30). 
The correlation functions of Section 4.1 are needed, as shown in the previous section. The result is: 
 

 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) =

−𝜆𝜆𝛾𝛾𝑠𝑠
1 + 𝜆𝜆

𝐼𝐼 �𝐶𝐶,𝑑𝑑,
𝛾𝛾𝑠𝑠
2

(1 + 𝜆𝜆), 𝜏𝜏� + 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) (5.31) 
 

This gives us the unnormalised first order correlation function for no input field. 
We shall define the optical spectrum as: 
 

 
𝑆𝑆(𝜔𝜔) =

1
2𝑖𝑖

� 𝑑𝑑𝜏𝜏〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 〉

∞

−∞
exp(𝑖𝑖𝜔𝜔𝜏𝜏) (5.32) 
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which is a Fourier transform of the unnormalised correlation function. This is really the normalised power spectral 
density, mentioned in Section 3.5. 
 
Now, we see that the correlation functions for the vacuum terms are linear in the integrals 𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂) and 
𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏). Hence, in order to look at the spectrum, it is only necessary to take the Fourier transform of these 
integrals. 
All the correlation functions we shall ever meet in this report are even in 𝜏𝜏. Essentially, this is a consequence of us 
insisting on the use of normal ordering in all correlation functions, and the fact that the correlation functions we 
will be working with are all real. Now for a function 𝑓𝑓(𝜏𝜏)that is real and even in time, we have the result 
 

 1
2𝑖𝑖

� 𝑑𝑑𝜏𝜏𝑓𝑓(𝜏𝜏)
∞

−∞
exp(𝑖𝑖𝜔𝜔𝜏𝜏) =

1
2𝑖𝑖

2Re�� 𝑓𝑓(𝜏𝜏)
∞

0
exp(𝑖𝑖𝜔𝜔𝜏𝜏)� (5.33) 

 

where the Re indicates the real part. Now define 
 

 
𝑆𝑆𝐼𝐼(𝐶𝐶,𝑑𝑑,𝜔𝜔, 𝜂𝜂) =

1
2𝑖𝑖

� 𝑑𝑑𝜏𝜏𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜏𝜏, 𝜂𝜂)
∞

0
exp(𝑖𝑖𝜔𝜔𝜏𝜏) (5.34) 

 

 
𝑆𝑆𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑,𝜔𝜔) =

1
2𝑖𝑖

� 𝑑𝑑𝜏𝜏𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏)
∞

0
exp(𝑖𝑖𝜔𝜔𝜏𝜏) (5.35) 

 

Then, if we want to look at the correlation function spectrum, it is only necessary to replace the integrals 𝐼𝐼 and 𝐼𝐼𝛿𝛿  
wherever they occur with the functions 𝑆𝑆𝐼𝐼 and 𝑆𝑆𝐼𝐼𝛿𝛿 , and take twice the real part of the resulting overall expression. 
This also holds true later on, when we consider teleporting the resonance fluorescence field. These functions are 
given by: 
 

𝑆𝑆𝐼𝐼(𝐶𝐶,𝑑𝑑,𝜔𝜔, 𝜂𝜂) =
𝐶𝐶2

4𝑑𝑑
�

2𝜂𝜂
𝜔𝜔2 + 𝜂𝜂2 exp�−

𝜔𝜔2

2𝑑𝑑�
�1 + erf �

𝑖𝑖𝜔𝜔
√2𝑑𝑑

�� +
2𝜔𝜔𝑖𝑖

𝜔𝜔2 + 𝜂𝜂2 exp�
𝜂𝜂2

2𝑑𝑑�
�1 − erf �

𝜂𝜂
√2𝑑𝑑

��� 

(5.36) 
 

And 
 

 
𝑆𝑆𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑,𝜔𝜔) =

𝐶𝐶2

4𝑑𝑑
exp�−

𝜔𝜔2

2𝑑𝑑�
�1 + erf �

𝑖𝑖𝜔𝜔
√2𝑑𝑑

�� (5.37) 

 

 
We now look at some vacuum spectra below. For comparison, plots are shown with Lorentzian filtering as well. 
The comparison here is done by matching the filter half-widths. Recall that 𝑑𝑑 was used as the parameter 
controlling the Gaussian filtering bandwidth, while 𝛾𝛾𝐵𝐵  was used for Lorentzian filtering. To relate the two, note 
that under our version of the Fourier transform that we are using for spectra, namely 𝑆𝑆(𝜔𝜔) = 1

2𝑖𝑖 ∫ 𝑓𝑓(𝜕𝜕)𝑒𝑒𝑖𝑖𝜔𝜔𝜕𝜕 𝑑𝑑𝜕𝜕∞
−∞ , 

we have the following: 
 

 
𝛾𝛾𝐵𝐵𝑢𝑢(𝜕𝜕)exp(−𝛾𝛾𝐵𝐵𝜕𝜕)   ⟷   

1 + 𝜔𝜔
𝛾𝛾𝐵𝐵
𝑖𝑖

2𝑖𝑖 �1 + �𝜔𝜔𝛾𝛾𝐵𝐵
�

2
�
 (5.38) 

 

and3

 
 

                                                           
3 See, for example, entry (23) p121 of [20]. 
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�𝑑𝑑
𝑖𝑖

exp(−𝑑𝑑𝜕𝜕2)   ⟷    
1

2𝑖𝑖
exp�−

𝜔𝜔2

4𝑑𝑑�
 (5.39) 

 

The Fourier convolution theorem reads, under our particular definition for the Fourier Transform: 
 

 𝑓𝑓 ∗ 𝑔𝑔 ⟷ 2𝑖𝑖𝐹𝐹𝜋𝜋 (5.40) 
 

where ⟷ denotes a Fourier Transform pair. In frequency space then, these filters halve in amplitude at 𝜔𝜔 = ±𝛾𝛾𝐵𝐵 
and 𝜔𝜔 = ±�4𝑑𝑑log(2) respectively. Matching half-widths then gives 
 

 
𝑑𝑑 =

𝛾𝛾𝐵𝐵2

4log(2) (5.41) 
 

In the figures below, we have worked in terms of 𝛾𝛾𝐵𝐵 , and calculated the appropriate 𝑑𝑑 from Eq. (5.41). 
The degree of squeezing has been set at 𝜆𝜆 = 0.9 for these plots. The right-hand figure is zoomed in around the 
𝜔𝜔 = 0 part of the spectrum. 
 
 

 
Figure 6: Teleported vacuum spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 5 

 
 
 

 
Figure 7: Teleported vacuum spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 3 
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Figure 8: Teleported vacuum spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 1 

 
 
 

 
Figure 9: Teleported vacuum spectra wtih 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 0.3 

 
 
The general teleported vacuum spectrum consists of a ‘vacuum dip’ region centered around 𝜔𝜔 = 0, where the 
vacuum noise is reduced almost to zero, flanked either side by two broad peaks (‘sidepeaks’). 
 
We can see that for filtering bandwidths by Bob that are larger than the squeezing bandwidth, i.e. 𝛾𝛾𝐵𝐵 > 𝛾𝛾𝑠𝑠, the 
central region around 𝜔𝜔 = 0 is much the same between Gaussian and Lorentzian filters. This is to be expected – 
Bob’s bandwidth is not yet narrow enough to start cutting significantly into the vacuum dip region. However, we 
see that the Gaussian filter is better at cutting out the higher frequency noise, which is expected due to the fact that 
it decays much quicker than does the Lorentzian in frequency space, at higher frequencies. As 𝛾𝛾𝐵𝐵  is decreased 
relative to the squeezing bandwidth, the Gaussian filter begins to reduce the vacuum sidepeak noise much sooner 
than does the Lorentzian filter (each filter having the same half-width). For 𝛾𝛾𝐵𝐵 < 𝛾𝛾𝑠𝑠, we see considerable noise 
reduction by the Gaussian filter. It does not reduce the noise right in the centre at 𝜔𝜔 = 0, however – the two filters 
still match in performance there. The vacuum dip region also narrows as the filter bandwidth is decreased. 
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5.2.4 Spectrum of the teleported resonance fluorescence field 
Further testing of the Gaussian filter shall now be done by looking at teleporting a resonance fluorescence 
spectrum. The output field correlation function now has an additional term since we are not just inputting a 
vacuum: 
 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠 = 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) (5.42) 
 
Evaluating 〈ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  , and then its spectrum, is done in exactly the same way as for 〈ℰ𝐵𝐵
†𝑏𝑏(𝜏𝜏)ℰ𝐵𝐵𝑏𝑏(0)〉𝑠𝑠𝑠𝑠  and 

others in Sections 5.2.1 and 5.2.3. There is a slight difference, however. We want to make use of the correlation 
functions of Section 4.2, but as we saw before, those correlation functions are given in terms of atomic raising and 
lowering operators. What we need then is a relationship between ℰ𝑖𝑖𝑛𝑛  and the atomic raising and lowering 
operators. This relationship is as follows: 
 

 ℰ𝑖𝑖𝑛𝑛 = �𝛾𝛾𝑖𝑖𝑛𝑛𝜎𝜎− + ℇ𝑖𝑖𝑛𝑛  (5.43) 
 

where ℇ𝑖𝑖𝑛𝑛  is a vacuum field operator. This is an example of an ‘input-output’ relationship - see for example, 
Section 7.1 of Walls [14]. Such a relationship expresses a cavity output field in terms of input fields and atomic 
operators.  Our notation is perhaps a little unclear, for we have used ‘in’ on the LHS of Eq. (5.43) because this is 
the field that is input into the teleporter, but it is really the ‘output’ field in the sense used in the input-output 
relationship just mentioned. Ultimately, assuming that we normally order our operators, the first-order field 
correlation functions are obtained from the atomic operator correlation functions simply by multiplying by 𝛾𝛾𝑖𝑖𝑛𝑛 , 
the input bandwidth of the field, and changing 𝛾𝛾 to 𝛾𝛾𝑖𝑖𝑛𝑛 . From Eq. (4.40), 
 

〈ℰ𝑖𝑖𝑛𝑛
† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛 (0)〉𝑠𝑠𝑠𝑠 = �𝛾𝛾𝑖𝑖𝑛𝑛�𝛾𝛾𝑖𝑖𝑛𝑛 〈𝜎𝜎�+(𝜏𝜏)𝜎𝜎�−(0)〉𝑠𝑠𝑠𝑠  

=
𝛾𝛾𝑖𝑖𝑛𝑛
4

𝑌𝑌2

𝑌𝑌2 + 1
exp �−

𝛾𝛾𝑖𝑖𝑛𝑛
2
𝜏𝜏� 

= −
𝛾𝛾𝑖𝑖𝑛𝑛
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 + (1 − 5𝑌𝑌2)
𝛾𝛾𝑖𝑖𝑛𝑛
4𝛿𝛿
� exp �−�

3𝛾𝛾𝑖𝑖𝑛𝑛
4

− 𝛿𝛿� 𝜏𝜏� 

= −
𝛾𝛾𝑖𝑖𝑛𝑛
8

𝑌𝑌2

(𝑌𝑌2 + 1)2 �1 − 𝑌𝑌2 − (1 − 5𝑌𝑌2)
𝛾𝛾𝑖𝑖𝑛𝑛
4𝛿𝛿
� exp �−�

3𝛾𝛾𝑖𝑖𝑛𝑛
4

+ 𝛿𝛿� 𝜏𝜏� 

(5.44) 
 

The first equality is the application of Eq. (5.43), along with the fact that we are normally ordering, so that the 
second term on the RHS of Eq. (5.43), ℇ𝑖𝑖𝑛𝑛 , can be ignored. 
Note that we have skipped over a small fact here. Eq. (4.40) was really only defined for 𝜏𝜏 > 0, due to the way the 
quantum regression theorem was applied. It follows that Eq. (5.44) is valid only for 𝜏𝜏 < 0, where it is understood 
that |𝜏𝜏| is to be used on the RHS of that equation. But, taking the complex conjugate of Eq. (4.40) and using the 
fact that it is real shows us that Eq. (4.40) is equally valid for 𝜏𝜏 < 0, with the replacement 𝜏𝜏 ⟶ |𝜏𝜏|. So we find 
that Eq. (5.44) is in fact valid for all 𝜏𝜏. 
What we then want is the filtered version of this: 〈ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠. However, Eq. (5.16) shows us how to filter a 
generic exponential exp(−𝜂𝜂|𝜏𝜏|), and Eq. (5.44) is merely a linear combination of three such exponentials, so this 
is easily done. 
 
We may, in a similar manner, use Eqs. (4.41) and (5.43) to obtain the normally-ordered quadrature correlation 
functions. We first compute 〈ℰ𝑖𝑖𝑛𝑛

† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛
† (0)〉𝑠𝑠𝑠𝑠  – this will be identical to Eq. (5.44), but for a sign change on the 

second and third terms. Then, expressing the field 𝑋𝑋 and 𝑌𝑌 quadratures (ℰ𝑖𝑖𝑛𝑛𝑋𝑋  and ℰ𝑖𝑖𝑛𝑛𝑌𝑌 ) in terms of the fields 
themselves, we have 〈:ℰ𝑖𝑖𝑛𝑛𝑋𝑋 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑋𝑋 (0): 〉𝑠𝑠𝑠𝑠 = 1

2
�〈ℰ𝑖𝑖𝑛𝑛

† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛 (0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝑖𝑖𝑛𝑛
† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛

† (0)〉𝑠𝑠𝑠𝑠� and 〈:ℰ𝑖𝑖𝑛𝑛𝑌𝑌 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑌𝑌 (0): 〉𝑠𝑠𝑠𝑠 =
1
2
�〈ℰ𝑖𝑖𝑛𝑛

† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛 (0)〉𝑠𝑠𝑠𝑠 − 〈ℰ𝑖𝑖𝑛𝑛
† (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛

† (0)〉𝑠𝑠𝑠𝑠�. 
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In all that follows, we set the resonance fluorescence spectrum parameters as: 
 

• 𝑌𝑌 = 8 (recall this is proportional to the Rabi frequency, as in Eq. (4.30), and so sets the laser intensity) 
• 𝜆𝜆 = 0.9 (degree of squeezing) 
• 𝛾𝛾𝑖𝑖𝑛𝑛/𝛾𝛾𝑠𝑠 = 0.01 (ratio of input to squeezing bandwidths) 

 

Note that 𝛾𝛾𝑖𝑖𝑛𝑛  is not the sole parameter that controls the total width of the resonance fluorescence spectrum. 
According to our dressed states model (Section 4.2), the distance between the two side peaks is 2Ω (almost; but 
due to the influence of the middle peak this is not exact), and Ω depends on both 𝛾𝛾𝑖𝑖𝑛𝑛  and 𝑌𝑌. However, 𝛾𝛾𝑖𝑖𝑛𝑛  does 
control the linewidth of each of the three peaks. 
 
With these parameters, the object of our teleportation thus appears as follows. 

 
Figure 10. The resonance fluroscence spectrum with parameters given above. 

 
For actual computation purposes, we have just set 𝛾𝛾𝑠𝑠 = 1. This gives a frequency scale that is in units of 𝜔𝜔/𝛾𝛾𝑠𝑠, as 
indicated (if one was to consider arbitrary values of 𝛾𝛾𝑠𝑠). 
 
We expect that this spectrum will ‘sit’ inside the vacuum spectrum dip seen before in our vacuum plots. The fact 
that this dip is not perfectly free of vacuum noise (which is a result of imperfect squeezing) means that our input 
field will of course be modified a little upon teleporting. 
The quadrature correlation functions have the following spectra: 
 

  
Figure 11.  The spectrum of 〈:ℰ𝑖𝑖𝑛𝑛𝑋𝑋 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑋𝑋 (0): 〉𝑠𝑠𝑠𝑠 .                           Figure 12. The spectrum of 〈:ℰ𝑖𝑖𝑛𝑛𝑌𝑌 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑌𝑌 (0): 〉𝑠𝑠𝑠𝑠 . 
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We see that one quadrature contains the central peak (the 𝑋𝑋 quadrature), while the 𝑌𝑌 quadrature contains the two 
sidepeaks as mentioned in Section 4.2. 
We now plot the teleported spectrum for a few values of Bob’s filtering bandwidth, to get a feel for the 
parameters involved. As was the case with the vacuum spectra, we have matched half-widths for the Lorentzian 
and Gaussian filters. 
 
The left-hand plot in each case shows the teleported spectrum under Lorentzian filtering (blue) and Gaussian 
filtering (black). The right-hand plot is a residual one, and subtracts away from the teleported spectra the spectrum 
of the input resonance fluorescence field. Obviously, if the teleportation is perfect, this residual plot should just be 
a flat line at 0 (indicated by the dashed line where appropriate). We should like it to be as close to this as possible. 
 
 
 

 
Figure 13: Teleported resonance fluorescence spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 1. 

 
 
 

 
Figure 14: Teleported resonance fluorescence spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 0.5. 
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Figure 15: Teleported resonance fluorescence spectra with 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 0.1. 

 
 
In the first plot, where 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 1, our filters are not yet cutting into the resonance fluorescence spectrum – see 
that subtracting away the original spectrum leaves behind just a filtered vacuum (see Fig. 8). When 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 0.5 
this is no longer the case: there are two small dips in the residue plot, either side of 𝜔𝜔 = 0, corresponding to our 
filters beginning to cut into the actual sidepeaks of the input spectrum. By the time 𝛾𝛾𝐵𝐵 𝛾𝛾𝑠𝑠⁄ = 0.1, this sidepeak 
loss is severe, and much more so for the Gaussian filter. On the other hand, one can see that the Gaussian filter 
has, for this value of 𝛾𝛾𝐵𝐵/𝛾𝛾𝑠𝑠 , cut the noise in the spectrum wings almost to zero. 
It is clear that there is a trade-off here: we need to balance the elimination of vacuum noise against the loss of 
input signal, especially in the sidepeaks. 
 
 
 
Loss of signal in the spectrum sidepeaks 
We investigate specifically this sidepeak signal loss now. For the non-teleported spectrum having 
 𝛾𝛾𝑖𝑖𝑛𝑛/𝛾𝛾𝑠𝑠 = 0.01 and 𝑌𝑌 = 8, we numerically find the sidepeaks to be located at 
 

𝜔𝜔
𝛾𝛾𝑆𝑆

= ±0.05565275 
 

See Fig. 10. Note that this is offset just slightly from the Rabi frequency here, which is 𝛾𝛾𝑖𝑖𝑛𝑛 𝑌𝑌
√2

= 0.0565685 (in 
units of 1/𝛾𝛾𝑠𝑠), which due to overlap of the three Lorentzian peaks, as stated earlier. 
 
The following plot shows the difference between the teleported spectrum and the input spectrum for resonance 
fluorescence, evaluated at the location of the right-hand sidepeak in the input spectrum. The sign of this difference 
is such that a positive value means that the teleported sidepeak is larger than the input sidepeak. It is seen that for 
a given filter half-width, Gaussian filtering results in a larger sidepeak loss. Conversely, this does mean that if we 
are prepared to accept a certain amount of sidepeak loss, a Gaussian filter of larger half-width can be used 
compared to Lorentzian filtering. 
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The blue curve corresponds to Lorentzian filtering, while the black curve is for Gaussian filtering. 
 

 
Figure 16. Sidepeak loss in the right-hand sidepeak of the teleported resonance fluorescence field. 

 
 
This plot of sidepeak loss is deceptive. Technically, the tip of the sidepeak appears to be perfectly teleported at 
approximately 𝛾𝛾𝐵𝐵

𝛾𝛾𝑠𝑠
= 0.41 for Lorentzian filtering, and 𝛾𝛾𝐵𝐵

𝛾𝛾𝑠𝑠
= 0.48 for Gaussian filtering (i.e., where these curves 

cross the dashed line in Fig. 16 above). However, upon removal of the vacuum noise, we realise that this 
‘perfectly’ teleported sidepeak is in fact the result of the teleportation protocol letting in vacuum noise at the 
sidepeak location. For a fairer comparison, we remove the vacuum noise that is being let in, and zero in on the 
part of the spectrum that actually came from the input spectrum only. The result of this comparison is shown in 
the figures below. We notice that these plots are always less than zero, since some input signal is always lost. The 
right-hand figure is a zoomed-in version of the left-hand one. 
 
 

 
Figure 17. Sidepeak loss comparison, after removing the vacuum noise, in the resonance fluorescence spectrum. 

 
 
Our conclusions are unchanged however – for a given filtering half-width, Gaussian filtering results in greater 
sidepeak loss than does Lorentzian filtering. 
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Vacuum noise let in during teleportation 
In our plots showing the total output resonance fluorescence spectrum, Figs. 13 – 15, we see that a certain amount 
of vacuum noise is always present in the spectrum wings. These give rise to very broad vacuum noise peaks that 
flank the triple-peaked resonance fluorescence spectrum in the centre. 
Below, the plot shows the largest value of this vacuum noise, as a function of the filtering half-width. See that the 
Gaussian filter has, in all cases, a lower maximum amount of vacuum noise than does Lorentzian filtering. We 
compute this largest value of vacuum noise by calculating a teleported spectrum, subtracting away the original 
spectrum, and finding the largest value of the noise that remains. This corresponds to the height of the flanking 
broad peaks, less any signal present at that location. 
As usual, the blue curve pertains to Lorentzian filtering; the black curve is for Gaussian filtering. 
 

 
Figure 18. The largest value of the vacuum noise let in by each filter type during resonance fluorescence teleportation. 

 
As explained before, there is always a trade-off in teleportation. We wish to set our filtering so that it cuts out as 
much vacuum noise as possible, without eating away at the edges of the input spectrum (in the case of resonance 
fluorescence, the sidepeaks). We expect the relationship between these two quantities to be an inverse one – if we 
are cutting out a lot of the vacuum noise, then our filtering must be strict and the sidepeak loss must be large. 
Conversely, if we are prepared to let in a bit more vacuum noise, then we can have less sidepeak loss. Below, the 
plot shows the sidepeak loss as a function of the maximum vacuum noise let in, for each filter type. The ‘sidepeak 
loss’ is the actual loss in input signal, and excludes any vacuum noise. 

 
Figure 19: The trade-off plot. (Actual) Sidepeak loss versus maximum amount of vacuum noise let in. 
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We can see the superiority of Gaussian filtering here. Given a particular value for the maximum vacuum noise let 
in, we see that a Gaussian filter can do the job with less sidepeak loss than a Lorentzian filter (we are not saying 
anything about the half-widths involved, however – these won’t necessarily be the same for each filter). 
Conversely, if we set the amount of sidepeak loss that we are prepared to accept, then use of a Gaussian filter 
gives a smaller value for the maximum vacuum noise let in. 
 
 
Teleported 𝒀𝒀-quadrature correlation functions 
The teleported sidepeaks are made up of 3 parts: some overlap from the central peak, some vacuum noise, and of 
course the original spectrum (but now filtered) – the ‘signal’ part of the teleported sidepeak. We remove the 
influence of the central peak by comparing the 𝑌𝑌 quadrature correlation function for the teleported field with the  
𝑌𝑌 quadrature correlation function for the input field (Fig. 12). 
The location of the sidepeaks in the 𝑌𝑌 quadrature spectrum are: 
 

𝜔𝜔
𝛾𝛾𝑠𝑠

= ±0.0556776436283 
 

See that this differs very slightly from the value found previously for the total spectrum sidepeaks, since we no 
longer have the overlap effect of the central spectrum peak. 
 
When we calculate the 𝑌𝑌 quadrature correlation function for the teleported field, we find that it contains half the 
vacuum noise present in the total output field correlation function. The other half is present in the 𝑋𝑋 quadrature. 
 
The plot below shows the ratio of the teleported sidepeak height (minus vacuum noise first) to the input sidepeak 
height. As usual, Gaussian is black and Lorentzian is blue. The fact that the Gaussian curve lies below that of the 
Lorentzian indicates that, for a fixed quality of teleportation (for example, if we want the signal part of the 
teleported sidepeaks to be at least 96% of the input signal), a Gaussian filter of larger half-width does the same 
job as a Lorentzian filter of smaller half-width. 
 

 
Figure 20. The signal part of the teleported sidepeak divided by the actual (input) height of the sidepeak. 
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We repeat the above plot, but now consider the total teleported sidepeak height (including vacuum noise) as a 
fraction of the input sidepeak height. 
 

 
Figure 21. The total teleported sidepeak height divided by the actual (input) height of the sidepeak. 

 
 
As expected, our inclusion of vacuum noise eventually gives us higher teleported sidepeaks than were originally 
input. 
 
 

5.2.5 Analytical work with the first-order correlation function 
We expect that in certain limits, the Furusawa teleportation protocol outlined should yield perfect teleportation of 
the first order correlation function, among other things. In this section, we work analytically with the first-order 
correlation functions to highlight this more explicitly. 
Our expression for the vacuum part of the correlation function is Eq. (5.31), under Gaussian filtering: 
 

 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) =

−𝜆𝜆𝛾𝛾𝑠𝑠
1 + 𝜆𝜆

𝐼𝐼 �𝐶𝐶,𝑑𝑑,
𝛾𝛾𝑠𝑠
2

(1 + 𝜆𝜆), 𝜏𝜏� + 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) (5.45) 
 

where we will be taking 𝐶𝐶 = �𝑑𝑑
𝑖𝑖
 as usual. Written out in full using Eqs. (5.18) and (5.21), this is: 

 

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) =

−𝜆𝜆𝛾𝛾𝑠𝑠
2(1 + 𝜆𝜆) exp�

𝛾𝛾𝑠𝑠(1 + 𝜆𝜆)
2

�
𝛾𝛾𝑠𝑠
𝑑𝑑
�

1 + 𝜆𝜆
4

� + 𝜏𝜏�� �1 − erf�
𝛾𝛾𝑠𝑠
√𝑑𝑑

�
1 + 𝜆𝜆
2√2

� + 𝜏𝜏�
𝑑𝑑
2
�� 

= + 
−𝜆𝜆𝛾𝛾𝑠𝑠

2(1 + 𝜆𝜆) exp�
𝛾𝛾𝑠𝑠(1 + 𝜆𝜆)

2
�
𝛾𝛾𝑠𝑠
𝑑𝑑
�

1 + 𝜆𝜆
4

� − 𝜏𝜏�� �1 − erf�
𝛾𝛾𝑠𝑠
√𝑑𝑑

�
1 + 𝜆𝜆
2√2

� − 𝜏𝜏�
𝑑𝑑
2
�� 

= + �
𝑑𝑑

2𝑖𝑖
exp�

−𝑑𝑑𝜏𝜏2

2 � 

(5.46) 
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No approximations have been made so far. 
 
We would like to make the approximation 𝛾𝛾𝑠𝑠 ≫ 𝑑𝑑 – that is, Bob’s Gaussian filter bandwidth 𝑑𝑑 should be ‘well 
within’ the squeezed bandwidth of light used in teleportation. Provided that the input bandwidth 𝛾𝛾𝑖𝑖𝑛𝑛  is also well 
within 𝑑𝑑, i.e. 𝑑𝑑 ≫ 𝛾𝛾𝑖𝑖𝑛𝑛 , we expect that this, along with the requirement 𝜆𝜆 ⟶ 1 (i.e. perfect squeezing), should 
yield perfect teleportation. These conditions on the bandwidths involved in teleportation are reported on by Noh 
in [7]. 
 
A quick way of doing this is simply to take 𝑦𝑦𝑠𝑠 ⟶ ∞, i.e. to consider that the squeezing bandwidth is quite large. 
Since the two integrals 𝐼𝐼(𝐶𝐶,𝑑𝑑, 𝜂𝜂, 𝜏𝜏) and 𝐼𝐼𝛿𝛿(𝐶𝐶, 𝑑𝑑, 𝜏𝜏) are related by 
 

 lim
𝜂𝜂⟶∞

𝜂𝜂
2
𝐼𝐼(𝐶𝐶, 𝑑𝑑, 𝜂𝜂, 𝜏𝜏) = 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) (5.47) 

 

we have that: 
 

 
lim
𝛾𝛾𝑠𝑠⟶∞

−𝜆𝜆𝛾𝛾𝑠𝑠
1 + 𝜆𝜆

𝐼𝐼 �𝐶𝐶,𝑑𝑑,
𝛾𝛾𝑠𝑠
2

(1 + 𝜆𝜆), 𝜏𝜏� =
−4𝜆𝜆

(1 + 𝜆𝜆)2 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) (5.48) 
 

Hence: 
 

 
lim
𝛾𝛾𝑠𝑠⟶∞

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) = �1 −

4𝜆𝜆
(1 + 𝜆𝜆)2� 𝐼𝐼𝛿𝛿(𝐶𝐶,𝑑𝑑, 𝜏𝜏) (5.49) 

 

This expression is true in the case where 𝐼𝐼 and 𝐼𝐼𝛿𝛿  have been evaluated for Lorentzian filters, because Eq. (5.47) 
holds for Lorentzian filtering as well. In fact, this approximation doesn’t depend on the explicit form of our 
filtering. 
It gives us an approximate expression for 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) in the large 𝛾𝛾𝑠𝑠  regime; for Gaussian filtering, 
this is: 
 

 
〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) ≈ � 𝑑𝑑
2𝑖𝑖

�1 −
4𝜆𝜆

(1 + 𝜆𝜆)2� exp�
−𝑑𝑑𝜏𝜏2

2 � (5.50) 

 

If we now allow 𝜆𝜆 ⟶ 1, this expression vanishes. By considering that 𝑑𝑑 ≫ 𝛾𝛾𝑖𝑖𝑛𝑛 , we see that Bob’s filtering won’t 
‘clip’ any of the input signal, so that we may consider the input field ℰ𝑖𝑖𝑛𝑛  as approximately unfiltered the teleporter 
output. We then have approximately: 
 

 
𝑔𝑔𝑜𝑜𝑢𝑢𝜕𝜕

(1) (𝜏𝜏) =
𝑔𝑔𝑖𝑖𝑛𝑛

(1)(𝜏𝜏)〈ℰ𝑖𝑖𝑛𝑛
† (0)ℰ𝑖𝑖𝑛𝑛 (0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶)

〈ℰ𝑖𝑖𝑛𝑛
† (0)ℰ𝑖𝑖𝑛𝑛 (0)〉𝑠𝑠𝑠𝑠 + 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (0)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶)
 (5.51) 

 

where we have removed superscripted 𝑏𝑏’s on the ℰ𝑖𝑖𝑛𝑛 ’s in accordance with the approximation 𝑑𝑑 ≫ 𝛾𝛾𝑖𝑖𝑛𝑛 . 
Hence, under the approximations: 
 

• 𝛾𝛾𝑠𝑠 ⟶ ∞, 
• 𝜆𝜆 ⟶ 1, and 
• 𝑑𝑑 ≫ 𝛾𝛾𝑖𝑖𝑛𝑛   

 

the terms 〈… 〉𝑉𝑉𝐴𝐴𝐶𝐶  vanish, and we see that 𝑔𝑔𝑜𝑜𝑢𝑢𝜕𝜕
(1) (𝜏𝜏) ⟶𝑔𝑔𝑖𝑖𝑛𝑛

(1)(𝜏𝜏); i.e. the first order correlation functions of the input 
field are recovered at the teleporter output. 
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Now as mentioned, this result doesn’t depend explicitly on the type of filtering used. To obtain a teleportation 
limit that is more relevant to Gaussian filtering, we instead take the limit 𝛾𝛾𝑠𝑠 ≫ 𝑑𝑑 by considering the limit  𝛾𝛾𝑠𝑠

𝑑𝑑
⟶

∞, or equivalently 𝑑𝑑
𝛾𝛾𝑠𝑠
⟶ 0. 

 
Then, taking 𝜏𝜏 to have some finite value, we see that allowing 𝛾𝛾𝑠𝑠

𝑑𝑑
⟶ ∞ in the expression Eq. (5.46) means that the 

error function arguments become very large. Now for 𝑥𝑥 ≫ 1, we have the approximation 
 

 
erf(𝑥𝑥) ≈ 1 −

1
𝑥𝑥√𝑖𝑖

exp(−𝑥𝑥2) (5.52) 
 

One can see the quality of this approximation in the first-order correlation function by viewing the plots in 
Appendix A. 
If we make the approximation Eq. (5.52) for both the error functions appearing in Eq. (5.46), we get the relation: 
 

 

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) ≈ � 𝑑𝑑

2𝑖𝑖
⎝

⎛1 −
4𝜆𝜆

(1 + 𝜆𝜆)2 − 4 �𝑑𝑑𝛾𝛾𝑠𝑠
�

2
𝜏𝜏2
⎠

⎞ exp�
−𝑑𝑑𝜏𝜏2

2 � (5.53) 

 

for Gaussian filtering in the 𝛾𝛾𝑠𝑠
𝑑𝑑
⟶ ∞ limit. This is consistent with Eq. (5.50) – it is similar in form, but has an 

extra term in the denominator. Hence we see that under the approximations: 
 

• 𝛾𝛾𝑠𝑠 𝑑𝑑⁄ ⟶ ∞, or 𝑑𝑑 𝛾𝛾𝑠𝑠⁄ ⟶ 0, 
• 𝜆𝜆 ⟶ 1, and 
• 𝑑𝑑 ≫ 𝛾𝛾𝑖𝑖𝑛𝑛   

 

we again have 𝑔𝑔𝑜𝑜𝑢𝑢𝜕𝜕
(1) (𝜏𝜏) ⟶ 𝑔𝑔𝑖𝑖𝑛𝑛

(1)(𝜏𝜏). 
 
A small note: one can see that Eq. (5.53) is undefined when 𝜏𝜏 = 𝛾𝛾𝑠𝑠

2𝑑𝑑
(1 + 𝜆𝜆). This is not a problem however, for 

the approximation we took was only meant to be valid when 𝛾𝛾𝑠𝑠
𝑑𝑑
≫ 𝜏𝜏, and 𝜏𝜏 = 𝛾𝛾𝑠𝑠

2𝑑𝑑
(1 + 𝜆𝜆) falls outside this range of 

validity. 
 
The  equivalent expression to Eq. (5.53) for Lorentzian filtering is given in [7]: 
 

 
〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 〉𝑉𝑉𝐴𝐴𝐶𝐶 ≈ 𝛾𝛾𝐵𝐵 �
1
2
�1 −

4𝜆𝜆
(1 + 𝜆𝜆)2� exp(−𝛾𝛾𝐵𝐵𝜏𝜏) −

4𝜆𝜆
(1 + 𝜆𝜆)3 �

𝛾𝛾𝐵𝐵
𝛾𝛾𝑠𝑠
� exp �−

𝛾𝛾𝑠𝑠
2

(1 + 𝜆𝜆)𝜏𝜏�� (5.54) 

 

 
 

5.3 Second-Order Correlation Functions for the output field 
The second order correlation function for the output field is 
 

 
𝑔𝑔𝑜𝑜𝑢𝑢𝜕𝜕

(2) =
〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (0)ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠   

〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (0)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠

2  (5.55) 

 

As in Eq. (5.06), ℰ𝑜𝑜𝑢𝑢𝜕𝜕 = ℰ𝐵𝐵𝑏𝑏 + ℰ𝑖𝑖𝑛𝑛𝑎𝑎𝑏𝑏 + ℰ𝐴𝐴∗𝑎𝑎𝑏𝑏  in the general case of filtering by both Alice and Bob. 
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Our task will be to evaluate the numerator – the denominator can be computed by setting 𝜏𝜏 = 0 in Eq. (5.42), and 
making use of Eq. (5.31) and the filtered version of Eq. (5.44). 
 
The input second-order correlation function looks like, for the parameters of Section 5.2.4: 

 
Figure 22. The second order correlation function for the resonance fluorescence field. 

 
See Eq. (2.152) of Carmichael [8]. Notice the highly antibunched result 𝑔𝑔(2)(0) = 0. 
 

5.3.1 Vacuum terms in the second order correlation function 
Let us write the squeezed fields in terms of their quadratures: 
 

 ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥 = ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥𝑋𝑋 + 𝑖𝑖ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥𝑌𝑌  (5.56) 
 

 ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 = ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦𝑋𝑋 + 𝑖𝑖ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦𝑌𝑌  (5.57) 
 

For such fields, both the 𝑋𝑋 and 𝑌𝑌 quadratures are random variables with a Gaussian distribution. It follows that ℰ𝐴𝐴 
and ℰ𝐵𝐵  (which are linear combinations of the squeezed fields ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑥𝑥  and ℰ𝐸𝐸𝑃𝑃𝑅𝑅𝑦𝑦 ) are complex Gaussian random 
variables as well. We now state a theorem that will simplify the evaluation of second-order correlation functions 
involving ℰ𝐴𝐴 and ℰ𝐵𝐵 . 
 
 
The Gaussian Moment Theorem 
We present here the Gaussian Moment Theorem (also known as the Gaussian moment factorisation) as given in 
Section 2.8.1 of [11]. 
The Gaussian Moment Theorem states that for 𝑁𝑁 Gaussian-distributed random variables 𝑋𝑋1,𝑋𝑋2, …𝑋𝑋𝑁𝑁 , moments to 
any order involving these variables can be reduced to combinations of second-order moments alone, provided the 
variables themselves have zero mean. 
That is, if 〈𝑋𝑋1〉 = 〈𝑋𝑋2〉 = ⋯ = 〈𝑋𝑋𝑁𝑁〉 = 0, then we have: 
 

〈𝑋𝑋1𝑋𝑋2 …𝑋𝑋𝑁𝑁〉 = �

𝑁𝑁!

�𝑁𝑁2� ! 2𝑁𝑁/2
{〈𝑋𝑋1𝑋𝑋2〉〈𝑋𝑋3𝑋𝑋4〉… }𝑠𝑠𝑦𝑦𝑚𝑚 , for 𝑁𝑁 even

0, for 𝑁𝑁 odd

� 

 

By 𝑠𝑠𝑦𝑦𝑚𝑚, we mean the symmetrised form of the product. 
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The particular result we need from this theorem is that, for variables 𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1,2,3,4 satisfying the conditions of 
the theorem, 
 

 〈𝑋𝑋1𝑋𝑋2𝑋𝑋3𝑋𝑋4〉 = 〈𝑋𝑋1𝑋𝑋2〉〈𝑋𝑋3𝑋𝑋4〉 + 〈𝑋𝑋1𝑋𝑋4〉〈𝑋𝑋2𝑋𝑋3〉 + 〈𝑋𝑋1𝑋𝑋3〉〈𝑋𝑋2𝑋𝑋4〉 (5.58) 
 
This result does apply to our vacuum fields, which of course have zero mean. If one applies this Theorem to the 
numerator of Eq. (5.55), it is possible to write that numerator as [7]: 
 

〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 + 2〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) 
 

+2〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕

† (0)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶) + 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (𝜏𝜏)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶)

2 + 〈ℰ𝑜𝑜𝑢𝑢𝜕𝜕
† (0)ℰ𝑜𝑜𝑢𝑢𝜕𝜕 (0)〉𝑠𝑠𝑠𝑠(𝑉𝑉𝐴𝐴𝐶𝐶)

2  
(5.59) 

 

where it is assumed that the input field is the resonance fluorescence one. 
All the terms involving 𝑉𝑉𝐴𝐴𝐶𝐶 can already be evaluated with the results obtained earlier in first-order correlation 
functions. It remains only to evaluate the first term of Eq. (5.59). 
 
 

5.3.2 The non-vacuum term in the second order correlation function 
 
Operator equation 
We begin by extending the analysis of Section 4.2. Consider an operator 𝑋𝑋(𝜕𝜕) that satisfies the same resonance 
fluorescence master equation as the system density operator. Note that, unlike 𝜌𝜌, the operator 𝑋𝑋 may not have unit 
trace. That is, 
 

 𝑑𝑑𝑋𝑋
𝑑𝑑𝜕𝜕

= −
𝑖𝑖𝜔𝜔𝐴𝐴

2
[𝜎𝜎𝑧𝑧 ,𝑋𝑋] +

𝑖𝑖Ω
2 �𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎+ + 𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝜎𝜎−,𝑋𝑋� +

𝛾𝛾
2

(2𝜎𝜎−𝑋𝑋𝜎𝜎+ − 𝜎𝜎+𝜎𝜎−𝑋𝑋 − 𝑋𝑋𝜎𝜎+𝜎𝜎−) (5.60) 
 

From this, we derive equations of motion for the matrix elements of 𝑋𝑋 in the |1〉, |2〉 basis: 
 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑋𝑋11 =

𝑖𝑖Ω
2
𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝑋𝑋21 −

𝑖𝑖Ω
2
𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝑋𝑋12 + 𝛾𝛾𝑋𝑋22  (5.61) 

 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑋𝑋22 =

𝑖𝑖Ω
2
𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝑋𝑋12 −

𝑖𝑖Ω
2
𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕𝑋𝑋21 − 𝛾𝛾𝑋𝑋22 (5.62) 

 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑋𝑋12 = 𝑖𝑖𝜔𝜔𝐴𝐴𝑋𝑋12 +

𝑖𝑖Ω
2
𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕(𝑋𝑋22 − 𝑋𝑋11)−

𝛾𝛾
2
𝑋𝑋12 (5.63) 

 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝑋𝑋21 = −𝑖𝑖𝜔𝜔𝐴𝐴𝑋𝑋21 −

𝑖𝑖Ω
2
𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕(𝑋𝑋22 − 𝑋𝑋11)−

𝛾𝛾
2
𝑋𝑋21 (5.64) 

 

The first two equations show that 𝑑𝑑
𝑑𝑑𝜕𝜕

(𝑋𝑋11 + 𝑋𝑋22) = 0, so the trace of 𝑋𝑋 is preserved in time: 
 

 𝑋𝑋11(𝜕𝜕) + 𝑋𝑋22(𝜕𝜕) = 𝑋𝑋11(0) + 𝑋𝑋22(0) (5.65) 
 

Due to this equation, we needn’t work with the four separate equations Eqs. (5.61) – (5.64), reducing them instead 
to three. We may write them collectively as: 
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𝑑𝑑
𝑑𝑑𝜕𝜕
�
𝑈𝑈
𝑉𝑉
𝑊𝑊
� =

⎝

⎜
⎛
−
𝛾𝛾
2

0 −
𝑖𝑖Ω
2

0 −
𝛾𝛾
2

𝑖𝑖Ω
2

−𝑖𝑖Ω 𝑖𝑖Ω −𝛾𝛾 ⎠

⎟
⎞
�
𝑈𝑈
𝑉𝑉
𝑊𝑊
�− 𝛾𝛾 �

0
0

𝑋𝑋11(0) + 𝑋𝑋22(0)
� (5.66) 

 

where: 
𝑈𝑈 = 𝑋𝑋�21 = 𝑋𝑋21𝑒𝑒𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕  
𝑉𝑉 = 𝑋𝑋�12 = 𝑋𝑋12𝑒𝑒−𝑖𝑖𝜔𝜔𝐴𝐴𝜕𝜕  
𝑊𝑊 = 𝑋𝑋22 − 𝑋𝑋11 

 
Let us write this equation as 
 

 𝑑𝑑
𝑑𝑑𝜕𝜕
𝒙𝒙 = 𝑴𝑴𝒙𝒙 + 𝒃𝒃 (5.67) 

 

We then have the solution 
 

 𝒙𝒙(𝜕𝜕) = −𝑴𝑴−1𝒃𝒃+ 𝑺𝑺−1exp(𝝀𝝀𝜕𝜕)�𝑺𝑺𝒙𝒙(0) + 𝑺𝑺𝑴𝑴−𝟏𝟏𝒃𝒃� (5.68) 
 

Once more, 𝑺𝑺 is a matrix that diagonalises 𝑴𝑴, and 𝝀𝝀 = 𝑺𝑺𝑴𝑴𝑺𝑺−𝟏𝟏. In fact, we do not need to rediagonalise anything, 
for the matrices 𝑺𝑺 and 𝑴𝑴 are precisely the same as those in Eq. (4.36), which we have already diagonalised. We 
thus obtain full solutions to Eqs. (5.61) –(5.64). These are listed in Appendix C. 
 
 
Structure of the calculation 
We want to evaluate the correlation 
 

 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  (5.69) 
 

which is not reducible to first-order moments by the Gaussian moment theorem (for the resonance fluorescence 
field at least). It is evaluated by a method due to Noh [7]. In [7], the Eq. (5.69) was evaluated taking into account 
filtering by both Alice and Bob. In the regime of no filtering by Alice, it is slightly simpler to evaluate, and we 
outline the calculation here. 
 
We begin with the case of Lorentzian filtering by Bob (and no filtering by Alice). Then, we have for 
〈ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  the expression: 

 

𝛾𝛾𝐵𝐵4𝛾𝛾𝑖𝑖𝑛𝑛2 lim
𝜕𝜕0⟶−∞

𝑒𝑒−𝛾𝛾𝐵𝐵 (4𝜕𝜕+2𝜏𝜏) � 𝑑𝑑𝜕𝜕1

𝜕𝜕

𝜕𝜕0

� 𝑑𝑑𝜕𝜕2

𝜕𝜕+𝜏𝜏

𝜕𝜕0

� 𝑑𝑑𝜕𝜕3

𝜕𝜕+𝜏𝜏

𝜕𝜕0

� 𝑑𝑑𝜕𝜕4〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉𝑒𝑒𝛾𝛾𝐵𝐵 (𝜕𝜕1+𝜕𝜕2+𝜕𝜕3+𝜕𝜕4)
𝜕𝜕

𝜕𝜕0

 

(5.70) 
 
The parameter 𝜕𝜕 is expected to disappear upon taking the limit indicated. Note that we wish to have normal 
ordering of operators in the integrand, in accordance with the rules of Section 3.5, as indicated by the explicit 
colons : : . 
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The procedure for evaluating this works as follows: 
 

• Break the region of integration in Eq. (5.70) up into the 4 × 3 × 2 × 1 = 24 regions of integration 
corresponding to all possible different time orderings of 𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4. 

• Apply the quantum regression theorem4

• Perform the integration indicated above, changing the integration bounds to reflect the particular time 
ordering. Call the result 𝑊𝑊𝑖𝑖 , where 𝑖𝑖 runs from 1 to 24. 

 to calculate 〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 in each of the 24 
cases. 

• Sum all 24 𝑊𝑊𝑖𝑖  to obtain the overall integral. 
 

We are quite fortunate, though. It turns out that it isn’t necessary to apply the quantum regression theorem 24 
times over. Instead it is applied to 3 master cases, and by allowing our integration to be a little general in each of 
these 3 cases, we can find the integral in Eq. (5.70) for all 24 time orderings. We do this now. 
 
Master Case 1. 𝒕𝒕𝟐𝟐 > 𝒕𝒕𝟑𝟑 > 𝒕𝒕𝟏𝟏 > 𝒕𝒕𝟒𝟒 
One finds, upon applying the quantum regression theorem, that [7]: 
 

 
〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(1)exp(−𝛾𝛾𝑘𝑘𝜏𝜏1)exp�−𝛾𝛾𝑖𝑖 𝜏𝜏2�exp(−𝛾𝛾𝑖𝑖𝜏𝜏3)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.71) 

 

The 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(1) are constant coefficients that are linear combinations of products of elements of the vectors 𝐹𝐹+, 𝐹𝐹−, 𝜋𝜋+, 

𝜋𝜋−, 𝐻𝐻, 𝐼𝐼 and 𝐽𝐽 defined in Appendix C. See equations B.20a-c of [7]; for completeness we have listed them in 
Appendix D. The (1) indicates master case 1. 
The variables 𝜏𝜏1, 𝜏𝜏2 and 𝜏𝜏3 correspond to the three positive time differences 
 

 𝜏𝜏1 = 𝜕𝜕1 − 𝜕𝜕4,   𝜏𝜏2 = 𝜕𝜕3 − 𝜕𝜕1,   𝜏𝜏3 = 𝜕𝜕2 − 𝜕𝜕3 (5.72) 
 

We now wish to perform the integration implied by Eq. (5.70), but with the particular time ordering indicated. We 
define a function 𝑆𝑆1(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) by: 
 

𝛾𝛾𝐵𝐵4𝛾𝛾𝑖𝑖𝑛𝑛2 lim
𝜕𝜕0⟶−∞

𝑒𝑒−𝛾𝛾𝐵𝐵 (4𝜕𝜕+𝑥𝑥+𝑦𝑦+𝑧𝑧+𝑤𝑤) � 𝑑𝑑𝜕𝜕1

𝜕𝜕+𝑥𝑥

𝜕𝜕0

� 𝑑𝑑𝜕𝜕2

𝜕𝜕+𝑦𝑦

𝜕𝜕0

� 𝑑𝑑𝜕𝜕3

𝜕𝜕+𝑧𝑧

𝜕𝜕0

� 𝑑𝑑𝜕𝜕4

𝜕𝜕+𝑤𝑤

𝜕𝜕0

𝑒𝑒−𝑎𝑎𝜏𝜏1−𝑏𝑏𝜏𝜏2−𝑐𝑐𝜏𝜏3+𝛾𝛾𝐵𝐵 (𝜕𝜕1+𝜕𝜕2+𝜕𝜕3+𝜕𝜕4) 

(5.73) 
 

where the subscript ‘1’ indicates the integration is to be performed under the time constraints of master case 1 – 
i.e., 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕1 > 𝜕𝜕4. To incorporate this time ordering, the integration should be written 
 

 
� 𝑑𝑑𝜕𝜕4

𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤

𝜕𝜕0

� 𝑑𝑑𝜕𝜕1

𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧

𝜕𝜕4

� 𝑑𝑑𝜕𝜕3

𝑚𝑚𝑦𝑦𝑧𝑧

𝜕𝜕1

� 𝑑𝑑𝜕𝜕2

𝑦𝑦

𝜕𝜕3

 (5.74) 
 

Changing integration variables from 𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3, 𝜕𝜕4 to 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, 𝜕𝜕4, we find that the integral part of Eq. (5.73) is: 
 

 
� 𝑑𝑑𝜕𝜕4

𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

�𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧 �−𝜕𝜕4

0
� 𝑑𝑑𝜏𝜏2

�𝜕𝜕+𝑚𝑚𝑦𝑦𝑧𝑧 �−(𝜏𝜏1+𝜕𝜕4)

0
� 𝑑𝑑𝜏𝜏3

(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕4)

0
 (5.75) 

 

whilst the integrand becomes 
 

 𝑒𝑒(3𝛾𝛾𝐵𝐵−𝑎𝑎)𝜏𝜏1+(2𝛾𝛾𝐵𝐵−𝑏𝑏)𝜏𝜏2+(𝛾𝛾𝐵𝐵−𝑐𝑐)𝜏𝜏3+(4𝛾𝛾𝐵𝐵 )𝜕𝜕4  (5.76) 
 

                                                           
4 This is a generalisation of the quantum regression theorem presented in Section 4.2. 
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The limit part in front still needs to be taken. We have followed the notation of [7]: 𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤  indicates the smallest 
of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 and 𝑤𝑤, and so on. There is also a small simplification – it will in fact always be the case that 2 of 𝑥𝑥,𝑦𝑦, 𝑧𝑧 
and 𝑤𝑤 are 0, whilst the remaining two are then 𝜏𝜏. Hence, we have 𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤 = 𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧 = 0 above. 
Now define 
 

 
𝑊𝑊1(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤) = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(1)𝑆𝑆1(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝛾𝛾𝑘𝑘 ,𝛾𝛾𝑖𝑖 , 𝛾𝛾𝑖𝑖)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.77) 

 

The contribution to 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  from the region 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕1 > 𝜕𝜕4 is then 𝑊𝑊1(0, 𝜏𝜏, 𝜏𝜏, 0). 
 
Master Case 2. 𝒕𝒕𝟐𝟐 > 𝒕𝒕𝟑𝟑 > 𝒕𝒕𝟒𝟒 > 𝒕𝒕𝟏𝟏 
We proceed exactly as in master case 1. In this new time regime, one finds 
 

 
〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(2)exp(−𝛾𝛾𝑘𝑘𝜏𝜏1)exp�−𝛾𝛾𝑖𝑖 𝜏𝜏2�exp(−𝛾𝛾𝑖𝑖𝜏𝜏3)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.78) 

 

where the constants 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(2) differ from 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(1). The 𝜏𝜏 variables differ now; they are 
 

 𝜏𝜏1 = 𝜕𝜕4 − 𝜕𝜕1,    𝜏𝜏2 = 𝜕𝜕3 − 𝜕𝜕4,   𝜏𝜏3 = 𝜕𝜕2 − 𝜕𝜕3 (5.79) 
 

Define 𝑆𝑆2(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) by the integral given in Eq. (5.73), but now carried out with 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕4 > 𝜕𝜕1.  
 
 
 
 
The integration should be written, to include this new time ordering, as: 
 

 
� 𝑑𝑑𝜕𝜕1

𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

�𝜕𝜕+𝑚𝑚𝑦𝑦𝑧𝑧𝑤𝑤 �−𝜕𝜕1

0
� 𝑑𝑑𝜏𝜏2

�𝜕𝜕+𝑚𝑚𝑦𝑦𝑧𝑧 �−(𝜏𝜏1+𝜕𝜕1)

0
� 𝑑𝑑𝜏𝜏3

(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕1)

0
 (5.80) 

 

whilst the integrand becomes 
 

 𝑒𝑒(3𝛾𝛾𝐵𝐵−𝑎𝑎)𝜏𝜏1+(2𝛾𝛾𝐵𝐵−𝑏𝑏)𝜏𝜏2+(𝛾𝛾𝐵𝐵−𝑐𝑐)𝜏𝜏3+(4𝛾𝛾𝐵𝐵 )𝜕𝜕1  (5.81) 
 

The limit is still taken. Remember that 𝜏𝜏1, 𝜏𝜏2 and 𝜏𝜏3 here are defined by Eq. (5.79), not Eq. (5.72). 
With the realisation that 𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤 = 𝑚𝑚𝑦𝑦𝑧𝑧𝑤𝑤 = 0 for all the cases we will be considering (as explained in master case 
1), we find (noting that 𝜕𝜕1 and 𝜕𝜕4 are just dummy integration variables) that 𝑆𝑆1 and 𝑆𝑆2 are exactly the same 
functions. Thus, in spite of the new time ordering being considered here, there is no need to do any new 
integration. However, we shall continue to distinguish the two functions notationally, even though they are the 
same. Define 
 

 
𝑊𝑊2(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤) = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(2)𝑆𝑆2(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝛾𝛾𝑘𝑘 ,𝛾𝛾𝑖𝑖 , 𝛾𝛾𝑖𝑖)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.82) 

 

The contribution to 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  from the region 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕4 > 𝜕𝜕1 is then 𝑊𝑊2(0, 𝜏𝜏, 𝜏𝜏, 0). 
 
 
 
 
 



61 
 

Master Case 3. 𝒕𝒕𝟐𝟐 > 𝒕𝒕𝟏𝟏 > 𝒕𝒕𝟑𝟑 > 𝒕𝒕𝟒𝟒 
In this new time ordering, we have 
 

 
〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(3)exp(−𝛾𝛾𝑘𝑘𝜏𝜏1)exp�−𝛾𝛾𝑖𝑖 𝜏𝜏2�exp(−𝛾𝛾𝑖𝑖𝜏𝜏3)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.83) 

 

where the constants 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(3) again can differ from 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(1) and 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(2). The 𝜏𝜏 variables are now: 

 

 𝜏𝜏1 = 𝜕𝜕3 − 𝜕𝜕4,    𝜏𝜏2 = 𝜕𝜕1 − 𝜕𝜕3,   𝜏𝜏3 = 𝜕𝜕2 − 𝜕𝜕1 (5.84) 
 

As before, define 𝑆𝑆3(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) by the integral given in Eq. (5.73), but now carried out with 𝜕𝜕2 > 𝜕𝜕1 > 𝜕𝜕3 >
𝜕𝜕4. The integration in Eq. (5.73) should be written, to include this new time ordering, as: 
 

 
� 𝑑𝑑𝜕𝜕4

𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧𝑤𝑤

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

�𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦𝑧𝑧 �−𝜕𝜕4

0
� 𝑑𝑑𝜏𝜏2

�𝜕𝜕+𝑚𝑚𝑥𝑥𝑦𝑦 �−(𝜏𝜏1+𝜕𝜕4)

0
� 𝑑𝑑𝜏𝜏3

(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕4)

0
 (5.85) 

 

whilst the integrand becomes 
 

 𝑒𝑒(3𝛾𝛾𝐵𝐵−𝑎𝑎)𝜏𝜏1+(2𝛾𝛾𝐵𝐵−𝑏𝑏)𝜏𝜏2+(𝛾𝛾𝐵𝐵−𝑐𝑐)𝜏𝜏3+(4𝛾𝛾𝐵𝐵 )𝜕𝜕4  (5.86) 
 

The limit is still taken. 
Once more, this integral is almost entirely identical to that defining 𝑆𝑆1. We see that 𝑆𝑆3 is exactly the same function 
as 𝑆𝑆1, but with the constant 𝑚𝑚𝑦𝑦𝑧𝑧  now replaced by 𝑚𝑚𝑥𝑥𝑦𝑦  - compare Eq. (5.85) with Eq. (5.75). Again, we don’t need 
to do any new integration here. Define 
 

 
𝑊𝑊3(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤) = � 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(3)𝑆𝑆3(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝛾𝛾𝑘𝑘 ,𝛾𝛾𝑖𝑖 , 𝛾𝛾𝑖𝑖)
4

𝑖𝑖 ,𝑖𝑖 ,𝑘𝑘=1

 (5.87) 

 

The contribution to 〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  from the region 𝜕𝜕2 > 𝜕𝜕1 > 𝜕𝜕3 > 𝜕𝜕4 is then 𝑊𝑊3(0, 𝜏𝜏, 𝜏𝜏, 0). 
 
 
The remaining time orderings 
Note that, for all 3 master cases, we have 
 

 〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 = 〈𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4)〉 (5.88) 
 

i.e., no changes need to be made to normally order the 4-operator product in the 〈… 〉. Let us consider a time 
ordering where this is not the case: the ordering 𝜕𝜕1 > 𝜕𝜕3 > 𝜕𝜕2 > 𝜕𝜕4. Then, 
 

 〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉 = 〈𝜎𝜎+(𝜕𝜕2)𝜎𝜎+(𝜕𝜕1)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4)〉 (5.89) 
 

If we imagine now performing the integration implied by Eq. (5.70) for this particular time ordering, we find that 
upon changing the order of integration from 𝑑𝑑𝜕𝜕1𝑑𝑑𝜕𝜕2𝑑𝑑𝜕𝜕3𝑑𝑑𝜕𝜕4 to 𝑑𝑑𝜕𝜕2𝑑𝑑𝜕𝜕1𝑑𝑑𝜕𝜕3𝑑𝑑𝜕𝜕4 (without changing the integration 
bounds), that the result of the integration is just 𝑊𝑊1(𝜏𝜏, 0, 𝜏𝜏, 0). Note that the variables 𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3 and 𝜕𝜕4 are only 
dummy variables, and one can relabel 𝜕𝜕2 as 𝜕𝜕1 and 𝜕𝜕1 and 𝜕𝜕2 to further highlight the connection. 
 
We also note that complex conjugation of the operator expectation 〈… 〉 takes the Hermitian conjugate of the 4-
operator product inside. Consider 𝑊𝑊1(0, 𝜏𝜏, 𝜏𝜏, 0), which evaluates Eq. (5.70) in the regime 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕1 > 𝜕𝜕4. The 
operator expectation is normally ordered as in Eq. (5.88). Then, taking the complex conjugate, 𝑊𝑊1

∗(0, 𝜏𝜏, 𝜏𝜏, 0) 
again evaluates Eq. (5.70), but with a new integrand 〈𝜎𝜎+(𝜕𝜕4)𝜎𝜎+(𝜕𝜕3)𝜎𝜎−(𝜕𝜕2)𝜎𝜎−(𝜕𝜕1)〉𝑒𝑒𝛾𝛾𝐵𝐵 (𝜕𝜕1+𝜕𝜕2+𝜕𝜕3+𝜕𝜕4) (still with the 
time ordering 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕1 > 𝜕𝜕4). Then, if we relabel the dummy integration variables in the following way: 

𝜕𝜕4 ⟶ 𝜕𝜕1, 𝜕𝜕3 ⟶ 𝜕𝜕2, 𝜕𝜕2 ⟶ 𝜕𝜕3, 𝜕𝜕1 ⟶ 𝜕𝜕4 
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we see that 𝑊𝑊1
∗(0, 𝜏𝜏, 𝜏𝜏, 0) in fact evaluates Eq. (5.70) with the time ordering 𝜕𝜕3 > 𝜕𝜕2 > 𝜕𝜕4 > 𝜕𝜕1. 

 
The normal ordering and complex conjugation just mentioned allow us to extend our 3 master cases to cover all 
24 time orderings. Each master case covers 4 time orderings by taking advantage of normal ordering , which 
extends to 8 time orderings by taking the complex conjugate of each. Given that there are 3 master cases, we get 
8 × 3 = 24 time orderings in total, without any repetitions. To make this explicit, we now give a table showing 
all 24 time orderings, and the appropriate function with which to evaluate each. The 3 master cases are indicated 
in bold. For convenience, we just provide the 𝜕𝜕 subscripts – i.e., 1 > 2 > 3 > 4 means 𝜕𝜕1 > 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕4. 
 
________________________________________________________________________________________ 
 
Time ordering  Relevant 𝑊𝑊-function  Time ordering  Relevant 𝑊𝑊-function 
  

1 > 2 > 3 > 4  𝑊𝑊3(𝜏𝜏, 0, 𝜏𝜏, 0)   3 > 1 > 2 > 4  𝑊𝑊2
∗(𝜏𝜏, 0, 𝜏𝜏, 0) 

1 > 2 > 4 > 4  𝑊𝑊3(𝜏𝜏, 0,0, 𝜏𝜏)   3 > 1 > 4 > 2  𝑊𝑊1
∗(𝜏𝜏, 0, 𝜏𝜏, 0) 

1 > 3 > 2 > 4  𝑊𝑊1(𝜏𝜏, 0, 𝜏𝜏, 0)   3 > 2 > 1 > 4  𝑊𝑊2
∗(0, 𝜏𝜏, 𝜏𝜏, 0) 

1 > 3 > 4 > 2  𝑊𝑊2(𝜏𝜏, 0, 𝜏𝜏, 0)   3 > 2 > 4 > 1  𝑊𝑊1
∗(0, 𝜏𝜏, 𝜏𝜏, 0) 

1 > 4 > 2 > 3  𝑊𝑊1(𝜏𝜏, 0,0, 𝜏𝜏)   3 > 4 > 1 > 2  𝑊𝑊3
∗(𝜏𝜏, 0, 𝜏𝜏, 0) 

1 > 4 > 3 > 2  𝑊𝑊2(𝜏𝜏, 0,0, 𝜏𝜏)   3 > 4 > 2 > 1  𝑊𝑊3
∗(0, 𝜏𝜏, 𝜏𝜏, 0) 

 
𝟐𝟐 > 1 > 3 > 4  𝑾𝑾𝟑𝟑(𝟎𝟎, 𝝉𝝉, 𝝉𝝉,𝟎𝟎)   4 > 1 > 2 > 3  𝑊𝑊2

∗(𝜏𝜏, 0,0, 𝜏𝜏) 
2 > 1 > 4 > 3  𝑊𝑊3(0, 𝜏𝜏, 0, 𝜏𝜏)   4 > 1 > 3 > 2  𝑊𝑊1

∗(𝜏𝜏, 0,0, 𝜏𝜏) 
𝟐𝟐 > 3 > 1 > 4  𝑾𝑾𝟏𝟏(𝟎𝟎, 𝝉𝝉, 𝝉𝝉,𝟎𝟎)   4 > 2 > 1 > 3  𝑊𝑊2

∗(0, 𝜏𝜏, 0, 𝜏𝜏) 
𝟐𝟐 > 3 > 4 > 1  𝑾𝑾𝟐𝟐(𝟎𝟎, 𝝉𝝉, 𝝉𝝉,𝟎𝟎)   4 > 2 > 3 > 1  𝑊𝑊1

∗(0, 𝜏𝜏, 0, 𝜏𝜏) 
2 > 4 > 3 > 1  𝑊𝑊2(0, 𝜏𝜏, 0, 𝜏𝜏)   4 > 3 > 1 > 2  𝑊𝑊3

∗(𝜏𝜏, 0,0, 𝜏𝜏) 
2 > 4 > 1 > 3  𝑊𝑊1(0, 𝜏𝜏, 0, 𝜏𝜏)   4 > 3 > 2 > 1  𝑊𝑊3

∗(0, 𝜏𝜏, 0, 𝜏𝜏)  
________________________________________________________________________________________ 
 
 
The correlation function can then be calculated succinctly as 
 

〈ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠 = �[𝑊𝑊𝑛𝑛(0, 𝜏𝜏, 𝜏𝜏, 0) +𝑊𝑊𝑛𝑛(0, 𝜏𝜏, 0, 𝜏𝜏) + 𝑊𝑊𝑛𝑛(𝜏𝜏, 0, 𝜏𝜏, 0) + 𝑊𝑊𝑛𝑛(𝜏𝜏, 0,0, 𝜏𝜏)]
4

𝑛𝑛=1

+ CC 

(5.90) 
 
where CC indicates the complex conjugate of the first term. 
 
Application to Gaussian filtering 
There is no difference in the structure of the calculation when we go over to Gaussian filtering. We find that 
〈ℰ𝑖𝑖𝑛𝑛

†𝑏𝑏(0)ℰ𝑖𝑖𝑛𝑛
†𝑏𝑏(𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (𝜏𝜏)ℰ𝑖𝑖𝑛𝑛𝑏𝑏 (0)〉𝑠𝑠𝑠𝑠  is given by 

 

𝐶𝐶4𝛾𝛾𝑖𝑖𝑛𝑛2 lim
𝜕𝜕0⟶−∞

� 𝑑𝑑𝜕𝜕1

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕2

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕3

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕4〈:𝜎𝜎+(𝜕𝜕1)𝜎𝜎+(𝜕𝜕2)𝜎𝜎−(𝜕𝜕3)𝜎𝜎−(𝜕𝜕4): 〉𝑒𝑒−𝑑𝑑(𝜕𝜕−𝜕𝜕1)2−𝑑𝑑(𝜕𝜕+𝜏𝜏−𝜕𝜕2)2−𝑑𝑑(𝜕𝜕+𝜏𝜏−𝜕𝜕3)2−𝑑𝑑(𝜕𝜕−𝜕𝜕4)2
∞

𝜕𝜕0

 

(5.91) 
 

We need only to redefine our functions 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3. We have, for 𝑆𝑆1(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐), the function: 
 

𝐶𝐶4𝛾𝛾𝑖𝑖𝑛𝑛2 lim
𝜕𝜕0⟶−∞

� 𝑑𝑑𝜕𝜕1

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕2

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕3

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕4

∞

𝜕𝜕0

𝑒𝑒−𝑎𝑎𝜏𝜏1−𝑏𝑏𝜏𝜏2−𝑐𝑐𝜏𝜏3−𝑑𝑑�(𝜕𝜕+𝑥𝑥)−𝜕𝜕1�
2−𝑑𝑑�(𝜕𝜕+𝑦𝑦)−𝜕𝜕2�

2−𝑑𝑑�(𝜕𝜕+𝑧𝑧)−𝜕𝜕3�
2−𝑑𝑑�(𝜕𝜕+𝑤𝑤)−𝜕𝜕4�

2
 

(5.92) 
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where the integration is to be done in the time ordering 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕1 > 𝜕𝜕4. Recall that 𝐶𝐶 = �𝑑𝑑
𝑖𝑖
. The 𝜏𝜏 variables 

are still defined by Eq. (5.72). Incorporating the time ordering can be done by rewriting the integration as 
 

 
� 𝑑𝑑𝜕𝜕4

∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕1

∞

𝜕𝜕4

� 𝑑𝑑𝜕𝜕3

∞

𝜕𝜕1

� 𝑑𝑑𝜕𝜕2

∞

𝜕𝜕3

 (5.93) 
 

Or, in terms of the variables 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3 and 𝜕𝜕4: 
 

 
� 𝑑𝑑𝜕𝜕4

∞

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

∞

0
� 𝑑𝑑𝜏𝜏2

∞

0
� 𝑑𝑑𝜏𝜏3

∞

0
 (5.94) 

 

The integrand becomes, in these variables: 
 

 𝑒𝑒−𝑎𝑎𝜏𝜏1−𝑏𝑏𝜏𝜏2−𝑐𝑐𝜏𝜏3−𝑑𝑑�(𝜕𝜕+𝑥𝑥)−(𝜏𝜏1+𝜕𝜕4)�
2−𝑑𝑑�(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜏𝜏3+𝜕𝜕4)�

2−𝑑𝑑�(𝜕𝜕+𝑧𝑧)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕4)�
2−𝑑𝑑�(𝜕𝜕+𝑤𝑤)−𝜕𝜕4�

2
 (5.95) 

 

For 𝑆𝑆2(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐), we must evaluate Eq. (5.92) with the time ordering 𝜕𝜕2 > 𝜕𝜕3 > 𝜕𝜕4 > 𝜕𝜕1. The integral part 
should be written 
 

 
� 𝑑𝑑𝜕𝜕1

∞

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

∞

0
� 𝑑𝑑𝜏𝜏2

∞

0
� 𝑑𝑑𝜏𝜏3

∞

0
 (5.96) 

 

where the 𝜏𝜏 variables are given by Eq. (5.79) now. The integrand is 
 

 𝑒𝑒−𝑎𝑎𝜏𝜏1−𝑏𝑏𝜏𝜏2−𝑐𝑐𝜏𝜏3−𝑑𝑑�(𝜕𝜕+𝑥𝑥)−𝜕𝜕1�
2−𝑑𝑑�(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜏𝜏3+𝜕𝜕1)�

2−𝑑𝑑�(𝜕𝜕+𝑧𝑧)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕1)�
2−𝑑𝑑�(𝜕𝜕+𝑤𝑤)−(𝜏𝜏1+𝜕𝜕1)�

2
 (5.97) 

 

Lastly, for 𝑆𝑆3(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐), we evaluate Eq. (5.92) with time ordering 𝜕𝜕2 > 𝜕𝜕1 > 𝜕𝜕3 > 𝜕𝜕4. The integral part is 
 

 
� 𝑑𝑑𝜕𝜕4

∞

𝜕𝜕0

� 𝑑𝑑𝜏𝜏1

∞

0
� 𝑑𝑑𝜏𝜏2

∞

0
� 𝑑𝑑𝜏𝜏3

∞

0
 (5.98) 

 

with the 𝜏𝜏 variables given by Eq. (5.84); the integrand is 
 

 𝑒𝑒−𝑎𝑎𝜏𝜏1−𝑏𝑏𝜏𝜏2−𝑐𝑐𝜏𝜏3−𝑑𝑑�(𝜕𝜕+𝑥𝑥)−(𝜏𝜏1+𝜏𝜏2+𝜕𝜕4)�
2−𝑑𝑑�(𝜕𝜕+𝑦𝑦)−(𝜏𝜏1+𝜏𝜏2+𝜏𝜏3+𝜕𝜕4)�

2−𝑑𝑑�(𝜕𝜕+𝑧𝑧)−(𝜏𝜏1+𝜕𝜕4)�
2−𝑑𝑑�(𝜕𝜕+𝑤𝑤)−𝜕𝜕4�

2
 (5.99) 

 

Comparison of the 3 master case integrands given by Eqs. (5.95), (5.97) and (5.99) show us that in fact, once 
𝑆𝑆1(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is found, we have: 
 

 𝑆𝑆2(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 𝑆𝑆1(𝑤𝑤,𝑦𝑦, 𝑧𝑧, 𝑥𝑥|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) (5.100) 
 

 𝑆𝑆3(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 𝑆𝑆1(𝑧𝑧,𝑦𝑦, 𝑥𝑥,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐) (5.101) 
 

So our only work is done in evaluating 𝑆𝑆1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,𝑤𝑤|𝑎𝑎, 𝑏𝑏, 𝑐𝑐). 
 
There appears to be at least some difficulty in evaluating this integral. The process (Appendix B) for evaluating 
the two-time filtering integral doesn’t generalise easily to cover the integral here. Looking ahead to Appendix B, 
it is noted that the integral was only possible because we allowed 𝜕𝜕0 ⟶−∞ prior to doing the second integration, 
rather than taking that limit post-integration. That was not a problem at the time, and it allowed us to make use of 
the result in Aside 2 of that Appendix. However, one sees that we cannot do the same thing here, for the lower 
bounds (for example, in Eq. (5.93)) are not −∞, and must be kept general.  
 
Due to time constraints, we have not performed this integration. The aim of this section has been to outline the 
process for calculating the second-order correlation function, showing how it works in the regime of no filtering 
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by Alice. For further details, see Appendices B and C of [7], although note that [7] considers the more general 
case of filtering by Alice, and hence is much more involved than the calculation presented above. Also note that 
we have not used the symbols 𝑊𝑊 and 𝑆𝑆 in the same context as [7]. 
 

5.4 Other filtering possibilities 
One of the conclusions from our investigations in Gaussian filtering was that a Gaussian filter of larger bandwidth 
is capable of providing essentially the same performance as a Lorentzian of smaller bandwidth. There is another 
way of achieving a similar result, and that is by cascading several Lorentzian filters of larger bandwidth to create 
an overall filter of smaller bandwidth. From a theoretical point of view, this is also slightly more appealing than 
Gaussian filtering because we don’t have the problem of an acausal impulse response. We can show briefly how 
this works. 
In frequency space, the real part of a Lorentzian filter having bandwidth 𝛾𝛾𝐵𝐵  is 
 

 1

1 + �𝜔𝜔𝛾𝛾𝐵𝐵
�

2 (5.102) 

 

excluding a multiplicative factor of 1
2𝑖𝑖

 arising from our particular Fourier transform (see Eq. (5.38)). The half-
width of this filter is precisely 𝛾𝛾𝐵𝐵 . 
If we cascade 𝑛𝑛 such filters, of identical half-width 𝛾𝛾𝐵𝐵 , the resulting filter is (in frequency space) 
 

 1

�1 + �𝜔𝜔𝛾𝛾𝐵𝐵
�

2
�
𝑛𝑛  (5.103) 

 

which has an overall half-width of 
 

 
𝛾𝛾𝐵𝐵�√2𝑛𝑛 − 1 (5.104) 

 

which is smaller than 𝛾𝛾𝐵𝐵  when 𝑛𝑛 > 1. 
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Chapter 6 

Conclusions and future directions 
 
 
 
 
 
 
 
Summary of the dissertation 
Chapter 1 set forth the structure of the dissertation, and clarified a little what quantum teleportation actually is, 
distinguishing it clearly from any notions of far-fetched science fiction. With that out of the way, Chapter 2 
moved on to look at the original Bennett et al. protocol of [1], this being of historical significance and also key in 
highlighting many of the important ingredients in quantum teleportation. One such ingredient of particular note 
was entanglement, which was also explored in detail, before covering Vaidman’s teleportation protocol for 
continuous variables [6]. 
Chapter 3 set off in a different direction altogether, covering many of the unique properties of light describable 
only in a true quantum setting, in preparation for the description of the Furusawa protocol of Chapter 5 [2]. 
Chapter 4 gave the correlation functions for squeezed vacuum fields, as generated by an optical parametric 
oscillator, and we also worked through in detail the calculation of the resonance fluorescence field correlation 
functions, both to compute the field quadrature correlation functions that would be used in Chapter 5, and to 
highlight some of the interesting physics behind the calculation, such as the Quantum Regression Theorem. 
Chapter 5 contained the bulk of the numerical work in this dissertation. We provided the integrals necessary for 
Gaussian filtering in the Furusawa protocol, going on to compare both the vacuum and resonance fluorescence 
spectra that resulted from matched-bandwidth Lorentzian and Gaussian filtering. We then ventured on to explore 
how much vacuum noise each filter type lets in, and how well each filter is capable of teleporting the signal part 
of the fluorescence spectrum sidepeaks. 
We also covered the details needed to evaluate the second-order correlation function for the resonance 
fluorescence field, but were unable to put this into practice at the time of writing. 
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Conclusions 
By looking at the vacuum spectra of Chapter 5 (Figs. 6 – 9) we were able to see that Gaussian filtering is more 
successful at cutting out vacuum noise in the spectrum wings, compared to Lorentzian filtering of the same half-
width. Hand-in-hand with this, we saw that in teleporting the resonance fluorescence field, the maximum amount 
of vacuum noise let in by a Lorentzian filter is always greater than that found with a Gaussian filter of the same 
half-width (Fig. 18). 
 
As one may well have expected, we found an inverse relationship between sidepeak loss in the teleported 
resonance fluorescence spectrum, and maximum vacuum noise let in during teleportation – that is, a small 
sidepeak loss necessarily went hand-in-hand with a larger amount of vacuum noise let in. However, as was seen 
in Fig. 19, the Gaussian filter still performed better than its Lorentzian counterpart – it was seen that for a given 
amount of vacuum noise let in, use of a Gaussian filter resulted in less sidepeak loss. 
 
The Gaussian filter also performed better when it came to considering the amount of input signal (rather than 
vacuum noise) present in the teleported sidepeaks. This was investigated by looking at the sidepeak loss using the 
input/output fields 𝑌𝑌 correlation functions. There we saw that, if one wishes the teleported sidepeak signal (less 
any vacuum noise let in) to be some given percentage (<100%) of the input signal, a Gaussian filter of larger half-
width can achieve the same result Lorentzian filtering of a smaller half-wdith. See Fig. 20. This was also the case 
for the total output spectrum (not just its 𝑌𝑌 correlation); see Fig. 17. 
 
The filtering integrals of Eqs. (5.18) and (5.21) had derivations that were reasonably involved – see Appendix A. 
However, we were able to show analytically that, in certain limits, perfect teleportation can indeed be obtained 
with these integrals, as one means of a check on our work (Section 5.2.5). We showed briefly how cascaded 
Lorentzian filters afford a means of creating an overall filter of less half-width from filters of larger half-widths. 
 
 
 
 
 
Future Directions 
There are a few extensions of the work done in this report, which we mention briefly here. 
 
The method outlined in Section 5.3 could be properly implemented to look at the teleported second order 
correlation function under Gaussian filtering. It would be interesting to see whether or not the Gaussian’s ability 
to cut out high frequency noise very effectively allows the second order correlation function to be teleported with 
better quality than in Lorentzian filtering. 
 
The possibility of using other filter types could be followed up on. We mentioned in Section 5.4 the possibility of 
using cascaded Lorentzian filtering. Not only does this generate a filter of smaller overall half-width from a series 
of larger half-width filters, it also gives a filter that falls off faster at higher frequencies than an ordinary 
Lorentzian filter, and is not acausal. One could explore first-order and second-order correlation functions for 
these. 
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Appendices 
 

Appendix A 
We give a few properties of the error function here. A good list of error function properties is given in [18]. 
 
The error function is a non-elementary function defined by 
 

erf(𝑧𝑧) =
2
√𝑖𝑖

� exp(−𝜕𝜕2)𝑑𝑑𝜕𝜕
𝑧𝑧

0
 

 

For small arguments 𝑥𝑥 ≪ 1, the error function can be calculated from 
 

erf(𝑥𝑥) =
1
√𝑖𝑖

exp(−𝑥𝑥2)�
(2𝑥𝑥)2𝑛𝑛+1

(2𝑛𝑛 + 1)‼

∞

𝑛𝑛=0

 

=
2
√𝑖𝑖

exp(−𝑥𝑥2 )�𝑥𝑥 +
2𝑥𝑥3

3
+

4𝑥𝑥5

15
+ ⋯� 

 

The error function has the asymptotic series (as 𝑥𝑥 ⟶ ∞) 
 

erf(𝑥𝑥)~  1 −
exp(−𝑥𝑥2)

√𝑖𝑖
�

(−1)𝑛𝑛(2𝑛𝑛 − 1)‼
2𝑛𝑛

∞

𝑛𝑛=0

𝑥𝑥−(2𝑛𝑛+1) 

= 1 −
exp(−𝑥𝑥2)

√𝑖𝑖
�

1
𝑥𝑥
−

1
2𝑥𝑥3 +

3
4𝑥𝑥5 + ⋯� 

 

The RHS is hence an approximation to the error function for large arguments; we have used the first term of this 
series in previous sections. 
 
The integral definition for the error function above is valid for complex arguments. In terms of actually 
computing its value for complex arguments, it is convenient to split into real and imaginary parts. Write 
 

erf(𝑎𝑎 + 𝑖𝑖𝑏𝑏) =
2
√𝑖𝑖

� exp(−𝜕𝜕2)𝑑𝑑𝜕𝜕
𝑎𝑎+𝑏𝑏𝑖𝑖

0
 

 

Upon making the substitution 𝜕𝜕 = (𝑎𝑎 + 𝑖𝑖𝑏𝑏)𝑢𝑢, and writing the resulting complex exponential in terms of cosines 
and sines, this becomes 
 

erf(𝑎𝑎 + 𝑏𝑏𝑖𝑖) =
2
√𝑖𝑖

� exp�(𝑏𝑏2 − 𝑎𝑎2)𝑢𝑢2��𝑎𝑎cos(2𝑎𝑎𝑏𝑏𝑢𝑢2) + 𝑏𝑏sin(2𝑎𝑎𝑏𝑏𝑢𝑢2)�𝑑𝑑𝑢𝑢
1

0
 

= +𝑖𝑖
2
√𝑖𝑖

� exp�(𝑏𝑏2 − 𝑎𝑎2)𝑢𝑢2�
1

0
�𝑏𝑏cos(2𝑎𝑎𝑏𝑏𝑢𝑢2) − 𝑎𝑎sin(2𝑎𝑎𝑏𝑏𝑢𝑢2)�𝑑𝑑𝑢𝑢 

 

which involves only real-valued integrals. Computationally, when required, these integrals were performed 
numerically in Matlab. This was done using the quad function which uses adaptive Simpson quadrature, and has a 
numerical error of < 10−6. 
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For purely imaginary arguments: 

erf(𝑏𝑏𝑖𝑖) = 𝑖𝑖𝑏𝑏
2
√𝑖𝑖

� exp(𝑏𝑏2𝑢𝑢2)
1

0
𝑑𝑑𝑢𝑢 

 
 
Note that our filtering integral Eq. (5.18) involves the terms of the form 

𝑦𝑦 = exp(𝑥𝑥) �1 − erf�√𝑥𝑥�� 

where, for example, 𝑥𝑥 = 𝜂𝜂2

2𝑑𝑑
. An interesting point is that computational difficulties arise if we attempt to evaluate 

𝑦𝑦 for large 𝑥𝑥 values. This is because 𝑦𝑦 then involves the product of a large and a very small number. We look into 
this now. 
 
The function 𝑦𝑦 is definitely not unbounded – in fact as 𝑥𝑥 ⟶ ∞, we have: 
 

lim
𝑥𝑥⟶∞

𝑦𝑦 = lim
𝑥𝑥⟶∞

1 − erf�√𝑥𝑥�
exp(−𝑥𝑥) = lim

𝑥𝑥⟶∞

1
√𝑖𝑖𝑥𝑥

= 0 
 

where at the second equality, l’Hopitals Rule was used. Below we plot the exact function 𝑦𝑦, and also its 
approximation (made as in Eq. (5.52)), which is 𝑦𝑦 = 1 √𝑖𝑖𝑥𝑥⁄ . 

 
Figure 23: The function 𝑦𝑦 = exp(𝑥𝑥) �1 − erf�√𝑥𝑥�� is in blue. Computationally, it behaves anomalously around 𝑥𝑥 = 28 and above. The 
approximation 𝑦𝑦 = 1 √𝑖𝑖𝑥𝑥⁄  to this function is shown in green. A close-up of the anomalous behaviour region is shown on the right. 
 
 
One can see that for values of 𝑥𝑥 larger than about 28, the computer is no longer able to calculate 𝑦𝑦 accurately. At 
this point, exp(28) is of the order 1012, while 1 − erf�√28� is of the order 10−14. 
 
This raises some issues when we are using Gaussian filtering, when 𝜂𝜂

2

2𝑑𝑑
 is quite large. It turns out that this is not a 

problem that arises when vacuum spectra are considered – this is because terms of the form 
 exp(𝑥𝑥) �1 − erf�√𝑥𝑥�� just mentioned are imaginary for the vacuum and thus are eliminated when we take the 
real part – see Eq. (5.36). Difficulties would show up in the imaginary part of that spectrum, however. 
For the Mollow triplet, the situation is not so simple – here 𝜂𝜂 can be complex, so these terms are not necessarily 
eliminated when we consider the spectrum. However, the complex 𝜂𝜂 values that would cause any problems turn 
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out to be much smaller than those in the vacuum, so we again do not have this difficulty. It is something to be 
aware of, however. 
 

Appendix B 
In this appendix we give a full derivation of the filtering integral Eq. (5.18): 
 

𝐼𝐼 = lim
𝜕𝜕0⟶∞

𝐶𝐶2 � 𝑑𝑑𝜕𝜕′
∞

𝜕𝜕0

� 𝑑𝑑𝜕𝜕′′
∞

𝜕𝜕0

exp �−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2� exp�−𝜂𝜂�𝜕𝜕 ′ − 𝜕𝜕′′�� 

 

What follows is by no means intended to be the simplest way to perform this integral. We have merely done it 
directly. 
The region of integration is the semi-infinite shaded region below: 
 

 
Now we have: 

�𝜕𝜕 ′ − 𝜕𝜕′′� = �𝜕𝜕
′ − 𝜕𝜕 ′′, 𝜕𝜕 ′ ≥ 𝜕𝜕′′
𝜕𝜕 ′′ − 𝜕𝜕 ′, 𝜕𝜕 ′ < 𝜕𝜕′′

� 
 

The first line of this applies to the upper triangular part of the region; the second line to the lower part. We split 
the integral up over precisely these regions; (excluding the limit for now): 
 

𝐼𝐼 = 𝐼𝐼𝑙𝑙𝑜𝑜𝑤𝑤𝑒𝑒𝑟𝑟 + 𝐼𝐼𝑢𝑢𝑑𝑑𝑑𝑑𝑒𝑒𝑟𝑟  
 

𝐼𝐼 = 𝐶𝐶2 � � exp �−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂�𝜕𝜕 ′′ − 𝜕𝜕′�� 𝑑𝑑𝜕𝜕′𝑑𝑑𝜕𝜕′′
𝜕𝜕′′

𝜕𝜕0

∞

𝜕𝜕0

 

= +𝐶𝐶2 � � exp �−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂�𝜕𝜕 ′ − 𝜕𝜕′′�� 𝑑𝑑𝜕𝜕′′𝑑𝑑𝜕𝜕′
𝜕𝜕′

𝜕𝜕0

∞

𝜕𝜕0

 

 

Expand the argument of the first exponential: −𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂�𝜕𝜕 ′′ − 𝜕𝜕′�, and write it as: 
 

[−𝑑𝑑]�𝒕𝒕′�𝟐𝟐 + [2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂](𝒕𝒕′) + �−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂𝜕𝜕′′� 
 

We have written it as a quadratic in 𝜕𝜕′ as that is our first integration variable in the first integral. 
Likewise for the argument of the second exponential: 
 

−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂�𝜕𝜕 ′ − 𝜕𝜕′′� = [−𝑑𝑑]�𝒕𝒕′′�𝟐𝟐 + [2𝑑𝑑𝜕𝜕 + 𝜂𝜂](𝒕𝒕′′) + �−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′� 
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________________________________________________________________________________________ 
Aside 1 
The normalized error function is  

erf(𝑥𝑥) =
2
√𝑖𝑖

� exp(−𝜕𝜕2)𝑑𝑑𝜕𝜕
𝑥𝑥

0
 

 
The normalization is such that erf(𝑥𝑥) ⟶ 1 as 𝑥𝑥 ⟶ ∞, and erf(𝑥𝑥) ⟶−1 as 𝑥𝑥 ⟶ −∞. 
We write: 

𝐸𝐸(𝑚𝑚,𝑛𝑛) = � exp(−𝜕𝜕2)𝑑𝑑𝜕𝜕 =
√𝑖𝑖
2 �erf(𝑛𝑛) − erf(𝑚𝑚)�

𝑛𝑛

𝑚𝑚
 

 

With this notation, we find that, for constants 𝑎𝑎 and 𝑏𝑏 (𝑎𝑎 > 0): 
 

� exp(−𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥)
𝑛𝑛

𝑚𝑚
𝑑𝑑𝑥𝑥 = � exp�−𝑎𝑎 �𝑥𝑥 −

𝑏𝑏
2𝑎𝑎
�

2

+
𝑏𝑏2

4𝑎𝑎�
𝑑𝑑𝑥𝑥

𝑛𝑛

𝑚𝑚
 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = exp�
𝑏𝑏2

4𝑎𝑎�
� exp�−�√𝑎𝑎𝑥𝑥 −

𝑏𝑏
2√𝑎𝑎

�
2

�𝑑𝑑𝑥𝑥
𝑛𝑛

𝑚𝑚
 

 

Letting 𝜕𝜕 = √𝑎𝑎𝑥𝑥 − 𝑏𝑏
2√𝑎𝑎

 gives: 
 

� exp(−𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥)𝑑𝑑𝑥𝑥 = exp�
𝑏𝑏2

4𝑎𝑎�
𝑛𝑛

𝑚𝑚
� exp(−𝜕𝜕2)

𝑑𝑑𝜕𝜕
√𝑎𝑎

√𝑎𝑎𝑛𝑛−
𝑏𝑏

2√𝑎𝑎

√𝑎𝑎𝑚𝑚−
𝑏𝑏

2√𝑎𝑎

=
1
√𝑎𝑎

exp�
𝑏𝑏2

4𝑎𝑎�
𝐸𝐸 �√𝑎𝑎𝑚𝑚 −

𝑏𝑏
2√𝑎𝑎

,√𝑎𝑎𝑛𝑛 −
𝑏𝑏

2√𝑎𝑎
� 

________________________________________________________________________________________ 
 
We’ll use this result now. We get: 
 

𝐼𝐼 = 𝐶𝐶2 � exp �−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂𝜕𝜕 ′′�
1
√𝑑𝑑

exp�
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑 �𝐸𝐸�𝑓𝑓(𝜕𝜕0),𝑓𝑓(𝜕𝜕′′)�𝑑𝑑𝜕𝜕 ′′
∞

𝜕𝜕0

 

= +𝐶𝐶2 � exp �−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′�
1
√𝑑𝑑

exp�
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑 �𝐸𝐸�𝑔𝑔(𝜕𝜕0),𝑔𝑔(𝜕𝜕′)�𝑑𝑑𝜕𝜕′
∞

𝜕𝜕0

 

 

The functions 𝑓𝑓 and 𝑔𝑔 transform the arguments as described in Aside 1 (i.e. dependent on the values 𝑎𝑎 and 𝑏𝑏). 
There is one integral remaining; we take out some constants, and rewrite 𝐸𝐸 in terms of the error function: 
 

𝐼𝐼 =
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑(𝜕𝜕 − 𝜕𝜕 ′′)2 − 𝜂𝜂𝜕𝜕 ′′) �erf�𝑓𝑓(𝜕𝜕 ′′)� − erf�𝑓𝑓(𝜕𝜕0)�� 𝑑𝑑𝜕𝜕 ′′

∞

𝜕𝜕0

 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′)2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′) �erf�𝑔𝑔(𝜕𝜕 ′)� − erf�𝑔𝑔(𝜕𝜕0)�� 𝑑𝑑𝜕𝜕′

∞

𝜕𝜕0
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Fully, there are four terms in the integral then: 
 

𝐼𝐼 =
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑(𝜕𝜕 − 𝜕𝜕 ′′)2 − 𝜂𝜂𝜕𝜕 ′′)erf �𝜕𝜕′′√𝑑𝑑 −

2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂
2√𝑑𝑑

�𝑑𝑑𝜕𝜕 ′′
∞

𝜕𝜕0

 

= −erf�𝜕𝜕0√𝑑𝑑 −
2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂

2√𝑑𝑑
�
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑(𝜕𝜕 − 𝜕𝜕 ′′)2 − 𝜂𝜂𝜕𝜕 ′′)𝑑𝑑𝜕𝜕 ′′

∞

𝜕𝜕0

 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′)2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′)erf �𝜕𝜕′√𝑑𝑑 −

2𝑑𝑑𝜕𝜕 + 𝜂𝜂
2√𝑑𝑑

�𝑑𝑑𝜕𝜕′
∞

𝜕𝜕0

 

= −erf �𝜕𝜕0√𝑑𝑑 −
2𝑑𝑑𝜕𝜕 + 𝜂𝜂

2√𝑑𝑑
�
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′)2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′)𝑑𝑑𝜕𝜕′

∞

𝜕𝜕0

 

 
________________________________________________________________________________________ 
Aside 2 
For constants 𝑎𝑎, 𝑏𝑏,𝑑𝑑, 𝑞𝑞, we have the following integral: 

� exp(−(𝑎𝑎𝑥𝑥 + 𝑏𝑏)2)erf(𝑑𝑑𝑥𝑥 + 𝑞𝑞)𝑑𝑑𝑥𝑥 =
∞

−∞

√𝑖𝑖
𝑎𝑎

erf�
𝑎𝑎𝑞𝑞 − 𝑏𝑏𝑑𝑑
�𝑎𝑎2 + 𝑑𝑑2

� 

See reference [16]. 
________________________________________________________________________________________ 
 
 
It is here that we take the limit 𝜕𝜕0 ⟶−∞, in order to use the result of Aside 2. Since erf(𝑥𝑥) ⟶−1 as 𝑥𝑥 ⟶ −∞, 
we get: 
 

𝐼𝐼 =
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑(𝜕𝜕 − 𝜕𝜕 ′′)2 − 𝜂𝜂𝜕𝜕 ′′)erf �𝜕𝜕′′√𝑑𝑑 −

2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂
2√𝑑𝑑

�𝑑𝑑𝜕𝜕 ′′
∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑(𝜕𝜕 − 𝜕𝜕 ′′)2 − 𝜂𝜂𝜕𝜕 ′′)𝑑𝑑𝜕𝜕 ′′

∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′)2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′)erf �𝜕𝜕′√𝑑𝑑 −

2𝑑𝑑𝜕𝜕 + 𝜂𝜂
2√𝑑𝑑

�𝑑𝑑𝜕𝜕′
∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
�� exp(−𝑑𝑑(𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′)2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕′)𝑑𝑑𝜕𝜕′

∞

−∞
 

 

The first and third terms will require the use of Aside 2; the second and forth are just Gaussian integrals. 
 
We need to complete the square in the exponential arguments: 
 

−𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 − 𝑑𝑑�𝜕𝜕 − 𝜕𝜕 ′′�2 − 𝜂𝜂𝜕𝜕 ′′ = [−𝑑𝑑]�𝒕𝒕′′�𝟐𝟐 + [2𝑑𝑑𝜕𝜕 − 𝜂𝜂]𝒕𝒕′′ + [−𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2] 

= −𝑑𝑑 �𝒕𝒕′′ −
2𝑑𝑑𝜕𝜕 − 𝜂𝜂

2𝑑𝑑
�

2

+
(2𝑑𝑑𝜕𝜕 − 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 

 

This is for the first and second terms. For the third and forth terms: 
 

−𝑑𝑑�𝜕𝜕 + 𝜏𝜏 − 𝜕𝜕 ′�2 − 𝑑𝑑𝜕𝜕2 − 𝜂𝜂𝜕𝜕 ′ = [−𝑑𝑑]�𝒕𝒕′�𝟐𝟐 + [2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂]𝒕𝒕′ − 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 

= −𝑑𝑑�𝒕𝒕′ −
2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂

2𝑑𝑑 �
2

+
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2 
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Hence: 
 

𝐼𝐼 =
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2 + (2𝑑𝑑𝜕𝜕 − 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2� × 

= � exp �−�√𝑑𝑑𝜕𝜕 ′′ −
2𝑑𝑑𝜕𝜕 − 𝜂𝜂

2√𝑑𝑑
�

2

� erf�𝜕𝜕 ′′√𝑑𝑑 −
2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂

2√𝑑𝑑
�𝑑𝑑𝜕𝜕 ′′

∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) + 𝜂𝜂)2 + (2𝑑𝑑𝜕𝜕 − 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2�� exp �−�√𝑑𝑑𝜕𝜕 ′′ −

2𝑑𝑑𝜕𝜕 − 𝜂𝜂
2√𝑑𝑑

�
2

�𝑑𝑑𝜕𝜕 ′′
∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂)2 + (2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2� × 

= � exp�−�√𝑑𝑑𝜕𝜕 ′ −
2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂

2√𝑑𝑑
�

2

� erf �𝜕𝜕′√𝑑𝑑 −
2𝑑𝑑𝜕𝜕 + 𝜂𝜂

2√𝑑𝑑
�𝑑𝑑𝜕𝜕′

∞

−∞
 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp �
(2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂)2 + (2𝑑𝑑𝜕𝜕 + 𝜂𝜂)2

4𝑑𝑑
− 𝑑𝑑𝜕𝜕2 − 𝑑𝑑(𝜕𝜕 + 𝜏𝜏)2�� exp�−�√𝑑𝑑𝜕𝜕 ′ −

2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂
2√𝑑𝑑

�
2

�𝑑𝑑𝜕𝜕′
∞

−∞
 

 

The integrals are now in the form of Aside 2; the Gaussian integrals require the result 
 

� exp(−(𝑎𝑎𝑥𝑥 + 𝑏𝑏)2)𝑑𝑑𝑥𝑥
∞

−∞
=
√𝑖𝑖
𝑎𝑎

 

for 𝑎𝑎 > 0.  
 
We find: 
 

𝐼𝐼 =
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
+ 𝜂𝜂𝜏𝜏�

√𝑖𝑖
√𝑑𝑑

erf�
1

√2𝑑𝑑
�
−2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂

2
+

2𝑑𝑑𝜕𝜕 − 𝜂𝜂
2 �� 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
+ 𝜂𝜂𝜏𝜏�

√𝑖𝑖
√𝑑𝑑

 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
− 𝜂𝜂𝜏𝜏�

√𝑖𝑖
√𝑑𝑑

erf�
1

√2𝑑𝑑
�
−2𝑑𝑑𝜕𝜕 − 𝜂𝜂

2
+

2𝑑𝑑(𝜕𝜕 + 𝜏𝜏) − 𝜂𝜂
2 �� 

= +
𝐶𝐶2

2
�
𝑖𝑖
𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
− 𝜂𝜂𝜏𝜏�

√𝑖𝑖
√𝑑𝑑

 
 

Final simplification of the ‘erf’ arguments gives: 
 

𝐼𝐼 =
𝐶𝐶2𝑖𝑖
2𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
+ 𝜂𝜂𝜏𝜏� �erf �

−𝑑𝑑𝜏𝜏 − 𝜂𝜂
√2𝑑𝑑

� + 1� +
𝐶𝐶2𝑖𝑖
2𝑑𝑑

exp�
𝜂𝜂2

2𝑑𝑑
− 𝜂𝜂𝜏𝜏� �erf �

𝑑𝑑𝜏𝜏 − 𝜂𝜂
√2𝑑𝑑

� + 1� 

 
Slight rearrangements may be made using the fact that the error function is odd: erf(−𝑥𝑥) = −erf(𝑥𝑥). 
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Appendix C 
We here give the full solutions to Eqs. (5.61)-(5.64). These are also evaluated in [7], where Laplace Transforms 
were used instead to acquire exactly the same solutions. We follow the notational convention outlined there. 
Define the following vectors, each having length 4: 
 
A vector of time-dependent exponentials: 
 

𝐸𝐸 = �1 exp �−
𝛾𝛾𝜕𝜕
2
�    exp��−

3𝛾𝛾
4

+ 𝛿𝛿� 𝜕𝜕� exp��−
3𝛾𝛾
4
− 𝛿𝛿� 𝜕𝜕�� 

 

 
Assorted vectors of constants: 
 

𝐹𝐹− = �
−𝑖𝑖𝑌𝑌

√2(1 + 𝑌𝑌2)
0    

−𝑖𝑖𝑌𝑌
2√2𝛿𝛿(1 + 𝑌𝑌2)

�
1
2
𝛾𝛾 �𝑌𝑌2 −

1
2
� − 𝛿𝛿�

−𝑖𝑖𝑌𝑌
2√2𝛿𝛿(1 + 𝑌𝑌2)

�−
1
2
𝛾𝛾 �𝑌𝑌2 −

1
2
� − 𝛿𝛿�� 

 

 

𝐹𝐹+ = �
−𝑖𝑖𝑌𝑌

√2(1 + 𝑌𝑌2)
0    

−𝑖𝑖𝑌𝑌
2√2𝛿𝛿(1 + 𝑌𝑌2)

�
1
2
𝛾𝛾 �−𝑌𝑌2 −

5
2
� − 𝛿𝛿�

−𝑖𝑖𝑌𝑌
2√2𝛿𝛿(1 + 𝑌𝑌2)

�
1
2
𝛾𝛾 �𝑌𝑌2 +

1
2
� − 𝛿𝛿�� 

 
 

𝜋𝜋− = �0
1
2

    −
1
2
�

1
2

+
𝛾𝛾

8𝛿𝛿
� −

1
2
�

1
2
−
𝛾𝛾

8𝛿𝛿
�� 

 

𝜋𝜋+ = �0
1
2

    
1
2
�

1
2

+
𝛾𝛾

8𝛿𝛿
�

1
2
�

1
2
−

𝛾𝛾
8𝛿𝛿
�� 

 

𝐻𝐻 = �
−1

1 + 𝑌𝑌2 0    
1

𝛿𝛿𝛾𝛾(1 + 𝑌𝑌2) �
𝛾𝛾
4
− 𝛿𝛿� �

1
2
𝛾𝛾 �𝑌𝑌2 −

1
2
� − 𝛿𝛿�

1
𝛿𝛿𝛾𝛾(1 + 𝑌𝑌2) �

𝛾𝛾
4

+ 𝛿𝛿� �−
1
2
𝛾𝛾 �𝑌𝑌2 −

1
2
� − 𝛿𝛿�� 

 

𝐼𝐼 = �0 0    𝑖𝑖√2
𝑌𝑌𝛾𝛾

�
𝛾𝛾
4
− 𝛿𝛿� �

1
2

+
𝛾𝛾

8𝛿𝛿
�

𝑖𝑖√2
𝑌𝑌𝛾𝛾

�
𝛾𝛾
4

+ 𝛿𝛿� �
1
2
−

𝛾𝛾
8𝛿𝛿
�� 

 

𝐽𝐽 = �
−1

1 + 𝑌𝑌2 0    
1

𝛿𝛿𝛾𝛾(1 + 𝑌𝑌2) �
𝛾𝛾
4
− 𝛿𝛿� �

1
2
𝛾𝛾 �−𝑌𝑌2 −

5
2
� − 𝛿𝛿�

1
𝛿𝛿𝛾𝛾(1 + 𝑌𝑌2) �

𝛾𝛾
4

+ 𝛿𝛿� �
1
2
𝛾𝛾 �𝑌𝑌2 +

1
2
� − 𝛿𝛿�� 

 
By forming the inner product (without taking complex conjugates) of each of these with the vector of 
exponentials 𝐸𝐸, we define 7 functions: 

𝑓𝑓−(𝜕𝜕) = �𝐹𝐹𝑛𝑛−𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

,     𝑓𝑓+(𝜕𝜕) = �𝐹𝐹𝑛𝑛+𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

 

 

𝑔𝑔−(𝜕𝜕) = �𝜋𝜋𝑛𝑛−𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

,     𝑔𝑔+(𝜕𝜕) = �𝜋𝜋𝑛𝑛+𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

 

 

ℎ(𝜕𝜕) = �𝐻𝐻𝑛𝑛𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

,     𝑖𝑖(𝜕𝜕) = �𝐼𝐼𝑛𝑛𝐸𝐸𝑛𝑛

4

𝑛𝑛=1

,     𝑖𝑖(𝜕𝜕) = �𝐽𝐽𝑛𝑛𝐸𝐸𝑛𝑛

4

𝑛𝑛=1
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Finally, we get solutions: 
 

𝑋𝑋21(𝜕𝜕) = [−𝑓𝑓−(𝜕𝜕)]𝑋𝑋11(0) + [−𝑓𝑓+(𝜕𝜕)]𝑋𝑋22(0) + [𝑔𝑔−(𝜕𝜕)]𝑋𝑋12(0) + [𝑔𝑔+(𝜕𝜕)]𝑋𝑋21(0) 
 

𝑋𝑋12(𝜕𝜕) = [𝑓𝑓−(𝜕𝜕)]𝑋𝑋11(0) + [𝑓𝑓+(𝜕𝜕)]𝑋𝑋22(0) + [𝑔𝑔+(𝜕𝜕)]𝑋𝑋12(0) + [𝑔𝑔−(𝜕𝜕)]𝑋𝑋21(0) 
 

Of course, we see that [𝑋𝑋12(𝜕𝜕)]† = 𝑋𝑋21(𝜕𝜕) as expected. Additionally, 
 

𝑋𝑋22(𝜕𝜕) − 𝑋𝑋11(𝜕𝜕) = [ℎ(𝜕𝜕)]𝑋𝑋11(0) + [𝑖𝑖(𝜕𝜕)]𝑋𝑋22(0) + [𝑖𝑖(𝜕𝜕)]𝑋𝑋12(0) + [−𝑖𝑖(𝜕𝜕)]𝑋𝑋21(0) 
and 

𝑋𝑋22(𝜕𝜕) + 𝑋𝑋11(𝜕𝜕) = 𝑋𝑋22(0) + 𝑋𝑋11(0) 
 

These provide us with full solutions to Eqs. (5.61)-(5.64). 
 
 

Appendix D 
Here we give the coefficients 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(1), 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(2) and 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

(3) given in Eqs. (5.71), (5.78) and (5.83). See [7]. We have: 
 

𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
(1) = �

1
2
𝐹𝐹𝑖𝑖−𝜋𝜋𝑖𝑖+ −

1
4
𝜋𝜋𝑖𝑖+𝐼𝐼𝑖𝑖 � �

𝑖𝑖
√2

𝑌𝑌
1 + 𝑌𝑌2 (1 + 𝐻𝐻𝑘𝑘) +

1
2

𝑌𝑌2

1 + 𝑌𝑌2 𝐼𝐼𝑘𝑘� 

= + �
1
2
𝜋𝜋𝑖𝑖+�1 + 𝐻𝐻𝑖𝑖� − 𝐹𝐹𝑖𝑖−𝐹𝐹𝑖𝑖−��
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1
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𝑌𝑌2
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+� 
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1 + 𝑌𝑌2 𝐼𝐼𝑘𝑘� 
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1
2
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1
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1 + 𝑌𝑌2 𝜋𝜋𝑘𝑘
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𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
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𝐹𝐹𝑖𝑖−𝜋𝜋𝑖𝑖+ +
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4
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𝑌𝑌2

1 + 𝑌𝑌2 𝐼𝐼𝑘𝑘� 
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1
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𝜋𝜋𝑖𝑖+�1 + 𝐻𝐻𝑖𝑖� + 𝐹𝐹𝑖𝑖−𝐹𝐹𝑖𝑖−��−

𝑖𝑖
√2

𝑌𝑌
1 + 𝑌𝑌2 𝐹𝐹𝑘𝑘

− +
1
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𝑌𝑌2

1 + 𝑌𝑌2 𝜋𝜋𝑘𝑘
−� 
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