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Abstract

We compute photon correlation functions in a cavity QED system where a

single atom couples to two cavity modes with orthogonal linear polarisations, in

the presence of a weak external magnetic field. We take into account the full

atomic level structure for an F=3 to F’=4 transition (specifically a transition in

Rubidium 85), and consider the case where one cavity mode is resonantly driven

by a coherent field, while ligth in the other cavity mode is generated only through

atomic emission. In order to study this system, we extended a previous model for

the case of no field developed by M. Kronenwett, in order to included the Zeeman

effect due to the magnetic field.

We use standard quantum regression formulas and numerical solutions of the

master equation for the system density operator to compute steady-state prop-

erties and photon correlation functions in the weak-excitation regime. From a

Monte-Carlo simulation based on a quantum trajectory we explore higher levels of

excitation.
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1 Introduction

Einsteins’s description of the photoelectric effect and the ultraviolet photoionionization

of gases constitutes the first application of quantum electrodynamics and the first de-

scription of quantized electromagnetic phenomena. Einstein wrote

The wave theory of light which operates with continuous functions in space has been

excellently justified for the representation of a purely optical phenomena and it is unlikely

ever to be replaced by another theory. One should, however, bear in mind that optical

observations refer to time averages and not to instantaneous values and notwithstanding

the complete experimental verification of the theory of diffraction, reflection, refraction,

dispersion and so on, it is quite conceivable that a theory of light involving the use of

continuous functions in space will lead to contradictions of experience, if it is applied to

the phenomena of the creation and conversion of light

Since Purcell first pointed out that a resonator could alter the atomic spontaneous

emission rate. Cavity QED experienced an interest and a growing field.

In th 1950s, R. H. Brown and R. Q. Twiss investigates temporal correlations of the

intesnisty fluctuations ina light beam emitted by a thermal source. They found out that

light beam tended to arrive in bunches, rather than strictly at random. Their observation

can also be explained classically as a pure wave effect of the electromagnetic light field.

There is another phenomenon, photons can also tend to arrive more evenly spread out

than strictly at random. This is called photon antibuching, this effect is only understand

through a quantum mechanical description; it has no classical analog or explanation.

The Jaynes-Cummings model describes a single two level atom interacting widt a

single mode of the radiation field.This model represents the interaction between light

and matter. Despite its simplicity it contains a lot information of the systems, such as

collapse and revival.

Not only is cavity QED of interest to have a better understaning of quantum phe-

nomena, but for its applications. Cavity QED is being a subject of study for several

years, due to the fact that is promising application in the area of Quantum Information

Procesing. Application of Cavity QED systems derives mostly from the ability to co-

herently intra-convert quantum states between material qubits(such as trapped atoms or

semiconductors dot system) and photon qubits.

The principal objective of this work is the inclusion of the effects of a weak external

magnetic field, to a previous theoretical model for a two-mode single atom cavity QED

(especifically for a Rubidium-85 atom). Investigate the second order photon correlations
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and how the introduction of detunings affect this correlations. In the first chapter we

will cover the experimental setup, and how this sytem is model. In the second chapter

we present the Zeeman effect in the hyperfine structure for weak fields. Posterior we

present the numerical approaches namely the master equation and the quantum trajec-

tories method. Finally we present the data obtained from this numerical simulations and

compared it qualitatively with the experimental data.
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2 Background

The starting point for our project is the thesis done by Matthias Kronenwet, he developed

a model in order to predict data for the measurments performed by L. A. Orozco’s group

at the University of Maryland. In the first chapter we will present the experimental set-

up of Orozcos’s experiment and give an overview. As well we will present and explain

the theoretical model for that particular system.

2.1 Experimental Setup

The cavity QED system we are considering consists of a single 85Rb resting in the center

of a high-finesse optical resonantor.Actually the atom is not in the center of the cavity,

rather it transverse the cavity. A schematic of the experimental apparatus is shown in

figure 1 Two optical cavity modes with orthogonal linear polarization on resonance with

the atom via the D2-line F = 3 to F ′ = 4 transition. A weak external magnetic field

induces a quantisation axis such that one mode couples the F = 3 atomic ground state

to the F ′ = 4 excited sate via ∆mF = 0 transitions. This mode is driven on-axis by

a coherent field of amplitude E . The other mode, with orthogonal polarisation to the

driven mode, couples the atomic levels via ∆mF = ±1 transitions. Thus, any light in

this non-driven mode originates only from a spontaneous emission event of the atom with

∆mF = ±1.

The light leaking out through the cavity mirror is split by a polarising beam splitter

(PBS), such that the ouytput from each mode can be detected separately. To determine

and characterise properties of such systems one typically measures photon arrival times

at the detectors.

In the two-mode cavity QED system being considered our main interests are the

photon self and cross-correlations for the two modes.

2.2 Interactions in a driven atom-cavity system

This section presents an overview of the atom-light interactions, and finally introduce

the Hamiltonian for the two-mode single atom cavity QED system. We assume that we

can isolate and drive one particular atomic transition and hence ignore the rest of the

atomic structure. So we can approximate or model as having only two-level atoms. This

approximation is applicable when the frequency of the light coincides with one of the

optical transitions of the atom. In this case the internal atomic Hamiltonian HA can be
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Figure 1: Taken from [7]

written as

HA = Eg|g〉〈g|+ Ee|e〉〈e| (2.1)

Where Eg and Ee represent the ground and excited state respectively. We can express

this hamiltonian in this form

HA =
~wa

2
(|e〉〈e| − |g〉〈g|) (2.2)

where wa = (Ee −Eg)/~. We have used the fact that we have set the zero of our energy

scale halfway between the ground state and the excited state. This can be express more

compactly

HA =
~wA

2
σz (2.3)

where

σz = |e〉〈e| − |g〉〈g| (2.4)

The interaction of radiation field E with a single-electron atom can be describe by the

following Hamiltonian in the dipole approximation

H = HA +HF − d · E (2.5)

Here HA(see 2.2) and HF are the energies of the atom and the radiation field, respectively,

in the absence of the interaction and d is the atomic dipole moment d = er. In the dipole

approximation, the field is assumed to be unifrom over the whole atom. The energy of
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the free field HF is given in terms of the creation and destruction operators by

HF = ~wbb̂
†b̂ (2.6)

Upon imposing quantisation the interaction Hamiltonian becomes

i~g(b̂† − b̂)(σ+ + σ−) (2.7)

Here g is the dipole coupling constant that takes up the normalisation constant from the

electromagnetic wave and the dipole matrix element. The terms b̂† and hatb represent the

usual raising and lowering operators. Where the atomic lowering and raising operators

are define

σ+ = |e〉〈g| σ− = |g〉〈e| (2.8)

The interaction energy in 2.7 consists of four terms. The term b̂†σ− describes the

process in which the atom is taken from the upper state into the lower state and a

photon is created. The term b̂σ+ describes the opposite process. The energy is conserved

in both the proocesses. The term âσ− describes a process in which the atom makes a

transition from the upper to the lower level and a photon is annihilated. Similarly b̂†σ+

describes the converse process. This two latter process do not conserve energy, getting

rid of this terms corresponds to the rotating-wave approximation. This results in the

following Hamiltonian

H = H0 +W (2.9)

with the free Hamiltonian

H0 =
~wA

2
σz + ~wbb̂

†b̂ (2.10)

and an interaction hamiltonian

W = ~g(b̂†σ̂− − b̂σ̂+) (2.11)

Cavity-Laser Interactions

When the system is subject to a coherent driving laser, the Hamiltonian for this system

can be expressed as:

H = H0 +WLC (2.12)

with a free part for the quantised cavity mode

H0 = ~waâ
†â (2.13)
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and an interaction part WLC . If the laser frequency wL is near resonance with a cavity

mode a of frequency wa (i.e. wL ≈ wa) and assuming that the driving laser only interacts

with a cavity mode with the same polarisation. Then in the rotating-wave approximation

this Hamiltonian becomes

WLC = i~E(â†e−~wLt − âei~wLt) (2.14)

where E is the coupling constant that takes normalisation constant between the laser field

and the driven cavity mode.

2.3 Selection Rules

The light-matter interaction is described by transition probabilities, which can be calcu-

lated for the case of spontaneous emission by using Fermi’s golden rule. According to

this rule the transition rate is given by

Pi→f =
2π

~
|〈φf |W |φi〉|2ρ(Ei) (2.15)

where |φi〉 and |φf〉 are eigenstates of the unperturbed system, and ρ(Ei) is the desntity

of states.

Selection rules for hyperfine structure

The selection rules for electromagnetic dipole transitions for the hyperfine structure

are

mF,f −mF,i = −1, 0,+1 (2.16)

Ff − Fi = −1, 0,+1 (2.17)

as the allowed transitions but

Fi = 0 → Ff = 0 (2.18)

mF,i = 0 → mF,f = 0, Ff − Fi = 0 (2.19)

are forbidden.
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Figure 2: taken from [3]

2.4 Hamiltonian of a driven single-atom two-mode cavity sys-

tem

Now that we have presented the interaction of a single two-level atom with a single-mode

field and the cavity laser interaction;we are ready to describe the system1 introduce at

the beggining. Assuming that the two levels of the atom are non-degenerate and the

atom couples to both cavity modes, the Hamiltonian of this system can be written as

H = H0 +W (2.20)

with a free part H0 for the two cavity modes and the atom

H0 = ~waâ
†â+ ~wbb̂

†b̂+
~wa

2
σz (2.21)

and an interaction part

W = i~E(â†e−~wLt − âei~wLt)

+i~ga(â
†σ̂− − âσ̂+) + i~gb(b̂

†σ̂− − b̂σ̂+) (2.22)
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where ga and gb are the coupling constants between the atom and the two cavity modes.

In a frame rotating at the laser frequency the Hamiltonian becomes

H =
~(wA − wL)

2
σ̂z + ~(wa − wL)â†â+ ~(wb − wL)b̂†b̂

+i~E(â† − â) + i~ga(â
†σ̂− − âσ̂+) + i~gb(b̂

†σ̂− − b̂σ̂+) (2.23)

This simplifies if all frequencies are resonant, i.e. wL = wa = wb = wA

For a two level atom with Zeeman substructure we assume a quantisation axis, im-

posed by a weak magnetic field with negligible Zeeman effect, such that the driven mode a

couples the atomic ground and excited state via ∆mF = 0 transitions, and the non-driven

mode b couples them via ∆mF = ±1 transitions. Considering a resonnant driven single-

atom interacts on resonance with the two orthogonal lienarly-polarised cavity modes.

The system Hamiltonian in the dipole and rotating-wave approximation is given by

H = i~E(â† − â) + i~g(â†Σ̂0 − âΣ̂†
0)

i~(g/
√

2)
(
b̂†(Σ̂−1 + Σ̂+1)− b̂(Σ̂−1 + Σ̂+1)

†
)

(2.24)

For atojmic transitions with Fg = Fe − 1 the atomic operators are express as

Σ̂p =
3∑

m=−3

CFe,m+p,Fg ,m|Fg,m〉〈Fe,m+ p| (2.25)

where p stands for p = 0,±1 and with the Clebsch-Gordon coefficients

CFe,me,Fg ,mg = 〈Fg,mg; 1,mg −me|Fe,me〉 (2.26)

For this particular cavity QED experiment we are intrested in modeling, the atomic

transition F = 3 to F ′ = 4. The lowering and raising operator for this particular
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transition are given by

Σ̂−1 = |g−3〉〈e−4|+
√

3

4
|g−2〉〈e−3|+

√
15

28
|g−1〉〈e−2|+

√
5

14
|g−0〉〈e−1|

+

√
3

14
|g+1〉〈e0|+

√
3

28
|g+2〉〈e+1|+

√
1

28
|g+3〉〈e+2| (2.27)

Σ̂0 =

√
1

4
|g−3〉〈e−3|+

√
3

7
|g−2〉〈e−2|+

√
15

28
|g−1〉〈e−1|+

√
16

28
|g0〉〈e0|

+

√
15

28
|g+1〉〈e+1|+

√
3

7
|g+2〉〈e+2|+

√
1

4
|g+3〉〈e+3| (2.28)

Σ̂+1 =

√
1

28
|g−3〉〈e−2|+

√
3

28
|g−2〉〈e−1|+

√
3

14
|g−1〉〈e0|+

√
5

14
|g0〉〈e+1|

+

√
15

28
|g+1〉〈e+2|+

√
3

4
|g+2〉〈e+3|+ |g+3〉〈e+4| (2.29)

This is the Hamiltonian that describes the system of interest where the Zeeman effect

can be neglible and our point of start for our project. In the next section we study how

this Hamiltonian is modify when the magnetic effect induces a Zeeman effect that can no

longer be treated as neglible.
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3 Hamiltonian of a driven single-atom two-mode

cavity system in the presence of a magnetic field

As presented in the previous chapter, the system is subject to an external magnetic field.

This causes a splitting of the energies lifting the degenearcies. In this chapter we are

concerned in how the magnetic field modifies the Hamiltonian presented earlier for the

two-mode driven single atom cavity system.

3.1 Hyperfine structure in an external magnetic field

In the presence of an external magnetic field of strenght B, the following magnetic inter-

actions energies have to be considered:

Hhf = AI · J Hz = gj
µB

~
BJ − gI

µN

~
BI (3.1)

Where A is the hyperfine constant, gj = 1 + J(J+1)−L(L+1)+S(S+1)
2J(J+1)

is the Landé factor,µB

is the Bohr magneton,µN is the nuclear magneton and I is the nuclear spin and gI is

the nuclear g factor.If the external field is so small that the magnetic potential energy

of the atom in it is small compared to the energetic separation of the hyperfine terms,

one speaks of the Zeeman effect of the hyperfine structure. In other words the case when

Hz << Hhf we only considered the Hz as a perturbation, the atom is in an eigenstate of

F2, J2, I2 and Fz so the energy shift is given by.

∆EB = 〈FJIMF | Hz | FJIMF 〉 (3.2)

If we choose the magnetic field B applied along the z-axis.

Hz = gj
µB

~
BJz − gp

µN

~
BIz (3.3)

In order to calculate this energy shift we will use the vector model. The ”vector” F is a

constant of the motion, while I and J are not. These vectors each have a fixed lenght, so

that they precess about the direction of F (3.1). The componencts of J and I along F

are fixed, while the other components, rotating as they do about the F axis, average to
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zero.This leads to the rule

J → F
(J · F )

F 2
= F

(J · F )

~2F (F + 1)
(3.4)

I → F
(I · F )

F 2
= F

(I · F )

~2F (F + 1)
(3.5)

In the evaluation of 〈Jz〉 and 〈Iz〉 we therefore need to calculate J · F and I · F, this

is easily done using I = F− J and J = F− I

J · F =
1

2
[F2 + J2 − I2] =

~2

2
[F (F + 1) + J(J + 1)− I(I + 1)] (3.6)

I · F =
1

2
[F2 + I2 − J2] =

~2

2
[F (F + 1) + I(I + 1)− J(J + 1)] (3.7)

We simply replace 〈Jz〉 and 〈Iz〉 by respectively

〈Fz〉
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
(3.8)

〈Fz〉
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(3.9)

Adding the two terms yields

∆EB = mFgFµBB (3.10)

where gF is the Landé factor given by

Figure 3: Taken from Haken [2]
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gF = gj

(F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)

)
− gI

µN

µB

(F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)

)
(3.11)

The second term can be neglected relative to the first term because of the factor

µN/µB = 1/1836. This means that magnetic interaction due to proton spin are very weak.

The term splitting in a weak field then yields 2F+1 equidistant components, which are

given by the quantum number mF . For the optical transitions the selection rules ∆F = 0

and ∆m = 0,±1 apply. As a final comment, when we stated a weak field, we meant a

field below 0.1T , the experiments are perform with magnetic fields below 10 G.

Figure 4: Example of the Zeeman splitting in the hyperfine structure for the F=4

3.2 Hamiltonian

Now that we know how a weak field acts on the energy levels, we incorporate them to

the Hamiltonian, where the energy levels are no longer degenerate. We start from

H = H0 +W (3.12)

With a free part Ho for the two mode cavity atom

H0 = ~waâ
†â+ ~wbb̂

†b̂+
4∑

m=−4

Ee,m|e,m〉〈e,m|+
3∑

m=−3

Eg,m|g,m〉〈g,m| (3.13)

We change the term in from σz the sum of the different excited states and ground states.

This is due to the fact that the excited states and ground state are no longer the same.
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We have 9 excited states and 7 ground states. And an interaction part

W = i~E(â†e−iwLt − âeiwLt) + i~g(â†Σ̂0 − âΣ̂†
0)

+i~(g/
√

2)
(
b̂†(Σ̂−1 + Σ̂+1)− b̂(Σ̂†

−1 + Σ̂†
+1)

)
(3.14)

Where the terms Ee,m and Eg,m correspond to

Ea,m = Ea,0 + gFaµBBm (3.15)

Where a = e, g and gFa represents the Landé g factor for either e or g. Now if we refer

the atomic energies to tha middle of the atomic transition, as in 5 the energies of the

Figure 5: Shifting for the energy levels for the levels 5P3/2 and 5S1/2

two level atom my be written as

4∑
m=−4

[Ee,m − (Ee,0 + Eg,0)

2
+

(Ee,0 + Eg,0)

2
]|e,m〉〈e,m| (3.16)

3∑
m=−3

[Eg,m − (Ee,0 + Eg,0)

2
+

(Ee,0 + Eg,0)

2
]|g,m〉〈g,m| (3.17)
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The last term is a constant which may be eliminated by the way we define the transition.

We introduce a Hamiltonian of the form

HL = ~wLâ
†â+ ~wLb̂

†b̂+
4∑

m=−4

~wL

2
|e,m〉〈e,m| −

3∑
m=−3

~wL

2
|g,m〉〈g,m| (3.18)

where wL correspond to the laser frequency. We can define an interaction Hamiltonian

of the form

HI = H0 −HL +W (3.19)

H = HL +HI (3.20)

We transform this to the interaction picture in order to get rid of the oscillating terms.

ei
HLt

~ HIe
−i

HLt

~ (3.21)

We obtain

ei
HL

~ tâe−iwL
HL

~ t = âe−iwLt (3.22)

eiwL
HL

~ tâ†e−iwL
HL

~ t = â†eiwLt (3.23)

eiwL
HL

~ tb̂e−iwL
HL

~ t = b̂e−iwLt (3.24)

eiwL
HL

~ tb̂†e−iwL
HL

~ t = b̂†eiwLt (3.25)

eiwL
HL

~ tΣ̂0e
−iwL

HL
~ t = Σ̂0e

−iwLt (3.26)

eiwL
HL

~ tΣ̂†
0e
−iwL

HL
~ t = Σ̂†

0e
iwLt (3.27)

So this reduces to

H = ~(wa − wL)â†â+ ~(wb − wL)b̂†b̂+
4∑

m=−4

[~
(wA − wL)

2
+ gFmµBB]|e,m〉〈e,m|

−
3∑

m=−3

[~
(wA − wL)

2
− gFmµBB]|g,m〉〈g,m|+ i~E(â† − â) + i~g(â†Σ̂0 − âΣ̂†

0)

+i~(g/
√

2)
(
b̂†(Σ̂−1 + Σ̂+1)− b̂(Σ̂†

−1 + Σ̂†
+1)

)
(3.28)
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Where wA = (Ee,0 − Eg,0)/~. This simplifies if all frequencies are near resonance, i.e.

wL = wa = wA = wb and reduces to

H =
4∑

m=−4

gFemµBB|e,m〉〈e,m|+
3∑

m=−3

gFgmµBB|g,m〉〈g,m|+ i~E(â† − â)

+g(â†Σ̂0 − âΣ̂†
0) + i~(g/

√
2)

(
b̂†(Σ̂−1 + Σ̂+1)− b̂(Σ̂†

−1 + Σ̂†
+1)

)
(3.29)

This is the Hamiltonian of a driven single-atom two-mode cavity system in the presence

of a weak external magnetic field. The shifting produce by the Zeeman effect introduces

some detunings into the Hamiltonian.
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4 Open Quantum Systems

An open quantum system is a quantum mechanical system that interacts with an external

quantum system, the environment. Since the environment is composed of a large number

of degrees of freedom, we refer it to the reservoir R. Hence, an open quantum system S

can be seen as a distiguishable part of a closed quantum system S ⊗R.

Due to the dissipative nature of an open quantum system one generally does not have a

complete knowledge of the system state. Therefore, the system cannot be describe by a

state vector, rather, is describe by its density operator. In this section we will present two

well establisshed tools to study this dissipation or damping: namely the master equation

and the quantum trajectory approach.

4.1 The Master Equation approach

We begin from von Neummann’s equation for the density operator χ(t)

˙χ(t) =
1

i~
[H,χ(t)] (4.1)

We assume we can divide the closed system into two pieces:a system which we are inter-

ested in, and the environment or reservoir that interacts with the system. Accordingly

we may write the Hamiltonian for this composite system as.

H = HS +HR +HSR (4.2)

where HS is ty system Hamiltonian,HR is the reservoir Hamilltonian and HSR is an

interaction Hamiltonian between the system and the reservoir. We transform to the

interaction picture in order to separated the rapid oscillation genearted by HS +HR from

the slow motion generated by the interaction HSR.

˜χ(t) = ei(HS+HR)t/~χ(t)e−i(HS+HR)t/~ (4.3)

H̃SR(t) = ei(HS+HR)t/~HSR(t)e−i(HS+HR)t/~ (4.4)

The equation of motion for the density operator is now

˙̃χ(t) =
1

i~
[H̃SR(t), χ̃(t)] (4.5)
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We can now integrate formally to give

χ̃(t) = χ̃(0) +
1

i~

∫ t

0

ds[H̃SR(t), [H̃SR(t− s), χ̃(t− s)]] (4.6)

and substitute for χ̃(t) inside the commutator in to eg(4.6)

˙̃χ(t) =
1

i~

[
H̃SR(t), χ̃(0)

]
− 1

~2

∫ t

0

ds
[
H̃SR(t),

[
H̃SR(t− s), χ̃(t− s)

]]
(4.7)

This equation is no exactly solvable. Nevertheless, it is possible to proceed and construct

an equation of motion for the reduce density operator.

The Born-Markov Approximation

We are interested in describing the sytem S and we are not interested in detailed

information about the reservoir R. Thus is convinient to introduce the reduced density

operator describing S by taking a partial trace over the reservoir variables of the density

operator for the composite system.

ρ(t) = trR{χ(t)} (4.8)

We assume the density operator is initially in a factorised state

χ̃(0) = R0ρ̃(0) (4.9)

where ρ(0) is the intial system density operator and R0 is the equilibrium reservoir desntiy

operator at time t = 0 when we turn the interaction between the system and its environ-

ment. Deviations from the direct product come from the interaction. If the interaction

is very weak we expect that at all times χ̃(t) deviates from an uncorrelated state in first

or higher oder of HSR.

χ̃(t) = R0ρ̃(t) +O(HSR) (4.10)

Since the first term is the dominant contribution we only retain this leading order term,

thus introducing a Born Approximation.

The next assumption introduced is Markov assummption, where we assume that the

system’s future behaviour depneds only on its current state, rather than its histroy.

This assumption is justified if there ar two widely spearted timescales: a short reservoir

correlation time and the longer timescale that the systems changes over. If the reservoir

correlation time is much smaller than the time scale of correlated fluctuactions in the

system S we may replace ρ̃(t− s) by ρ̃(t) in the master equation. Also for times s much
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larger than the reservoir correlation time the integrand of the master equation vanishes,

so we can extend the upper limit to infinity. We obtain the master equation in the

Born-Markov approximation:

˙̃ρ(t) = − 1

~2

∫ ∞

0

dstrR

{[
H̃SR(t),

[
H̃SR(t− s), R0ρ̃(t− s)

]]}
(4.11)

General Lindblad master equation

If we expand the interaction Hamiltonian in terms of eigenoperators of the system Hamil-

tonian

HSR = ~
∑
i,j,k

κijkÂijΓ̂k (4.12)

where Γ̂k are independen reservoir operators and Âij are degenerate eigenoperators of HS

such that

[Âij, HS] = ~wiÂij (4.13)

Substituting equation 4.12 in the interaction picture into the Born-Markov approximation

4.11; and taking into consideration that in optical systems oscillations on a much smaller

time-scale than the relaxation time of the system. This allowed us that upon integration

of the master equation over an interval that is much longer than the period of oscillation,

these terms will tend to average out. Following this procedure one is able to find the

master equation in Linbland form

ρ̇ =
1

i~
[H ′

S, ρ(t)] +
∑

i

γi

2

(
2Âiρ(t)Â

†
i − Â†i Âiρ(t)− ρ(t)Â†Âi

)
(4.14)

The terms−Â†i Âiρ(t) and−ρ(t)Â†Âi in the Lindblad form of the master equation describe

the loss of population from the current states, whereas the terms Âiρ(t)Â
†
i describe the

gain of population of the states toward which the system propagates.

In preparation for the quantum trajectory, it is useful to rewrite the master equation

for the reduce density operator in a more abstract notation

ρ̇(t) = Lρ(t) (4.15)

L is a generalised Liouvillian superoperator. It is a linear operator that acts on operators

rather than on vectors in the Hilbert space. In the case for the master equation in

Lindbland form the action of L is define as

L· = 1

i~
[H ′

S, ·] +
∑

i

γi

2
(2Âi · Â†i − Â†i Âi · − · Â†i Âi) (4.16)
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4.2 Quantum Trajectory approach

We start from the master equation of the form

ρ̇(t) = (L0 + S)ρ(t) (4.17)

with

L0 = L − S (4.18)

The formal solution is

ρ(t) = e(L0+S)ρ(0) (4.19)

provided that (L0 + S) is not explicitly time-dependant. We define an auxilarly density

operator

ρ′(t) = e−L0tρ(0) (4.20)

If we take the time-derivative of equation 4.20 and using equation 4.17 leads to the

equation of motion for ρ′(t)

ρ̇′(t) = e−L0tSeL0tρ′(t) (4.21)

If we formally integrate this equation, use equation 4.20 and multiply by eLt from the

right, which now reads as

ρ(t) = ρ(0) +

∫ t

0

dseL0(t−s)SeL0sρ′(s) (4.22)

Iterating this solution into intself we find

ρ(t) =
∞∑

m=0

∫ t

0

dtm

∫ tm

0

dtm−1 . . .

∫ t2

0

dt1e
L0(t−tm)SeL0(tm−tm−1)S . . .SeL0t1ρ(0) (4.23)

This is a Dyson’s series, where (tm) is a monotnoic increasing sequence. The integration

kernel describes a quantum trajectory of the initial state ρ(0). The terms eL0(tm−tm−1)

represent a continuos time-evolution in the time interval [tm, tm−1] and S represents dis-

continuos collapses at the times t1, t2, . . . , tm. Equation 4.23 is simply the sum over all

possible numbers of collapses, m = 0, . . . ,∞ and an integration over all possible separa-

tion times of these emission within the interval [0, t].

The solution of the master equation, when we take distinguishable perturbations into
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account each causing the system to collapse at different times, takes the form

ρ̇ = (L0 + S)ρ with S =
∑

i

Si (4.24)

where S is a small perturbation of L0 is

ρ(t) =
∞∑

ν1=1

I∑
ν1=1

I∑
ν2=2

. . .
I∑

νm=1

∫ t

0

dtm

∫ tm

0

dtm−1 . . .

∫ t2

0

dt1e
L0(t−tm)Sνm

×eL0(tm−tm−1)Sνm−1 . . .Sν1e
L0t1ρ(0) (4.25)

The integration kernel describes a quantum trajectory of the initial state ρ(0), and the

equation is simply the summation over all possible trajectories.

We introduce the conditioned reduce density operator ρc(t) describing the system at

time t with initial state ρ(0) and a particular sequence of collapse times in the interval

[0, t]

ρc(t) =
ρ̄c(t)

tr{ρ̄c(t)}
(4.26)

where ρ̄c(t) is the unnormalised operator

ρ̄c(t) = eL0(t−tm)Sνme
L0(tm−tm−1)Sνm−1 . . .Sν1e

L0t1ρ(0) (4.27)

It is possible to rewrite the master equation in Lindbland form

ρ̇(t) = (L0 + S)ρ with S =
∑

i

Si (4.28)

with

L0 =
1

i~
[H ′

s, ρ]−
∑

i

γi

2

(
A†iAiρ+ ρA†i

)
=

1

i~

(
Heffρ− ρHeff

)
(4.29)

Siρ = γiAiρA
†
i = CiρC

†
i (4.30)

where we have introduced the collapse operators

Ci =
√
γiAi (4.31)

and Heff is an effective, non-Hermitian Hamiltonian define as

Heff = H ′
S −

∑
i

γiAiρA
†
i (4.32)
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Often the conditioned density operator can be factorised in a pure state at time t

ρc(t) = |ψc(t)〉〈ψc(t)| (4.33)

If a system starts a pure state, then under time evolution, it will remain in a pure state.

This is one of the advantages to the quantum jump approach. It allows us to replace

the propagators e(L−S)t with propagators for the state vector e−iHeff t/~ and at times of

collapses we have Ĉi|ψ̄〉.
Monte Carlo Recipe

1. Calculate the probabilities pc,i(tn) for a collapse in the interval [tn, tn + ∆t]

pc,i(tn) = 〈ψc(tn|Ĉ†i Ĉi|ψc(tn)〉∆t (4.34)

2. Choose whether a jump occurs or not. If it does occur, choose randomly the cor-

ersponding jump operator Ĉj.Both choices are performed by drawing a single random

value r, chosen between 0 and 1. If a jump occur, its index j is the smallest integer such

that
∑j

i pc,i(tn) > r.

3. In the no jump case, compute the elementary evolution of |ψc(tn)〉 under the effective

non-hermitian Hamiltonian. Renormalize the final result to get the new state.

4. In the event of a jump, compute the new state and renormalize it.

5. Repeat the sequence of steps with the resulting state |ψ̄c(tn+1)〉 as a new initial state.

It is important to note that that the Linbland and Monte Carlo approaches are fully

equivalent. The quantum monte carlo approach is better suited for computational simu-

lations, especially for modelling systems with a large number of N of possible states. The

computational advantage of the monte-carlo algorithm is that the time evolution of the

system invovles solving a set of only O(N) differential equations, as opposed to O(N2)

required when solving the master equation directly.

23



5 Numerical simulations: 2-mode cavity QED

Now that we have presented the formal apparatus to study this type of systems. In

this section we present the results from the numerical simulation of the sytem presented

in section two. Using the two methods presented in section three. First we show the

properties from the master equation and later compared it with the quantum trajectory

method.

5.1 Master Equation

In order to avoid accuracy problems due to different order of magnitude, we will work with

a master equation such that all terms are of a similar order of magnitude. A dimensionless

master equation:

dρ(t)

d(κt)
=

[HS

i~κ

]
+ (2âρ(t)â† − â†âρ(t)− ρ(t)â†â)

+(2b̂ρ(t)b̂† − b̂†b̂ρ(t)− ρ(t)b̂†b̂) (5.1)

+
γ

2κ

∑
p=0,±1

(
2Σ̂pρ(t)Σ̂

†
p − Σ̂†

pΣ̂p − ρ(t)Σ̂†
pΣ̂p

)
with

HS

i~κ
=

4∑
m=−4

gFeBe

2meκ
|e,m〉〈e,m|+

3∑
m=−3

gFgBe

2meκ
|g,m〉〈g,m|+ E

κ
(â† − â)

+
g

κ
(â†Σ̂0 − âΣ̂0) +

g

κ

(
b̂†

(Σ̂−1 + Σ̂+1)√
2

− b̂
(Σ̂−1 + Σ̂+1)

†
√

2

)
(5.2)

Fock Space Truncation

Its a good approximation to neglect all Fock states with a photon number larger than

Nα, to truncate the Fock space of the cavity mode α. If Na and Nb are the maximum

considered numbers of photons in the driven and non-driven cavity modes, respectively,

the Hilbert space H of our atom cavity system with truncated Fock spaces for the cavity

mode.

H = Hatom ⊗Hdrivenmode ⊗Hnon−drivenmode (5.3)
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Steady State Properties

Mean photon number of the cavity modes

Figure 6 shows the mean photon numbers of the driven and non-driven cavity mode,

given by:

〈ν̂†ν̂〉 = Trs{ν̂†ν̂ρss} (5.4)

where ν̂ = â, b̂, for varying dipole coupling and driving strengths. We observe that, the

mean photon number in the driven mode is larger than that in the non-driven mode.

Dipole coupling strength variation

When the dipole coupling strength is switched on and increased, we noticed two effects,

the first effect is due to the coupling between the atom and the cavity modes, the atom

can be excited. As a consequence photons are scattered from the driven mode into both

the non-driven mode and the free space. Secondly the magnitude of the vacuum Rabi

splitting increase with increasing coupling strength. These leads to a decrease in the

mean photon number in the driven mode when the coupling strength is increased. Their

is a difference between the case of no field and field case, in the no field case the mean

photon number tends to zero. For the field on case the mean photon number reduces to

a minimum.

For the mean photon in the non-driven mode, these effects have opposite character.

All the photons in the non-driven mode originate from emission events of the atom. This

yields an initial increase in the mean photon number when the dipole coupling strength

is increased. For larger coupling, tends to achive a constant mean photon number.

Driving field strenght variation

If the strength of the driving field is inscreased, more photons are provided by the laser.

Therefore the mean photon number in the driven mode increases. With a large average

photon number in the driven mode, more photons are scattered into the non-driven mode.

Field amplitude of the driven mode

As a second steady state property we calculate the mean amplitude of the driven mode

〈â〉 = Trs{âρss} (5.5)

for varying coupling and dirving field strengths(see figure 7). The amplitude of the

driven mode has a coherent part from the driving field and an incoherent part from the

interaction with the atom. Since the coherent part does not average out, the amplitude

of the driven mode has a non-zero mean. On the other hand, the mean amplitude of the

non-driven cavity mode is zero.
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(a)

(b)

Figure 6: Mean photon numbers of the driven and non-driven cavity modes for γ/κ = 6,
and (a) E/κ = 0.1 and varying coupling constant g, (b) g/κ = 5 and varying driving field
strength E.
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Figure 7: Mean field amplitude of the driven cavity mode for γ/κ = 6 and E/κ = 0.1 and
varying coupling constant g, (b) g/κ = 5 and varying driving strength E
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Second-order photon correlation function

We calculate the second order photon correlation function according to

g(2)
µν (τ) =

〈µ̂†(0)ν̂†(τ)ν̂(τ)µ̂(0)〉ss
〈µ̂†µ̂〉ss〈ν̂†ν̂〉ss

(5.6)

The correlation functions for an illustrative set of parameters are shown in figure 9.

The magnetic field induces an oscillation to the second order correlation at the Lamor

frequency. We noticed from the simulation, that for weak drivin field the oscillations

remain for long time and as the driving field becomes stronger the oscillations diminish.

This is, at least qualitatively, what is reported by Orozcos group see figure 8. They also

report that a transition to a strong drive causes oscillation to disappear. The breakdown

of detailed balance for the two-mode cross-correlation that is observed in the absence of

the magnetic field; persists when the magnetic field is turn on.

Figure 8: Taken from [4]

As we increase the strength of the driving field, the mean photon number in the cavity

would increase as well, and our chosen truncation of the Fock space would become a bad

approximation. However the master equation is not suited to handle larger Fock spaces,
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Figure 9: Steady state second-order photon correlation functions for γ/κ = 6,g/κ = 5,
and E/κ = 0.1, 0.3, 0.7, and 1.0 and B = 1x10−5 T: (a) and (b) driven mode self-
correlation, (c) and (d) two-mode cross-correlation, and (e) and (f) non-driven mode
self-correlation. Each correlation function is plotted twice, for a large time scale on the
left hand side, and for short time scale on the right hand side.
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because we have to solve O(N2) equations, so we find computational difficulties. For

larger driving field strengths, we therefore use a quantum trajectory approach, that is

better suited for larger Fock spaces.
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5.2 Quantum Trajectory

The numerical integration of the master equation revealed the behaviour of the system

when is subject to a weak external magentic field. In this section, we explore driving field

strength away from the weak excitation regime, using a simulation of our system based

on quantum trajectory theory.

The considered two-mode cavity QED system radiates five fields: The cavity radiates

two fields, one for each cavity mode, which are transmitted through the cavity output

mirrors. Three fields of different polarisations are radiated out the side of the cavity by

atomic spontaneous emission. The system is initailly prepared in a pure state(the atom

in the mF = 0 ground state and no photons in the non-driven mode), this results in a

non-unitary time evolution for the conditioned system wavefunction:

|ψ̄c(κt+ ∆(κt))〉 = e
iHeff

κ~ ∆(κt)|ψ̄c(κt)〉 (5.7)

with
iHeff

κ~
= −HS

i~κ
+

∑
ν=a,b

ν̂†ν̂ +
γ

2κ

∑
p=0,±1

Σ̂†
pΣ̂p (5.8)

where Hs

i~κ
is given by equation 5.2. The coherent time evolution of the system wavefunc-

tion is interrupted by five type of collapses:

|ψ̄c〉 → Ĉν |ψ̄c〉 |ψ̄c〉 → Ĉp|ψ̄c〉 (5.9)

where Ĉν =
√

2ν̂ and Ĉp =
√
γ/κΣ̂p are the collapse operators associated with the five

superoperators define in. The collapse probabilities of the wavefunction within a small

time interval of length ∆(κt) are given by

pc,ν(κt) = 2∆(κt)
〈ψ̄c(κt)|ν̂†ν̂|ψ̄c(κt)〉
〈ψ̄c(κt)|ψ̄c(κt)〉

(5.10)

pc,p(κt) = 2∆(κt)
〈ψ̄c(κt)|Σ̂†

pΣ̂p|ψ̄c(κt)〉
〈ψ̄c(κt)|ψ̄c(κt)〉

(5.11)

Now we are ready to apply the Monte-Carlo algorithm summarized earlier on chapter

4 to simulate the two-mode cavity QED system subject to a weak external magnetic field.

For the application of the quantum trajectory method, we use a modified program

written in Fortran by M. Kronenwett. So as stated before we apply the monte-carlo recipe

presented in chapter 4. For the program, we need to take into account certain computa-

tional considerations, that we are not going to cover here. Basically this considerations
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are for optimization of the code, we reference the reader to [3] to a detailed discussion.

Second-order photon correlation function

Now we present correlation function for the same set of parameteres as in the master

equation, but for a larger driving field strength. This are shown in figure (10). We notice

that for the non-driven mode the oscillations are no longer there, that at least qualitative

is expected with experiments. In this strong excitation regime, we notice that the driven-

mode self correlation function and the two-mode crossing-correlation function tend to

one. They presents small fluctuations from unity.
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Figure 10: Steady state second-order photon correlation functions for γ/κ = 6, g/κ = 5,
and E/κ = 6.0 and B = 1 × 10−5T: (a) driven-mode self correlation; (b) two mode
cross-correlation;(c) non-driven mode self-correlation.
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6 Conclusion

6.1 Summary

In this project we have extendend the results obtained by Mathias Kronenwet, in order to

investiagte the dynamics of a cavity QED system where a single atom interacts with two

orthogonal linearly polarised cavity modes in the presence of a weak external magnetic

field. One cavity mode is driven in resonance by a coherent field, and in the other cavity

mode light is being generated only by atomic emission. We calculated the Zeeman effect

in the hyperfine structure, and modify the Hamiltonian in order to include the shifting

of the energies.

We use quantum regression formulas and a numerical solution of the master equation

for a quantitative treatment in the weak-excitation regime, where we made a truncation

of the cavity mode Hilbert spaces at two-photon states. From this analysis we observe

that the system shows oscillations when subject to a weak external magnetic field. As the

driving field becomes stronger the oscilaltions diminish. This results compare qualitative

with the experimental data.

6.2 Future Work

As stated in Kronenwet thesis, there is still future work to be perfom. The assumption

of an atom at rest in the center of the cavity is not valid. This is due to the fact, that in

the experiment single atoms are launched from a magneto-optical trap and experience a

varying dipole coupling strength during their flight.

We have assume that the system is in near resonance, in practice this is only accom-

plished with limited accuracy. It is important to understand the effect of this detunings

in the output.
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